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Abstract

COVID-19 is a disease caused by the new coronavirus SARS-COV-2 which can
lead to severe respiratory infections. Since its first detection it caused more than
six million worldwide deaths. COVID-19 diagnosis non-invasive and low-cost
methods with faster and accurate results are still needed for a fast disease control.
In this research, 3 different signal analyses have been applied (per broadband, per
sub-bands and per broadband & sub-bands) to Cough, Breathing & Speech signals
of Coswara dataset to extract non-linear patterns (Energy, Entropies, Correlation
Dimension, Detrended Fluctuation Analysis, Lyapunov Exponent & Fractal Di-
mensions) for feeding a XGBoost classifier to discriminate COVID-19 activity on
its different stages. Classification accuracies ranged between 83.33% and 98.46%
have been achieved, surpassing the state-of-art methods in some comparisons.
It should be empathized the 98.46% of accuracy reached on pair Healthy Con-
trols vs all COVID-19 stages. The results shows that the method may be adequate
for COVID-19 diagnosis screening assistance.

Keywords: COVID-19; Cough; Breathing; Speech signals; Non-linear patterns;
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1. Introduction

The COVID-19 pandemic provoked a vast negative impact on health, social
and economic systems. Therefore, the development of methodologies to detect
the virus has grown exponentially for controlling the pandemic. New diagnos-
tic methods have been developed, such as reverse transcription-polymerase chain
reaction (RT-PCR), serologic testing for immunoglobulins, and rapid diagnostic
kits [1, 2, 3, 4, 5]. The RT-PCR is the most widely used method, but these tests
are time-consuming, expensive, and invasive [1, 6]. So, new diagnostic methods
with higher sensibility, non-invasive and low-cost are needed [1, 5].

Diagnostic methods through voice analysis seems like a solution. Nowadays,
voice is considered an important digital biomarker for detection and monitoring
the disease progress such as Parkinsons [7], Vocal Nodule [7], Alzheimers [8],
Multiple Sclerosis [9], Asthma [10], Heart disease [11], and recent studies have
reported that human audio analysis is found to be useful for COVID-19 detec-
tion [4, 12, 10]. It is known that Severe Acute Respiratory Syndrome Coronavirus-
2 (SARS-CoV-2) affects various parts of the body, with an emphasis on the respi-
ratory system [13, 14, 15]. COVID-19 disease is characterized by infections of the
respiratory tract, that affects not only the respiratory system but also the structure
that is used for voice production [13]. So, symptoms such as coughing, altered
breathing, voice, and speech have been reported.

Voice is a parameter related with the vocal cords characteristics and speech
includes the speech speed and hesitation analyses. The voice production is condi-
tioned by the respiratory process, being the sound generated when air is expelled
from the lungs. Then the air passes through the larynx, where the vocal folds are
in a vibrating position, occurring the phonation and resonating process [13]. Al-
though voice modifications have been a less reported parameter, computed tomog-
raphy scan data and human biopsies have shown that the virus affects the lungs,
nasal tract, and vocal folds & tract [16]. So, voice changes in COVID-19 patients
can be one of the sensitive symptoms detected at the beginning or in asymptomatic
patients’ case [16]. Other recent studies based on clinical trials, reported that
voice perturbation can be considered as a COVID-19 manifestation [17, 14, 15].
Lechien and colleagues (2020, 2022) observed dysphonia and aphonia in COVID-
19 patients [17, 14]. However, sometimes, the voices changes are very difficult
to be accurately/efficiently distinguished by humans. So, computer technology
has shown a potential to bridge this gap by allowing voice quantification [18]. In
this way, the use of artificial intelligence through voice analysis has allowed the
development of tools for virus diagnosis, prediction, and monitoring (see Table 1).
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Table 1: Sound-based COVID-19 diagnosis state-of-art methods

Reference Dataset Participants Sound type Features Classifier Accuracy

[1] Coswara

N=1376 participants (127
COVID-patients (CP) and

1249 Healthy Controls
(HC))

Cough,
Breathing &

Speech

Spectral Centroid, Spectral
Bandwidth, Spectral

Roll-off, Zero Crossing,
Mel Frequency Cepstral
coefficients (MFCC) &

RMS Energy, Skewness,
Kurtosis, Coefficient of

variation, Stamdard Error
of Mean

Deep Model
Shallow

classifiers

96.4%
CP vs HC

[4] Coswara
N=1103 participants (84

CP & 1019 H)C

Cough,
Breathing &

Speech

Geneva Minimalistic
Acoustic Parameter Set

(GeMaps), extended
Geneva Minimalistic

Acoustic Parameter Set
(eGeMaps), ComParE
feature set & Wavelet
scattering transform

Multi-layer
Perceptron

(MLP)

88.52%
CP vs HC

[5] Coswara

N=210 participants (70 CP,
70 recovered negative

COVID-19 patients (RP
group) & 70 HC)

Cough &
Speech

OpenSMILE features &
INTERSPEECH2016

challenge features

Machine
learning-based

voice
assessment

(MLVA)

90.07% CP
and HC &

92.81%
CP vs RP &

92.81%
RP vs HC

[15]
Not

Coswara

N=116 participants (76
Pos-COVID-19 (PosC)

patients & 40 HC )

Cough &
Speech

Log-mel spectrograms

VGG19
Convolution

neural network
(CNN)

85%
PosC vs HC

[19]
Not

Coswara
N=54 participants (40 CP

and 14 HC)
Cough &
Speech

Computational
Paralinguistics Challenge
features and PRAAT and

LIBROSA acoustic
features

Deep
Convolution

Neural
Network
(dCNN)

83%
CP vs HC

[20] Coswara
N=1027 participants (77

CP & 950 HC)
Speech

Fundamental
Frequency (F0), jitter,

shimmer and Harmonic to
Noise Ratio (HNR),

MFCC, Spectral Centroid
and Roll-off

VGG19 CNN
97%

CP vs HC

[21]
Not

Coswara

N=88 participants (29
positive COVID-19 & 59

HC)

Cough &
Speech

80 Mel-scaled frequencies
& 80 first derivatives

Support-vector
Machines

(SVM)

78%
CP vs HC

[22]
Not

Coswara

N=355 participants (62
positive COVID-19 & 293

HC)

Cough &
Breathing

Mel spectrograms ResNet CNN
84.6%

CP vs HC

[23] Coswara
N=2883 participants (539

positive COVID-19 &
2344 HC)

Cough
Mel spectrograms, MFCC

& clinical features

Ensemble
Deep Learning

Model

77.1%
CP vs HC

[24] Coswara
N=3621 participants (2001

positive COVID-19 &
1620 HC)

Cough
Mel spectrograms, MFCC
& RMS Energy & clinical

features

ResNet-18 &
Shallow

classifiers

72%
CP vs HC
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Other technologies such as the Internet of Things, Big Data, and Blockchain
also have been used to predict, detect, and control the virus [25]. So, Artifi-
cial Intelligence can play a significant role in the development of more effective
and reliable, simple, non-invasive, faster, and less expensive diagnostic meth-
ods [26, 6, 20]. Thus, machine learning trained models and algorithms can be
used for voice analysis in prognosis and scanning of SARS-COV-2 infection. So,
new real-time algorithms based on voice analysis must be constructed in sense
of being more reliably and sensitively to turn possible the distinguish between
Healthy and pathological voice [26, 20]. To contribute for this development, the
present research was designed to build a new COVID-19 screening activity ma-
chine learning tool based on Cough, Breathing & Speech analysis.

In terms of structure, this paper is organized in six main sections. In Section 2,
the database is described. Thereafter, the methodology concerning the signal pro-
cessing and the classification procedure is explained in section 3. The obtained
results are detailed on Section 4 and its inherent discussion were covered in Sec-
tion 5. Lastly, Section 6 makes remarks about conclusions.

2. Materials

The Coswara public database has been used on present work (released until 11
April 2022) [27]. The sound samples are collected via worldwide crowd-sourcing
using the internet and also public available on Web [27]. Samples are labeled
with 6 COVID-19 statuses (No respiratory illness exposed (nRE), Positive asymp-
tomatic (PA), Positive moderate (PMo), Positive mild (PM), Recovered full (RF),
and Respiratory illness not identified (RIn)) and 1 group of control (Healthy Con-
trols - HC).

Every participant in the dataset has 9 different sound types with a sampling
frequency (FS) of 44100Hz (Breathing-deep, Breathing-shallow, Cough-heavy,
Cough-shallow, Counting-fast, Counting-normal, Vowel /a/, Vowel /e/, Vowel /o/),
the data is described in detail here [27]. After removing items with either missing
audio files or demographic data (therefore labels could not be retrieved), a total of
2092 participants were identified in the study, with an age range between 1 and 87
years, and more male participation, 70.4% (see Table 2).

The participants reported various locations, with the majority being from India
(92.3%) and the United States (3.1%), however participants from Germany, Por-
tugal, Finland, Thailand, South Africa, Australia, Oman, Spain, Canada, Switzer-
land, Sweden, France, United Kingdom, United Arab Emirates, Netherlands,
China, Japan, Hungary, Turkey, Singapore, Saudi Arabia, Bahrain, Philippines,
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Argentina, Indonesia, Italy, Romania, Bangladesh, Greece, Malaysia, Russia,
Brazil, Pakistan, Sri Lanka, Belgium, Korea South, and Syria were also involved
in the study.

The data obtained showed that the majority of the participants were Healthy
Controls (55.9%), however 24.5% of the participants were infected with the virus,
either with different symptoms or without symptoms (3.2%) (check Table 2 for
more details).

Table 2: Socio-demographic and clinical characteristics

Continuous
Measure

Min Max Mean SD

Age 1 87 35.60 13.87

Categorical
Measure

%

Gender
Female 29.6
Male 70.4

Country
India 92.3
USA 3.1
Germany 0.5
Other 4.1

Clinical information
Healthy Controls 55.9
No respiratory illness exposed 8.8
Positive asymptomatic 3.2
Positive mild 15.4
Positive moderate 5.9
Recovered full 5.0
Respiratory illness not identified 5.8

3. Methods

The proposed methodology is divided into three main steps: (1) Preprocess-
ing, (2) Signal Processing and Feature Extraction and (3) Classification. Figure 1
summarizes the methodology implementation steps.
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Figure 1: Methodology steps.

3.1. Preprocessing

The duration of each phoneme is always longer than 2 s, so, as recommended
in [28], a stable and artifact-free with at least 2.2 s-long signal was guaranteed
from each participant 9 different sound recording types.

All signals amplitude was normalized in the range [−1, 1] to prevent the
speaker-microphone distance from affecting the model.

At the end, the signals were then split into non-overlapping 20 ms-long seg-
ments using the Hamming window.

3.2. Signal Processing and feature extraction

This section describes the set of features extracted from each voice type sound
recording.

3.2.1. Multiband Decomposition via Wavelet Transform
The discrete-time wavelet transform (DTWT) of a discrete-time finite-energy

signal is its breakdown into a set of basis functions made from a finite number of
prototype sequences and their time-shifted versions [29]. It is an optimal tool for
time-frequency signal analysis because it not only allows us to change the signal
domain from time to frequency, and vice versa, but it also allows us to localise the
origin of frequency compounds in time [30, 31].

This structured expansion and its corresponding reconstruction are imple-
mented by means of an octave-band critically decimated filter bank [32, 29]. Con-
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sidering only the positive frequencies, the mth sub-band is confined to

Wk =



[
0, π/2S

]
, m = 0,[

π/2S−m+1, π/2S−m
]
, m = 1, 2, . . . , S ,

(1)

where S is the number of decomposition stages or levels, S + 1 is the number of
sub-bands and π is the normalized angular frequency which is equivalent to half
the sampling rate.

The DTWT uses an analysis scale function φ̃1(n) and an analysis wavelet func-
tion ψ̃1(n) defined as

φ̃1(n) = hLP(n) (2)

and
ψ̃1(n) = hHP(n), (3)

where hLP(n) and hHP(n) are the impulse responses of the half-band low-pass and
high-pass analysis filters, respectively.

Defining the following recursion formulas

φ̃i+1(n) = φ̃i(n/2) ∗ φ̃1(n), (4)

ψ̃i+1(n) = φ̃i(n) ∗ ψ̃1(n/2i), (5)

where the symbol ∗ denotes the convolution operator, the equivalent analysis filter
of the mth sub-band is given by

hm(n) =


φ̃S (n), m = 0,

ψ̃S +1−m(n), m = 1, 2, . . . , S .
(6)

The mth sub-band signal is given by

xm(n) =



∞∑
k=−∞

x(k)hm(2S n − k), m = 0,
∞∑

k=−∞
x(k)hm(2S−m+1n − k), m = 1, 2, . . . , S .

(7)

In this study, the DTWT was applied to each voice segment for sub-band
decomposition up to the third level, i.e., S =3. The sub-band signals xm(n),
m = {0, 1, 2, 3}, were resampled to the original sampling rate using the wavelet
interpolation method [33]. The Wavelet decomposition tree is shown on Figure 2.
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Figure 2: The discrete-time wavelet transform decomposition tree

3.2.2. Non-linear Analysis
Non-linear dynamic features characterize a complex system, according to non-

linear dynamic theory. Non-linearity features are generally associated with en-
tropy, exponents, and fractal dimensions parameters.

3.2.2.1 Energy

Energy is one of the most informative concepts in information theory, that has the
ability to exploit multiple meaningful features from a non-stationary signal and it
can be seen as the system’s ability to accomplish work. In the case of a speech
signal, such as the one used in this work, the energy describes the effort done by
the speaker’s lungs and vocal tract to make sound as a function of time [34, 35].
The energy of x(n) is defined as

EN =

N∑

n=1

|x(n)|2 (8)
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3.2.2.2 Entropy

Entropy is a measure that considers the amount of energy present in a complex
system. Entropy features may also be used to quantify the information content
that has been masked in a signal, modelling the unpredictability and irregularities
of a pathological speech signal, as accurate as possible, within a certain signal’s
band [35]. The Shannon (S E), Logarithmic (LE) and Approximate (AE) entropies
can be estimated as [36, 37, 38]

S E = −
N∑

n=1

|x(n)|2log[|x(n)|2], (9)

LE =

N∑

n=1

log[|x(n)|2], (10)

and

AE(m, r,N) = Hm(r) − Hm+1(r) (11)

where N is the data length (suggested to be 1000 of the signal standard deviation),
r is the similar tolerance (between 0.1 and 0.25) and m represents the embed-
ding dimension (between 2 and 3). H is the Heaviside function that results from
intermediate calculations [39].

3.2.2.3 Chaos theory

Chaos theory is a concept that is closely related to dynamic systems. Since a dy-
namic system lacks the properties of an equilibrium system for sure unpredictable
disturbances can influence its behavior. As a result of these perturbations, the sys-
tem travels from one state to another. The concept of phase space refers to the
collection of all possible states that a dynamic system can experience over time.

There are two main exponents which provide a comprehensive framework of
chaos [37, 40]. At each time instant, the state of a dynamic system characterized
by m variables may be represented as a point in m-dimensional space.

The succession of states over time produces arcs called trajectories in this
space, which is known as state or phase space. When these trajectories are tracked
over extended periods of time, they can converge to a certain geometric shape,
known as an attractor, regardless of the system’s original settings.
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• Correlation Dimension (D2): It characterizes the distribution of the attractor
points, reflecting the complexity of a dynamic system, and is estimated as

D2 = lim
r→0

log(C(r,M))
log(r)

, (12)

where

C(r,M) =
2

M(M − 1)

M∑

i=1

M∑

j=1
j,i

Θ(r −
∥∥∥xi − x j

∥∥∥) (13)

is the probability of the pair of points
{
xi, x j

}
on the attractor is separated by

a distance less than or equal to r and Θ is the Heaviside function [41, 39].

• Lyapunov Exponent (L): It provides information of trajectories evolution
over time [39], reflecting the stability of dynamic systems.

LE(x0) = lim
n→∞

1
n

n∑

k=1

ln | f ′(xk − 1)| (14)

where f ′ is the iterator function f derivative [37].

• Detrended Fluctuation Analysis: It is a method that provides a feature for
quantifying long-range correlations (self-similarity) of an apparently non-
stationary time series [42]. From x(n), the cumulative deviation series is
calculated as follows

y(k) =

k∑

i=1

[
x(i) − x

]
. (15)

Then, for each m-long segment of y(k), a linear approximation denoted by
ym(k) is estimated. The average fluctuation of the signal as a function of m
is defined as

F(m) =

√√
1
N

N∑

k=1

[y(k) − ym(k)]2. (16)

The slope of the best linear approximation of log[F(m)] as a function of
log(m) is the scale exponent α that represents the correlation properties of
the signal x(n) [43].
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3.2.2.4 Fractal Dimension

Self-similarity features of fractal structures allow for the description of both irreg-
ular processes and structures. Fractal geometry has been shown to be a beneficial
strategy for identifying irregularities produced by various disorders in biomedical
signals such as the voice [44]. In fact, monitoring the self-similarity of the speech
enables for the clinical status of the patient to be assessed. Fractal dimension
(FD) feature extraction such as the Higuchi fractal dimension is considered to be
helpful in voice signal classification [40].

• Higuchi Exponent (D):

L(k)αk−D (17)

where k indicates the time interval, L(k) is the length of the curve in the k
time interval and D is the Higuchi Exponent [45].

• Katz Algorithm: According to Katz (1988) [46], the FD of a waveform x(n)
can be defined as

FDk =
log(L/a)
log(d/a)

(18)

where L is the sum of the distances between the successive points of x(n), a
is the average distance between the successive points, and d is the greatest
distance between x(1) and the remaining points of x(n).

3.2.3. Feature extraction process
For each study participant voice recording, 9 non-linear features (EN, S E,

LE, AE, CD, L, α, D, FDk) have been extracted from each 20 ms-long segments
and their respective sub-bands computed by DTWT decomposition until level 3
using biorthogonal 3.1. As we are trying to find pathological patterns, most of
times characterized as being time domain small signal oscillations imperceptible
to human eye, the small size of Biorthogonal 3.1 filter (N = 4) helps to keep
the quality of signal’s information in time domain for each signal’s sub-band,
avoiding the lose of those pathological patterns along the DTWT analysis [47].
This Wavelet also proves to be a good choice for speech signal analysis in previous
works [7, 48]. Treating the 9 extracted features of all segments as time series
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distributions, mean statistic was used to compress them along time per sub-band
and per broadband, reducing the problem dimensionality and, at the same time,
ensuring that the number of metrics per subjects was equal for the classification
task.

3.3. Feature selection and classification procedure

The study goal is to infer about the capacity of a XGBoost ensemble of ma-
chine learning model for evaluating the COVID-19 activity evolution along its dif-
ferent stages by voice analysis. The XGBoost classifier [49], that is a tree-based
ensemble machine learning algorithm, has been used for the propose with the fol-
lowing optimized parameters: boosted trees to fit = 150, learning rate = 0.1, max.
depth of the tree = 6, L2 regularization term = 1, and L1 regularization term = 0.

3 different modalities of binary comparison analyses have been studied: (1) per
broadband (1 signal analysis resulting in a feature vector of 81 features per sub-
ject – 9 features × 9 voice recordings); (2) per sub-bands (4 signal analyses re-
sulting in a feature vector with 324 features per subject – 9 features × 4 signal
analysis × 9 voice recordings); and (3) per broadband and sub-bands (5 signal
analyses resulting in a feature vector with 405 features per subject – 9 features × 5
signal analysis × 9 voice recordings). In each 22 binary comparisons, it was en-
sured that all datasets have been equally balanced for discrimination, for that,
subgroups have been randomly selected from the main database previously de-
fined on Table 2 taking in to account the lower maximum number of samples
found individually in each group that form the study group pair. Thus, the group
that has less number of samples in pair indicate the number of samples in both
groups, respectively. Per analysis modality and binary comparison, the data have
been normalized by z-score algorithm [50] and 5 different sets of features were se-
lected by f-score algorithm [51], representing 5%, 10%, 20%, 50% and 100% of
total of features, have been presented to the entries of the XGBoost ensemble ma-
chine learning model for discrimination. In all cases, to verify the generalization
capacity of the classifier, a leave-one-out cross-validation procedure is used.

For a better understanding of the whole methodology Figure 3 presents a sum-
mary of the procedure.
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4. Results

Classification accuracies for each pair of study groups, according to the pro-
cedure described in subsection 3.3, are presented in Table 3.

Table 3: Classification accuracy results for each pair of study groups.

Study pair comparison
# samples
per group

Best
analysis

% of
features

Accuracy

Healthy Controls vs No respiratory illness exposed 181 2 10 96.69%

Healthy Controls vs Positive asymptomatic 65 3 20 96.92%

Healthy Controls vs Positive mild 318 2 10 98.11%

Healthy Controls vs Positive moderate 120 3 20 97.92%

Healthy Controls vs Recovered full 105 2 20 88.57%

Healthy Controls vs Respiratory illness not identified 120 2 20 97.92%

No respiratory illness exposed vs Positive asymptomatic 65 3 20 97.69%

No respiratory illness exposed vs Positive mild 181 1 10 98.90%

No respiratory illness exposed vs Positive moderate 120 3 10 97.50%

No respiratory illness exposed vs Recovered full 105 2 20 88.10%

No respiratory illness exposed vs Respiratory illness not identified 120 3 10 96.67%

Positive asymptomatic vs Positive mild 65 3 20 98.46%

Positive asymptomatic vs Positive moderate 65 3 20 97.69%

Positive asymptomatic vs Recovered full 65 3 20 86.15%

Positive asymptomatic vs Respiratory illness not identified 65 3 20 96.92%

Positive mild vs Positive moderate 120 3 10 86.67%

Positive mild vs Recovered full 105 2 20 87.62%

Positive mild vs Respiratory illness not identified 120 2 10 96.67%

Positive moderate vs Recovered full 105 1 20 83.33%

Positive moderate vs Respiratory illness not identified 120 3 10 97.92%

Recovered full vs Respiratory illness not identified 105 2 20 97.62%

Healthy Controls vs COVID-19 all stages 909 3 50 98.46%

5. Discussion

By analysing Table 3, some observations can be drawn about classification re-
sults between pairs of study groups. Accuracies higher than 83% were obtained
for all pairs. Analysis 1 provided the best features set in 2 of 22 (9%) study pairs
classifications, features from Analysis 2 have been used in 8 of 22 (36.5%) study
pairs classifications and Analysis 3 brings the best features for 12 of 22 (54.5%)

14

                  



study pairs classifications. All comparisons that involved the Recovery full group
reached accuracies lower than 90%, meaning that even when the patients no longer
carry the virus, it still has some impact on patients’ health, the so called in the lit-
erature Long COVID-19 effect [52]. Besides that, all other comparisons reached
higher accuracy rates than 90% except the pair Positive mild vs Positive moder-
ate. The similarity between their symptoms and effects difficult the correct identi-
fication of those stages [53] and that reason can explain the obtained results.

Table 3 analysis also demonstrates the significance of Wavelet Transform de-
composition, as 91% of the classifications with greater accuracy came either from
analyses 2 or 3, in which wavelet information is employed entirely or in combi-
nation with metrics extracted from broadband, respectively. This finding helps us
to argue the relevance of utilizing the Wavelet Transform for a signal multi-band
analysis to extract metrics that can discriminate between several binary groups
with higher efficiency and accuracy.

Regarding state-of-art methods showed on Table 1, it can be observed
that most of the authors have focused mainly their research on Healthy Con-
trols vs COVID-19 all stages. Particularly on that comparison, our algorithm
outperforms the best reported accuracy on state-of-art methods that used the same
dataset by 1% [20], showing in this way to be a good candidate for this kind of
discrimination. As for the studies that didn’t use the Coswara dataset, although
comparisons must be done with some caution as different databases have been em-
ployed, our method outperformed the best result from those studies by 13% [15].
Regarding Positive - mild vs Recovered full our algorithm provided a slightly
higher accuracy than the achieved in Suppakitjanusan et. al. study [15], 2%
higher. About the other remaining 20 pairs, it can not be done a direct comparison
as far as we know those discrimination’s have been not reported on state-of-art
works.

6. Conclusions

This study investigated the detection of COVID-19 by using multiband non-
linear parameters of Cough, Breathing & Speech. The detection was performed
between pairs of study groups using 3 different modalities of signal analy-
ses: (1) per broadband; (2) per sub-bands; and (3) per broadband and sub-bands.
For each pair of study groups, a feature selection was carried out by f-score algo-
rithm with different combinations, 5%, 10%, 20%, 50%, and 100% of the to-
tal features, and they were used as input for the XGBoost ensemble machine
learning model for discrimination within a leave-one-out cross-validation pro-
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cedure. The following classification accuracies have been obtained: 96.69%
HC vs nRE, 98.11% HC vs PM, 97.92% HC vs RIn, 88.57% HC vs RF, 96.92%
HC vs PA, 97.92% HC vs PMo, 97.50% nRE vs PM, 96.67% nRE vs RIn, 88.10%
nRE vs RF, 97.69% nRE vs PA, 97.50% nRE vs PMo, 97.92% PM vs RIn, 83.33%
PM vs RF, 98.46% PM vs PA, 86.67% PM vs PMo, 97.62% RIn vs RF, 96.62%
RIn vs PA, 97.92% RIn vs PMo, 86.15% RF vs PA, 97.69% RF vs PMo, 97.69%
PA vs PMo and 98.46% COVID-19 patients vs HC.

The results demonstrated that the combination of cough, breathing & speech
signal multi-band analysis is adequate to detect COVID-19 activity. As voice
recording systems are relatively inexpensive, non-invasive, mobile, and fast, this
kind of solution can be widely spread and help in COVID-19 diagnosis screening
at clinics and hospitals. As far as we could check this is the first attempt to dis-
tinguish between different COVID-19 stages by voice analysis. In future works,
the results must be updated with a larger population to ensure generalization, an
analysis of the most suitable wavelet family for each study group pairs may be
performed, and it should be consider new methods for feature selection based
on paraconsistency and paraconsistent feature engineering that have shown to be
good candidates for the propose in other works [54, 55].
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[55] F. S. Marcondes, D. Durães, F. Santos, J. J. Almeida, P. Novais, Neural
Network Explainable AI Based on Paraconsistent Analysis: An Extension,
Electronics 10 (21) (2021) 2660, doi:10.3390/electronics10212660.

23

                  


