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Investigation of allele specific 
expression in various tissues 
of broiler chickens using 
the detection tool VADT
M. Joseph Tomlinson IV1,5, Shawn W. Polson2,3,5, Jing Qiu4,5, Juniper A. Lake1,5, William Lee6 & 
Behnam Abasht1,5*

Differential abundance of allelic transcripts in a diploid organism, commonly referred to as allele 
specific expression (ASE), is a biologically significant phenomenon and can be examined using single 
nucleotide polymorphisms (SNPs) from RNA-seq. Quantifying ASE aids in our ability to identify 
and understand cis-regulatory mechanisms that influence gene expression, and thereby assist in 
identifying causal mutations. This study examines ASE in breast muscle, abdominal fat, and liver of 
commercial broiler chickens using variants called from a large sub-set of the samples (n = 68). ASE 
analysis was performed using a custom software called VCF ASE Detection Tool (VADT), which detects 
ASE of biallelic SNPs using a binomial test. On average ~ 174,000 SNPs in each tissue passed our 
filtering criteria and were considered informative, of which ~ 24,000 (~ 14%) showed ASE. Of all ASE 
SNPs, only 3.7% exhibited ASE in all three tissues, with ~ 83% showing ASE specific to a single tissue. 
When ASE genes (genes containing ASE SNPs) were compared between tissues, the overlap among all 
three tissues increased to 20.1%. Our results indicate that ASE genes show tissue-specific enrichment 
patterns, but all three tissues showed enrichment for pathways involved in translation.

Allele specific expression (ASE) refers to greater abundance of transcripts from one allele in a heterozygous 
individual when equal levels are expected. The phenomenon is of great interest for identification of cis-regulatory 
mutations or epigenetic modifications that influence gene expression. Detection of ASE is also useful for over-
coming some of the limitations of genome-wide association studies (GWAS) and expression quantitative trait 
loci (eQTL) studies. Functional evaluation of loci identified in GWAS is hampered when variants fall in large 
linkage disequilibrium (LD) blocks, introns, intergenic regions and gene  deserts1,2. Also, low statistical power 
can prevent GWAS from detecting variants with small  effect3,4. While eQTL studies can help identify putative 
regulatory functions of variants, many sites maybe incorrectly classified as cis or trans5. Integration of ASE data 
with GWAS and eQTL studies is an emerging strategy to improve our understanding of the biological mecha-
nisms underlying genetic risk factors for human  diseases6.

Several studies have explored ASE in chickens, but these have been fairly limited in  scope7–14. A study by 
Cheng et al. (2015) found that ASE SNPs can be used as markers to select for resistance to Marek’s disease in 
 chickens7. Another study examined ASE in the brain and livers of chicken embryos and identified ASE in ~ 17.8% 
of genes that are expressed in these  tissues13. However, there is no published information available on ASE in 
commercial broiler chickens or in economically important tissues such as breast muscle. Therefore, the first 
objective of the current study is to investigate ASE in three different tissues—liver, fat and breast muscle—from 
a commercial broiler cross.

One method of detecting ASE uses the binomial test, which was implemented by Degner et al. (2009) in the 
first RNA-Seq ASE  analysis15. While various software packages for ASE analysis are available and have been 
comprehensively reviewed by Gu and Wang (2015)16, there is currently no software tool to perform ASE detec-
tion on a per sample basis from a standard variant call format (VCF) file. The existing bioinformatics pipelines 
for ASE detection require customized file inputs, which can be difficult to create and often require additional 
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information, such as haplotype blocks, which may be  unavailable17–19. Therefore, the second objective of this 
study is to develop custom bioinformatics tools to detect ASE in a streamlined manner using standard input 
files. In this study we aimed to streamline the entire ASE analysis process into one self-contained user-friendly 
program that filters a VCF, tests for ASE using the binomial test, controls for the false discovery rate and reports 
back all the significant findings. We also aimed to create a program where intermediate processing steps were well 
documented in various output files to ensure overall accuracy of the program. To achieve this second objective, 
we created a program called VCF ASE Detection Tool (VADT). VADT specifically performs two different types 
of statistical analysis of the data (varying models) to identify significant ASE results, a meta-analysis (variants) or 
multi-dimensional p-value adjustment (samples). It should be mentioned we largely focused on the ASE variant 
results (meta-analysis) for all three tissues and examined the overall biological significance of genes enriched 
for ASE but did utilize both methods when examining ASE frequency and strength for specific genes of interest.

Materials and methods
The RNA-sequencing data used in this study was taken from a feed efficiency project that was the topic of 
previous  publications20,21 (SRA accession numbers: abdominal fat samples SRP058295 and breast muscle/liver 
samples SRP255211). A full breakdown of the 68 samples from 3 tissues of 23 chickens utilized in this study can 
be seen in Supplemental Sect. 1. Figure S1. Liver, abdominal fat and breast muscle samples were obtained from 
commercial broiler chickens resulting from a 3-way cross of lines B, C and D (B × CD) (Supplemental Sect. 1. 
Figure S1). All the collected samples came from male chickens to limit sex driven variability in expression. The 
genetic background of these lines was previously described by Fu et al., 2015 and  201622,23. All of the samples 
were prepared using Illumina’s TruSeq Stranded mRNA kit and were sequenced using a 75 cycles paired-end 
sequencing protocol on an Illumina HiSeq 2000 Sequencer. All fastq files were reviewed for sequence quality 
using  FastQC24 and all samples passed this quality control step.

Sequence alignment and variant calling. Sequencing reads were aligned, and variants were called 
according to GATK’s Best Practices for Calling Variants in RNA-seq25–28. This consisted of aligning sequencing 
reads using STAR (version 2.5.2b) with the two-pass  setting29,30 to the Gallus_gallus_5.0 genome build (Ensem-
ble release 86)31,32. The index file initially used for STAR was created using gtf file 86 from  Ensembl32,33. It should 
be mentioned that sequencing reads were not trimmed to avoid potential bias this might  introduce34, instead 
soft-clipping was allowed during alignment. After alignment, duplicate reads were marked using Picard (version 
2.8.1)35. Aligned reads were then submitted to the GATK (version 3.7) pipeline, which includes “Split’N’Trim,” 
“Base Recalibration” and variant calling using HaplotypeCaller (with the g.vcf setting). The g.vcf files from all 
the samples listed in Supplemental Sect. 1. Figure S1. along with 32 additional samples from a related project 
were merged to create a global vcf file. The global vcf file was then used to mask the reference genome using 
 Bedtools36. All samples were re-aligned to the masked genome and variants were re-called using all the previ-
ously mentioned steps. A detailed summary of this entire process is available in Supplemental Sect. 1. Figure S2. 
The final g.vcf for the samples was created by merging samples by tissue and using GATK to remove variants 
with “Fisher Strand > 30.0”, “Quality Depth < 2.0” and “Depth < 100”.

Examining gene coverage. To verify that no systemic sequencing errors occurred, gene coverage was 
assessed using RSeQC’s (version 2.6.4) geneBody_coverage.py37. The BED file utilized in this analysis was cre-
ated using the UCSC Genome Browser (Table Browser) utilizing Gallus_gallus-5.038. The outputted BED file was 
then slightly modified into a format allowable for the program. Analysis was run on the initial BAM file created 
by Picard when converting SAM to BAM.

Analyzing unmapped reads. An unexpected discrepancy in alignment rates among tissues warranted 
further investigation of potential alignment issues. To characterize unmapped reads in a systematic manner, 
a custom python program called FastqBLAST (https ://githu b.com/junip er-lake/Fastq BLAST ), was used to 
remotely submit random samples of sequences to NCBI’s BLAST using the Biopython  package39. The program 
takes in a fastq file and randomly selects a sample of sequences based on a user defined parameter. Read ends 
with a quality score of less than 20 are trimmed until passing bases are identified. If no passing bases are identi-
fied the entire sequence is removed. The program then BLASTs the filtered sequences and retrieves the top hit 
from the BLAST results. Additional gene information is then retrieved using NCBI’s EFetch function and the 
results are merged. Finally, FastqBLAST tallies all the results and prints out summary reports of the BLAST 
results and EFetch results. Parameters of FastqBLAST were adjusted to match NCBI’s Megablast parameters. 
This analysis was conducted on data from a randomly selected chicken that had samples collected from all three 
tissues with FastqBLAST processing ~ 1000 unmapped sequence reads from each sample.

Validating RNA-Seq analysis with 600K genotyping data. To validate RNA-seq variant calls, we 
used 600K genotyping data (GSE131764) obtained using the ThermoFisher Axiom Chicken Genotyping  Array40. 
Raw genotyping data (cel files) was analyzed using Axiom Analysis Suite Software (version 3.0.1 64 bit) with the 
Gallus gallus 5.0 genome downloaded from Axiom server following the software’s Best Practices Workflow using 
recommended settings for agricultural  animals41,42. Results from this analysis were exported as a VCF file.

The resulting VCF files from the various tissues (RNA-seq) and genotyping panel were compared using a 
custom python program that filters VCFs and then compares concordance of matching samples and SNPs (https 
://githu b.com/mjtiv /Compa re_VCF_Files ). The 600K genotyping data was filtered to remove all SNPs with < 97% 
call rates and all non-overlapping samples. The RNA-Seq data was filtered using the following criteria: all SNPs 
that failed previously mentioned GATK filters, SNPs within 75 base pairs of INDELs, SNPs with < 20 quality 

https://github.com/juniper-lake/FastqBLAST
https://github.com/mjtiv/Compare_VCF_Files
https://github.com/mjtiv/Compare_VCF_Files
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score and SNPs with < 20 read counts. Final datasets were then compared for matching SNPs and overlapping 
SNPs were analyzed for overall concordance among samples.

VCF ASE detection tool (VADT). To identify ASE variants, a custom program was developed called 
VADT (VCF ASE Detection Tool), the complete code for the program can be found at https ://githu b.com/mjtiv 
/VADT. VADT takes in a raw VCF file, filters the data and then performs various statistical tests for detection of 
allele specific expression (ASE) to identify highly confident occurrences of ASE. VADT was written in python3.6 
and requires NumPY and  SciPy43–45. A full explanation of the tool and all its possible settings can be found at the 
prior link and an outline of the major steps of the program seen in Fig. 1.

VADT first filters out variants marked as failing by GATK, indels, SNPs within a certain distance of an indel 
(user defined), multiallelic SNPs and SNPs with (quality score below < 20). At each remaining SNP, variant calls 
are removed for samples that are homozygous, have low read count (coverage) or that have a minor allele count 
below 1% of the total counts.

VADT next performs a binomial test on all remaining SNPs per sample; these testable SNPs will be referred 
to as “informative SNPs” throughout the paper. To perform the binomial test, VADT utilizes the raw read counts 
from the VCF file, found in the “genotype fields” under the AD (unfiltered allele depth) sub-field for each sample 
and implements the test utilizing SciPy’s binomial  test45. After performing the initial binomial test, two different 
statistical analyses are implemented to answer different biological questions about the data, and at the same time, 
control for the false discovery rate (FDR). The two statistical analyses implemented are (i) a meta-analysis to 
examine variants and (ii) multi-dimensional p-value adjustment to examine both variants and samples. These 
two statistical analyses are separate from each other and interrogate the data in different ways.

VADT implements a meta-analysis to identify variants that exhibit ASE (i.e., ASE variants) using informa-
tion from all samples included in the analysis. In the meta-analysis, each SNP’s p-values for testable samples 
are combined using Fisher’s  Method46. After implementing this procedure on all informative SNPs, the false 
discovery rate (FDR) is controlled using the Benjamini–Hochberg p-value adjustment  method47 generating a 
final adjusted p-value.

The second statistical analysis implemented by VADT examines individual samples to identify samples that 
exhibit ASE (i.e., ASE samples) for each variant. For ASE sample identification, VADT implements a multi-
dimensional FDR-controlling procedure proposed by Guo et al. (2010)48 and later by Li and Ghosh (2014)49 to 
control mixed directional FDR (mdFDR) or overall FDR (OFDR). This statistical model controls for the type 1 
error on the variant levels while allowing one to make inference for individual hypothesis of each variant. A full 
breakdown of how this method was implemented in VADT can be found in Supplemental Sect. 2.

VADT settings utilized in study. The present study utilized an indel filter distance of 75 base pairs (read 
length), a quality score minimum of 20, and a SNP read count threshold of 20 for each sample. The statistical 
adjustment cutoff utilized by both the meta-analysis and multi-dimensional p-value adjustment was 0.05. How-
ever, due to the overall complexity of analyzing both variant and sample data, the focus of this paper will largely 
be on the biological significance of ASE variants using the meta-analysis results. But we will examine the benefits 
of utilizing both sets of data when deciphering the biological significance of results regarding ASE frequency, 
penetrance and strength.

Biological significance of ASE variants. ASE SNPs identified in this study were submitted to Ensembl’s 
Variant Effect Predictor (VEP)  tool50 for functional prediction. The genes associated with these SNPs were also 

Figure 1.  Major steps of the analysis performed by VCF ASE Detection Tool (VADT). The program filters 
SNPs, tests for ASE and implements one of two methods for multiple testing correction to identify significant 
ASE variants or samples with significant ASE.

https://github.com/mjtiv/VADT.VADT
https://github.com/mjtiv/VADT.VADT
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submitted to DAVID for functional  annotation51 using an adjusted p-value cutoff of 0.1. The overlap of ASE 
SNPs or genes among tissues was visualized using two online bioinformatics tool for creating Venn  diagrams52,53.

Results
Mapping and initial variant results. RNA sequencing of the 68 samples produced an average of 
33,221,292 paired-end reads per sample with an average unique mapping rate of 87.24%. A summary of the 
mapping results for the samples can be seen in Table 1. Utilizing all 68 samples and an additional 32 samples 
available in the lab (Supplemental Sect. 1. Table S1), a total of 3,147,284 variants were identified after the first 
alignment and used to mask the reference genome for the second alignment.

Mapping issue between tissues. The liver and abdominal fat samples had mapping rates ~ 10% higher 
than the breast muscle samples (Table 1) even though all the samples were prepared using the same methods 
(the same RNA isolation and cDNA library preparation kits as well as the same Illumina sequencing machine 
and protocol, see “Methods”). This mapping issue discrepancy could potentially be due to variation in read qual-
ity scores, which were originally inspected using the FastQC’s pass/fail categorization and visual inspection of 
the program’s output report. To use a quantitative approach, a custom program was written to quantify all the 
FastQC results based on various base quality scores. However, after analysis of all the samples, no issues were 
found with base quality, and the average base quality per tissue was 34.79 for breast muscle, 34.15 for liver and 
36.00 for abdominal fat. To further investigate the mapping issue for systematic bias that could influence gene 
coverage, the sequencing reads were examined using RSeQC and individual tissues showed no apparent bias in 
terms of gene coverage (Supplemental Sect. 1. Figures S3).

We eventually determined that breast muscle samples had a significantly higher percentage of reads consid-
ered “too short” according to STAR (avg. 15.39% compared to avg. 4.50% for abdominal fat and avg 5.33% for 
liver with an ANOVA p-value of 9.76 × 10–24). STAR describes reads as “too short,” if 2/3 of the read cannot be 
aligned  correctly29,30. A sample was randomly chosen for analyzing its unmapped reads files (R1 and R2) from 
all three tissues using FastqBLAST. A total of 1000 unmapped sequences from each file (Supplemental Sect. 1. 
Table S2) were randomly selected and BLASTed against the chicken genome (NCBI taxid 9031). The top five genes 
based on counts of hits were identified for each tissue (Supplemental Sect. 1. Table S3) and we discovered that 
unmapped reads from muscle samples largely represented muscle-related genes whereas unmapped reads from 
abdominal fat and liver samples largely represented non-tissue specific genes (i.e., ribosomal and mitochondrial 
genes). The top 15 gene hits from the unmappable reads for R1 and R2 were verified using Gallus_gallus_5.0 GTF 
and it was found many of the genes had numerous isoforms that could potentially make alignment problematic 
(Supplemental Sect. 1. Table S4). Also, it was speculated the latest genome build release could potentially rescue 
this lower mapping rate, so the prior chosen sample was aligned to the latest genome build (muscle mapping rates 
old 79.43% vs new 80.92%)54,55. A full breakdown of the various tissues can also be seen in Supplemental Sect. 1. 
Table S5. Also, the prior analysis with GTF files was repeated with the Gallus_gallus_6.0 GTF (Supplemental 
Sect. 1. Table S4). Overall, it was found the muscle sample using the latest genome build still had the same issue 
with mapping rate when compared to the other tissues. Also, the results between the two GTF files were very 
similar for non-mapping genes.

Overall, these findings suggest several muscle related genes are not represented in the current genome build, 
and reads for these genes are either (1) mapping to their corresponding isoforms, resulting in the reads being 
flagged as “too short” or (2) a paired end read is being “split” over two different isoforms as a “chimera” read 
(Table 2.). Muscle samples showed 4–6 times more chimeric reads than the other tissues. Further confirming 
this hypothesis, the percent of chimeric reads in the muscle samples was found to be moderately correlated 
 (R2 = 0.5202) with the percent of unmapped reads (Fig. 2). In summary the current genome builds needs further 
sequencing and annotation work for muscle related genes. 

Table 1.  Summary statistics of STAR alignment (1st pass) for all samples.

Avg. input reads Input length Avg. uniquely mapped reads % uniquely mapped reads

Breast muscle (n = 23) 34,212,079 150 27,477,523 80.11

Abdominal fat (n = 22) 32,096,465 150 29,137,588 90.78

Liver (n = 23) 33,306,428 150 30,305,272 90.98

Table 2.  Mapping statistics from the 1st pass of STAR alignment for breast muscle, abdominal fat, and liver 
after the chimeric setting was turned on.

Tissue Avg. uniquely mapping reads (%) Avg. unmappable reads (too short) (%) Avg. chimera reads (%)

Breast Muscle (n = 23) 80.11 15.39 2.73

Abdominal Fat (n = 22) 90.78 4.50 0.61

Liver (n = 23) 90.98 5.33 0.44
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Validation of variant calling pipeline. To validate the RNA-Seq pipeline, the variant calls were com-
pared to genotyping call data produced with the same samples (Supplemental Sect. 1. Table S6). On average the 
panels overlapped by ~ 13,997 SNPs and genotype calls per sample had concordance of 99.46%. To verify that 
overall concordance was not driven by random chance or an unknown systematic error, samples were shuffled 
and compared to each other in a concordance matrix (Supplemental Sect. 1. Figure S4). The average concord-
ance of randomly paired samples was 54.30%, whereas concordance of self by self was 99.50%.

VADT analysis and results. Between 1.5 and 2 million variants were identified in each of the three tissues. 
After filtering based on strand bias, quality depth and coverage, approximately 76% of variants were removed 
in each of the three tissues. The remaining variants were then filtered on various quality criteria as previously 
described (e.g. INDEL, closeness to INDELs, homozygosity, multiallelic, low counts, allele count < 1%, or no 
data). After filtering, the remaining informative variants were comprised of 148,860 biallelic SNPs in breast 
muscle, 217,628 in abdominal fat and 155,875 in liver with 32.5% of the total number of SNPs overlapping 
among tissues (Figs. 3 and 4). A full breakdown of summary statistics for the informative SNPs can be found in 
Supplemental Sect. 1. Tables S7 and S8. 

We also checked for reference allele bias to assess the usefulness of masking the reference genome. This was 
done by comparing the reference allele ratio for informative SNPs between analyses using the masked versus 
unmasked reference genome. The masked reference genome reduced the reference allele ration from 51.77 to 
50.17% in breast muscle, 51.93% to 50.19% in abdominal fat and 51.91% to 50.17% in liver. Reduction of the 
mean reference allele ratio closer to the expected ratio 50.0%, suggests that masking the reference genome helped 
remove reference allele bias.

The ASE analysis detected 21,916 ASE SNPs in liver, 28,190 SNPs in abdominal fat and 20,775 SNPs in breast 
muscle (Fig. 3). Only 2196 (3.7%) SNPs were shared among all three tissues (Fig. 4). ASE SNPs constituted 
approximately 13.96% of total informative SNPs for breast muscle, 12.95% for abdominal fat and 14.06% for liver.

ASE frequency per variant. Using the multi-dimensional adjusted results, which detect individual sam-
ples exhibiting ASE for any given variant, ASE frequency (number of ASE samples/total number of samples) was 
calculated among all the samples and tallied on a per sample basis. It was found our overall ability to detect ASE 
is greatly enhanced by the larger sample size and evident by the largest ASE counts (first row) occurred only in 
10% of the samples (Table 3). In other words, ASE is mostly occurring at a low frequency in the population. It 
is also important to note the number of ASE variants identified differ between the two statistical models imple-
mented by VADT, seen by the lower variant count in Table 3 when compared to Fig. 3. Also, the occurrence of 
ASE was spread out among all samples (mean and standard deviation of number of ASE variants per sample: 
breast muscle 1266.30 ± 283.56, abdominal fat 1786.00 ± 277.93 and liver 1565.09 ± 215.64) with no evidence of 
enrichment in a few samples. It is important to note the rest of the paper focuses largely on the meta-analysis 
results when investigating functional significance of genes unless noted.

Functional significance. All significant ASE SNPs were investigated for function using Ensembl’s online 
VEP tool. VEP returns a variety of results, such as location of the variants (exon, intron, etc.), variant’s overall 
consequence and  gene it is predicted to have an influence on. The significant annotated variants from both 
models can be found in Supplemental Tables 1–6 (text files), but as prior mentioned functional analysis focuses 
largely on meta-analysis results only. In general, there appears to be a greater proportion of SNPs in the 3′ UTR 
region and downstream region of genes. A full breakdown of the SNP locations and overall consequence can be 
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Figure 2.  Percent chimeric reads versus percent unmappable reads for each sample. Colors correspond to 
different tissue types (blue = muscle, grey = abdominal fat and orange = liver). A regression line is only shown for 
muscle samples because the percent chimeric reads for the other tissues is negligible.
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Figure 3.  Variants detected using VCF ASE Detection Tool (VADT) pipeline for all three tissues analyzed (liver, 
abdominal fat and breast muscle). The pipeline consists of three major steps (blue outlined boxes): filtering using 
GATK (user defined filters), quality control filters and the actual statistical analysis for ASE variants.

Figure 4.  Venn diagram comparing overlapping SNPs among the three tissues. On the left are SNPs considered 
informative and on the right are a subset of informative SNPs that exhibit ASE. On average the informative SNPs 
overlap by 32.5% and ASE SNPs only overlap by 3.7%.

Table 3.  Summary of ASE counts with corresponding percent among all the samples by ASE frequency 
calculated using the multi-dimensional FDR-controlling results.

Breast muscle Abdominal fat Liver

Bin Counts ASE percent (%) Counts ASE percent (%) Counts ASE percent (%)

0.0—0.1 13,852 84.31% 17,833 82.44% 13,850 78.58%

0.1—0.2 1534 9.34% 2349 10.86% 2155 12.23%

0.2—0.3 541 3.29% 822 3.80% 805 4.57%

0.3—0.4 310 1.89% 330 1.53% 521 2.96%

0.4—0.5 86 0.52% 165 0.76% 170 0.96%

0.5—0.6 49 0.30% 92 0.43% 71 0.40%

0.6—0.7 37 0.23% 13 0.06% 37 0.21%

0.7—0.8 11 0.07% 12 0.06% 8 0.05%

0.8—0.9 4 0.02% 10 0.05% 3 0.02%

0.9—1.0 5 0.03% 5 0.02% 5 0.03%

Variants 16,429 Variants 21,631 Variants 17,625

Samples 23 Samples 22 Samples 23
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seen in Supplemental Sect. 1. Figure S5. No significant difference was identified between tissues and very few 
detrimental SNPs in coding regions identified with on average 0.13% (all three tissues) of variants flagged by 
VEP with a “high impact” consequence of “stop gain,” “stop lost” etc.

The variant effects identified from Ensembl’s VEP  tool50 were investigated using Fisher’s Exact  Test46. Spe-
cifically, we investigated whether there is a statistical difference between the annotations in the “Consequence” 
and “Impact” groups when comparing the informative variants versus the variants showing ASE based on the 
meta-analysis (Supplemental Sect. 1 Tables S9-14). When examining the “Impact” categories (Supplemental 
Tables S9-11), it quickly becomes evident there is a significant difference between the informative variants and 
ASE variants with some groups increasing in percentage and another group significantly decreasing. Interestingly, 
in the ASE variants there appears to be an enrichment in variants for “high” and “modifier” impact categories. 
Variants in the “high” impact category, which consisted of “splice acceptor variant”, “splice donor variant”, “start 
lost”, “stop gained” and “stop lost,” doubled in percentage in the ASE variants for all three tissues (avg. percentage 
fold change 2.17, avg. adj. p-value = 1.60 × 10–3). Whereas “low” impact variants actually significantly decreased 
in percentage in ASE variants (avg. percentage fold change 0.87, avg. adj. p-value = 1.96 x  10–27). This type of 
enrichment for functionally important variants is also evident in the “consequence” classification of variants 
as seen in Supplemental Sect. 1 Tables S12-14. This is evident in the significant increase in percentage of ASE 
variants with the following consequences of “intergenic variant” (avg. percentage fold change = 1.61, avg. adj. 
p-value = 7.17 x  10–51), “3 prime UTR variant” (avg. percentage fold change = 1.11, avg. adj. p-value = 1.23 × 10–4) 
“intron variant, non-coding transcript variant” (avg. percentage fold change = 2.11, avg. adj. p-value = 1.60 × 10–4) 
and “splice region variant, intron variant,” (avg. percentage fold change = 1.71, avg. adj. p-value = 1.66 × 10–2) in 
all three tissues. Whereas some consequences of interest that only appeared significantly in two of the three tis-
sues with increasing percentage in ASE variants were “splice acceptor variant” (avg. percentage fold change = 5, 
avg adj. p-value = 1.79 × 10–3) in breast muscle and liver tissues and “splice donor variant” (avg. percentage fold 
change = 4.5, avg. adj. p-value = 1.69 × 10–2) and “upstream gene variant” (avg. percentage fold change = 1.07, adj. 
p-value = 1.61 × 10–2) in breast muscle and abdominal fat tissues. Whereas variants classified with the following 
consequences of “synonymous variant” (avg. percentage fold change = 0.86, avg adj. p-value = 3.45 x  10–28) and 
“downstream gene variant” (avg. percentage fold change = 0.90, avg. adj. p-value = 2.67 × 10–8) actually decreased 
significantly in percentage in ASE variants in all three tissues. Overall, it appears variants that may have functional 
influence are “enriched” in the ASE variants and variants that do not have a functional impact are decreased. The 
most interesting finding in this analysis is “intergenic” variants (Supplemental Sect. 1 Tables S12-14). They are 
showing the strongest significance and are increased in percentage in ASE variants for all three tissues, suggest-
ing that these regions are playing an important functional role due to them being actually transcribed. As such, 
these intergenic variants need to be examined further.

Pathway enrichment. The VEP results were then further parsed by Ensembl gene ID and overlapping 
genes between tissues examined as seen in Supplemental Sect. 1 Fig. S6, which also compares genes identified 
from informative SNPs. In the informative SNPs group; breast muscle captured 10,577 genes, abdominal fat 
captured 11,878 genes and liver captured 10,277 genes, with a high overlap of 66.9%. Whereas in the ASE SNPs 
group, breast muscle captured 4784 genes, abdominal fat captured 5709 genes and liver captured 4095, with an 
overlap of 20.1%. There was also significant enrichment of tissue specific genes.

Genes containing ASE SNPs (i.e., ASE genes) within each tissue were submitted to DAVID for pathway 
enrichment. Most pathways were found to be enriched in a tissue-specific manner, although there were some 
exceptions (Fig. 5). The biological themes found in common for all three tissues are related to ribosomes and 
translation. Some groupings of genes did not show statistical significance, possibly because many Ensembl gene 
IDs were not identified by DAVID. The top enrichments found in DAVID for each tissue are noted in Fig. 5 and 
additional details are available in Supplemental Sect. 1. Tables S15-19.

Identification of robust ASE genes found in all three tissues. For additional functional analyses, 
we focused on ASE genes that were common to all three tissues and showed the strongest ASE evidence. In all 
three tissues, ASE genes were investigated by normalizing the number of ASE SNPs found in a gene to its total 
number of informative SNPs by utilizing the following equation (ASE SNPs/informative SNPs) × 100 = normal-
ized gene ASE score. The normalized gene ASE score among the three tissues was then averaged to create a 
global (across tissue) gene ASE score. Out of the 1715 ASE genes found in common among all tissues, a total of 
344 genes had a global ASE score greater than or equal to 50%, and of these 344 genes, 208 genes had assigned 
gene symbols. These 208 genes were uploaded to  STRING56 to examine protein interactions (Fig. 6). Ribosomal 
genes formed the largest and most interconnected network of interactions among all the genes. The top three 
KEGG  pathways57 identified by STRING were ribosomes (count = 18, FDR adjusted p-value = 8.62e−15), meta-
bolic pathways (count = 32 FDR adjusted p-value = 3.33e−07) and oxidative phosphorylation (count = 11, FDR 
adjusted p-value = 8.93e−07). When a more stringent cutoff of ≥ 80% is applied, 78 genes were identified, and this 
full list can be found in Supplemental Sect. 1. Table S20. Out of the entire list, 23 genes had a global ASE scores 
of 100%, of which 10 genes have identifiable gene symbols that could be referenced for biological function in 
 GeneCards58. These top 10 genes with corresponding function can be seen in Table 4. In the list, 3 out of 10 genes 
are ribosomal protein coding genes (RPS29, RPL35A and MRPL43) and 3 out of 10 genes are directly involved in 
metabolism (UBL5, RARES2 and MT-ND2). 

Examination of ribosomal variants show variable penetrance and strength of ASE. To fur-
ther examine the ribosomal protein coding genes, the ASE variants for the three ribosomal genes identified in 
Table 4. (RPS29, RPL35 and MRPL43) were inspected in greater detail. This included investigating the meta-
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data of samples (high and low feed efficiency status of birds) and verification of ASE statistical significance in 
individual samples based on the multi-dimensional-FDR corrected analysis for these variants (Table 5). Utiliz-
ing the meta-data, the feed efficiency status (HFE vs LFE) and ASE were investigated for statistical enrichment 
first using Student’s T-test comparing the groups in Table 5, which showed no statistical difference. The study 
was then expanded to using Fisher’s Exact Test to examine the meta-data based on feed efficiency status for all 
variants not just ribosomal genes (Supplemental Sect. 1 Tables S21-23), but no variant reached statistical sig-
nificance possibly due to overall data dimensionality, and complex nature of the trait, requiring a larger sample 
size to capture the complexity. As seen in Table 5. it becomes evident that each variant showed a different ASE 
frequency among the samples, although an individual variant’s overall behavior was consistent between tissues. 
For example, variant chr5:57721190, found in the RPS29 ribosomal gene, showed consistently high frequency 
of ASE among biallelic samples in all three tissues, which had a consistently strong signal for ASE (statistically 
significant for ASE). In contrast, variant chr6:23089484 shows low frequency of ASE on a per-sample basis in 
all three tissues, as evidenced by liver tissue having no statistically significant samples and the other two tissues 
having only one significant sample. It is important to note this variant was properly flagged as showing ASE 
in all three tissues by the meta-analysis, but by utilizing results from the multi-dimensional analysis further 
interpretation of the data can occur. Also, seen in Table 5 is consistency in the directionality of ASE, which allele 
is higher expressed, is consistent between samples for a specific variant. When this behavior was investigated 
globally, utilizing the multi-dimensional FDR-controlling results, it was found variants generally showed high 
concordance for a specific allele (concordance for each tissue: breast muscle = 95.17%, abdominal fat = 94.84% 
and liver = 94.07%).

Discussion
ASE tissue specificity in chickens was previously reported by Zhuo et al.13 and in other  organisms59–64. ASE was 
recently reported to occur frequently in bovine muscle and in genomic regions associated with economically 
important  traits65. The present study is the first to show ASE in non-tissue specific genes in chickens, specifically 
genes involved in ribosomes and translational machinery. This mechanism was previously reported in hybrid 
catfish in 2016, which are bred for production traits in  aquaculture66.

Modern breeding for broiler chickens value fast growth, high yield, and high feed  efficiency67. This selective 
pressure has mostly caused upregulation of key genes and pathways that are involved in metabolism and protein 
production to favor greater growth and efficiency. It is possible that ASE SNPs, especially those identified in 
ribosomal genes are associated with beneficial improvements in translation, however, without eQTL data, this is 
just speculative. The presence of ASE in ribosomal genes in all three tissues, most likely, implies the cis-regulatory 
mechanism for these variants is not tissue specific. Therefore, when selecting for key ASE variants for future 
breeding purposes various factors must be considered like the prevalence and strength of the ASE variant along 
with its tissue specificity. Though, ASE may also result from genomic imprinting, where expression of one of the 

Figure 5.  Pathway enrichment of ASE genes. The ASE variants detected in the present study were matched 
with their corresponding genes using Ensembl’s VEP and Ensembl gene IDs were uploaded into DAVID for 
biological themes enrichment analysis. The cutoff for significance was an FDR adjusted p-value ≤ 0.1 and 
Enrichment Score ≥ 1.3.
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two alleles is silenced depending on the parental origin, recent studies have shown no evidence of imprinting 
occurring in  chickens13.

Figure 6.  Network analysis of genes enriched for ASE across all three tissues. Genes that showed a 3-tissue 
average ASE score of 50% (or higher) after normalization were submitted to STRING (n = 208) to examine 
protein interactions. There were a total 176 nodes, 374 edges with an average node degree 4.25 with a PPI 
enrichment p-value of < 1.0e−16 (significant interactions identified). The largest network identified in the 
analysis was ribosomal genes (zoomed in image).
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In conclusion, this study presents a new analysis pipeline that simplifies and standardizes ASE detection. We 
have also showed the impact of ASE SNPs in chickens especially their potential role in translational machinery. 
Additional research is necessary to fully understand the biological mechanisms underlying ASE variants and 
their importance for economically important traits in poultry production.

VADT is a streamlined ASE detection pipeline that is robust, accurate and straight-forward to run. The pipe-
line follows GATK’s Best Practices to produce an initial VCF, which can be fed directly into VADT for ASE detec-
tion. The output from VADT can easily be uploaded to VEP parser for other downstream analyses. Understanding 
the biological effect of ASE is key to gaining a better understanding of cis-regulatory elements in the genome.

Our analysis pipeline for SNP calling was found to be highly accurate as seen by the strong correlation with 
our DNA genotyping calls. However, a large number of SNPs were excluded due low overlap with the 600K 
chicken genotyping panel. This low overlap between the RNA-seq variant calls and genotyping panel is most 
likely due to limitations of commercial genotyping panels in general. Genotyping panels have a limited number 
of variants spread across the entire genome that must be applicable to a broad genetic background. However, the 
high concordance of overlapping SNPs validates the use of VADT for ASE SNP detection. The biggest problem 

Table 4.  Genes with the strongest ASE evidence identified across three tissues using VADT and Ensemble’s 
VEP tool. Biological function is based on  GeneCards58.

Ensembl gene ID Gene symbol Gene name Biological function

ENSGALG00000021139 IGLL1 Immunoglobulin Lambda Like Polypeptide 1 Cell surface receptor involved in signal transduction for prolifera-
tion and differentiation of ProB cell to preB cell

ENSGALG00000029837 OST4 Oligosaccharyltransferase Complex Subunit 4, Non-Catalytic Forms part of complex that transfers oligosaccharides to polypep-
tide chains

ENSGALG00000035138 UBL5 Ubiquitin Like 5
Codes a protein that functions like ubiquitin, but instead bind to a 
protein and interfere with its function and appears to show associa-
tion with metabolism

ENSGALG00000007611 RPL35A Ribosomal Protein L35A Codes a protein that forms part of the 60S subunit of ribosomes

ENSGALG00000008066 UQCR10 Ubiquinol-Cytochrome C Reductase, Complex III Subunit X Codes for a subunit of protein that forms part of the inner mito-
chondrial membrane

ENSGALG00000034352 MRPL43 Mitochondrial Ribosomal Protein L43 Codes for a protein that forms part of subunit of mitochondrial 
ribosomes

ENSGALG00000012229 RPS29 Ribosomal Protein S29 Codes for protein that forms part of the 40S subunit of ribosomes

ENSGALG00000042642 RARRES2 Retinoic Acid Receptor Responder 2
Receptor which helps transmits signaling for the regulation of 
various biological functions like adipogenesis, metabolism and 
inflammation

ENSGALG00000021365 DCTN3 Dynactin Subunit 3
Forms a sub-unit that is part of the dynactin protein complex. 
Dynactin are involved in a variety of functions associated with 
microtubules

ENSGALG00000043768 MT-ND2 Mitochondrially Encoded NADH: Ubiquinone Oxidoreductase 
Core Subunit 2

Forms an important subunit in mitochondria that is involved 
NADH dehydrogenase, which is extremely important in metabo-
lism

Table 5.  Examination of ribosomal genes and their corresponding variants identified as showing ASE from 
the meta-analysis. Included is the breakdown of the meta-data for those corresponding samples (HFE = “High-
Feed Efficiency” and LFE = “Low-Feed Efficiency”) and the multi-dimensional FDR corrected sample results 
that showed statistically significant ASE. a Number of samples expressing both alternative and reference alleles 
of the variant. b Number of samples showing ASE.

Tissue (n) Gene symbol Location Variant Biallelica ASEb ASE Allele HFE (n) LFE (n)

Breast muscle 
(HFE = 10, LFE = 13)

RPS29 chr5:57721190 rs733556517 15 15 Alt 6 9

RPS29 chr5:57721198 – 2 2 Ref 1 1

RPL35A chr9:15172542 rs3137208 6 6 Alt 4 2

MRPL43 chr6:23089484 – 11 1 Ref 1 0

Abdominal fat 
(HFE = 10, LFE = 12)

RPS29 chr5:57721190 rs733556517 16 16 Alt 8 8

RPS29 chr5:57721198 – 3 3 Ref 3 0

RPL35A chr9:15172542 rs3137208 3 3 Alt 2 1

MRPL43 chr6:23089484 – 11 1 Ref 0 1

Liver (HFE = 11, 
LFE = 12)

RPS29 chr5:57721190 rs733556517 14 13 Alt 7 6

RPS29 chr5:57721198 – 4 3 Ref 2 1

RPL35A chr9:15172542 rs3137208 6 6 Alt 2 4

MRPL43 chr6:23089484 – 12 0 No sig. indiv. samples
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we encountered with our entire analysis pipeline was mapping issues with muscle tissue samples. This limitation 
was most likely due to current genome build and its annotation of muscle related genes.

VADT is a self-contained python-based program that requires minimal effort from a user to run, the only 
requirement is a high-performance computing (HPC) environment due to the size of and complexity of VCF 
files. VADT is the first ASE detection program that does not require any modifications of user input files and 
has FDR correction built in, allowing users to focus more on the biological significance of their results. VADT 
was tested and validated on a different dataset (data not included) and proven to be robust and accurate. Also, 
VADT allows a user to analyze multiple tissues in a high throughput manner and with less susceptibility to 
user error. The ability to use VADT with two different statistical models allows users to thoroughly investigate 
ASE behavior on both a per variant and per sample basis, allowing for a greater understanding of ASE and its 
biological impact and regulation.
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