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Simple Summary: There is no doubt that the need for new effective methods of cancer treatment
remains challenging, as cancer is the second cause of death based on the number of cases in the
world. In this review, we investigated the role of one of the leading determinants in the development
and progression of various types of cancer—oxidative stress and inflammation, as well as clinical
and experimental data from the studies of promising drugs of natural origin, such as flavonoids,
that target these stages of oncogenesis. This can all help in the expansion and systematization of the
existing knowledge regarding the fight against cancer, the facilitation of the development of effective
anti-cancer drugs, and the progression of research in this field, in order to improve the treatment of
these disorders.

Abstract: Chronic inflammation and oxidative stress are the interconnected pathological processes,
which lead to cancer initiation and progression. The growing level of oxidative and inflammatory
damage was shown to increase cancer severity and contribute to tumor spread. The overproduction
of reactive oxygen species (ROS), which is associated with the reduced capacity of the endogenous
cell defense mechanisms and/or metabolic imbalance, is the main contributor to oxidative stress.
An abnormal level of ROS was defined as a predisposing factor for the cell transformation that
could trigger pro-oncogenic signaling pathways, induce changes in gene expression, and facilitate
accumulation of mutations, DNA damage, and genomic instability. Additionally, the activation of
transcription factors caused by a prolonged oxidative stress, including NF-κB, p53, HIF1α, etc., leads
to the expression of several genes responsible for inflammation. The resulting hyperactivation of
inflammatory mediators, including TNFα, TGF-β, interleukins, and prostaglandins can contribute to
the development of neoplasia. Pro-inflammatory cytokines were shown to trigger adaptive reactions
and the acquisition of resistance by tumor cells to apoptosis, while promoting proliferation, invasion,
and angiogenesis. Moreover, the chronic inflammatory response leads to the excessive production of
free radicals, which further aggravate the initiated reactions. This review summarizes the recent data
and progress in the discovery of mechanisms that associate oxidative stress and chronic inflammation
with cancer onset and metastasis. In addition, the review provides insights for the development of
therapeutic approaches and the discovery of natural substances that will be able to simultaneously
inhibit several key oncological and inflammation-related targets.

Keywords: cancer; inflammation; oxidative stress; metabolism; cytokines; HIF1α; TNFα; Nrf2

1. Introduction

The treatment of cancer has originated from the 17th century [1] and includes a great
amount of chemotherapy [2–4], radiotherapy [5–7], and surgical [8] methods. However,
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despite the large number of existing approaches for the treatment of malignant neoplasms,
their effectiveness in some cases is limited due to the development of multidrug resis-
tance [9,10], the occurrence of recurrent medical conditions [11], and the indiscriminate
death of tumor cells affecting the healthy body microenvironment [12–14]. According to
the estimates of the World Health Organization, cancer is the second cause of death in the
world, second only to cardiovascular diseases [15]. According to the International Agency
for Research on Cancer, in 2020, 19.3 million new cases and almost 10 million deaths from
cancer were recorded worldwide. In addition, by 2040, the global cancer burden is expected
to be more than 28 million cases [16]. This all confirms the need for new effective targeted
treatment methods.

The identification of the processes and their biomarkers, which is responsible for initi-
ation and enhanced tumor growth, is crucially important in the development of promising
drugs for the treatment of oncological diseases. Over the past few years, many therapeutic
targets have been identified for an effective cancer treatment [17–20]. In this review article,
we have focused on the role of one of the leading determinants in the development and
progression of oncological diseases—oxidative stress and inflammation. This expansion
and systematization of the existing knowledge regarding the fight against cancer can help
in the progression of drug development for cancer treatment. In addition, we summarize
clinical and experimental data from the studies of perspective drugs of natural origin
with the antitumor spectrum of action, aimed at oxidative stress and inflammation. These
reviews can help both experimental scientists and clinical specialists. Moreover, they can
facilitate the development of effective anti-cancer drugs and advance the research in this
area, in order to improve the treatment of these disorders.

2. Role of Oxidative Stress in Cancer Progression
2.1. Free Radicals and Oxidative Stress—General Information

Recently, increased attention has been paid to the discussion of the free radical car-
cinogenesis theory. Despite the wide variety of pathogenetic pictures in each tumor type,
there is a basic similar pattern of redox imbalance formation that leads to the oncopathol-
ogy formation and progression [7,21,22]. Free radicals that cause genetic mutations can
contribute to the initiation of the processes of normal cell transformation into a tumor cell,
while simultaneously playing an essential role in all carcinogenesis stages [23,24].

The high reactivity of free radicals is due to the fact that, unlike common organic
molecules, they have an unpaired electron in the outer electron orbital. In this regard, free
radicals act as active oxidants, capturing the missing electron from various compounds
and thereby, damaging their structure [25].

This paper provides a conditional classification of free radicals, where they are divided
according to the fundamental element into reactive forms of oxygen, nitrogen, and chlorine
(Figure 1), while all types of free radicals can be combined and characterized as reactive,
short-lived, interconverting forms of molecules, resulting from electronic excitation or
redox transformations of the latter.

Oxidative stress is an imbalance between the formed reactive oxygen species and
other highly reactive compounds and antioxidants, which leads to the disruption of re-
dox processes and control and/or molecular damage with insufficient functioning of the
antioxidant system [26,27]. Oxidative stress occurs as a result of ROS, RNS, and RClS
overproduction, as well as a decrease in the cell antioxidant capacity. This is in turn accom-
panied by a number of negative effects due to the imbalance between the hyperproduction
of free radicals and a decrease in the amount of antioxidant molecules [28]. ROS can be
generated both by extracellular substances from environmental resources, in particular,
chemical stresses, exposure to ultraviolet rays, ionizing radiation, and pollutants [29–31],
and by intracellular sources, including mitochondria, peroxisomes, as well as immune
system cells (i.e., neutrophils, eosinophils, and macrophages) [32]. Mitochondria are con-
sidered as the main intracellular source of free radicals due to the use of a significant
amount of cellular oxygen (~90%) by these organelles, resulting in the formation of a
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significant number of short-lived intermediates, including hydrogen peroxide (H2O2),
superoxide anion radical (O2

−), and hydroxyl radical (OH) [33]. Therefore, free radicals of
both enzymatic and non-enzymatic origin can cause oxidative damage to a wide range of
biological macromolecules.
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Figure 1. Scheme of free radical formation. The fundamental reaction for the formation of highly
reactive free radicals is the conversion of molecular oxygen into water due to electron transfer. At
different stages of this chain, the following can be formed: Reactive oxygen species (ROS), nitrogen
(RNS), and chlorine (RClS).

The cell membrane is one of the most vulnerable areas of ROS damage. Free radicals
can react with polyunsaturated fatty acids of the cell membrane and form lipid peroxides.
The accumulation of lipid peroxide can lead to the formation of carcinogenic agents, for
example, malondialdehyde [34]. Damage to the cell membrane due to lipid peroxidation
can permanently impair the membrane fluidity and elasticity, which leads to cell rupture.
Proteins are another major target for free radical attack. Excessively produced radicals can
react with the amino acids of proteins, which leads to oxidation and crosslinking. Radical
protein reactions can permanently disrupt the function of important cellular and extracel-
lular proteins, such as enzymes, various receptors, and connective tissue proteins [35,36].
In addition, DNA is very susceptible to the action of free radicals [37]. The interaction of
an oxygen radical with DNA can lead to the impairment of its chains or the base removal.
This DNA damage can be fatal to the body. Moreover, although the cell repair system
corrects most of these damages, the DNA damage caused by radicals can be an important
etiology of cancer development processes (Figure 2).
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2.2. Oxidative Stress Biomarkers for the Determination of Oncopathology

The oxidative stress biomarkers, which may serve as oncopathology identifiers, can all
be divided into three large conditional groups: (1) End products of biomaterial oxidation
(lipids, proteins, DNA); (2) genes encoding various enzyme proteins and related to the
redox balance; and (3) the quantitative level of these enzymes and their activity.

Numerous studies confirm that the excessive ROS production contributes to the
progression of carcinogenesis and neoplasms [38,39]. In the case of cancer dynamics, it
has been shown that it is directly related to the hyperproduction of lipid peroxidation
products, as well as DNA-structurally diverse compounds, which can be found in body
fluids. The most common markers for the determination of pathology are malondialdehyde
(MDA) and 8-hydroxy-2′-deoxyguanosine (8-OHdG), found in the blood of patients, and
8-isoprostaglandin F2α (8-iso-PGF2α), found in urine and blood (Figure 3) [38,40,41].
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Figure 3. A schematic representation of the formation of key oxidative stress biomarkers, in which the increased level of
urine or blood serum may be a sign of the formation and progression of malignant neoplasms. The steady preservation of
excessive amounts of reactive oxygen species leads to aberrant oxidation of (A) arachidonic acid present in phospholipid
membranes, resulting in the formation of 8-iso-prostaglandine F2α (8-iso-PGF2α); (B) polyunsaturated fatty acids with the
formation of malondialdehyde (MDA); and (C) intracellular compound and DNA component guanine, which leads to the
formation of 8-hydroxy-2′-deoxyguanosine (8-OHdG).

Patients with various cancer forms and types were characterized with an increased
MDA level, the final product of membrane phospholipids peroxidation in blood serum
compared with the control group [42]. The increase in MDA level was shown in patients
with breast cancer compared with healthy controls [43–45], which is associated with
excessive ROS production and deficiency of the inherent antioxidant defense system.
The LPO level significantly increased in patients with stage III and IV breast cancer [46,47],
and the activity of GPx and SOD enzymes in serum samples of breast cancer patients
decreased compared with healthy controls [45].

The evaluation showed that the MDA levels in lung cancer patients also progressively
increased as the disease progressed, especially in stages III and IV. The activity of antioxi-
dant defense system enzymes was significantly reduced in patients with the disease [48],
while patients with prostate cancer had increased MDA levels compared with healthy
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people [49] and patients with benign prostatic hyperplasia [50]. Regarding kidney and
bladder cancer, the serum MDA levels were significantly higher in both cancer types, but
with no correlation with the stage of the disease [51,52]. The LPO levels and antioxidant
status were also measured in patients with oral and oropharyngeal cancer, where the
increase in MDA levels and the decrease in the amount of antioxidants in blood plasma
were detected [53]. Interestingly, both an increase [54,55] and a decrease in MDA levels [56]
have been shown in patients with gastric cancer.

A higher oxidative stress level and a lower antioxidant protection level also correlate
with the progression of colorectal cancer, as evidenced by the significant increase in MDA
level along with the decrease in the level of antioxidants (vitamins E and C) [57,58]. The
LPO levels were also significantly higher in patients with liver cancer compared with
healthy controls, while the levels of antioxidant enzymes and exogenous antioxidants
were significantly lower [59]. A similar pattern was observed in patients with ovarian
cancer, which is believed to be due to excessive ovulation or epithelial inflammation [60].
In addition, it was found that the oxidative stress levels are higher in patients with stage IV
ovarian cancer than in patients with stage II. In patients with stage II and higher cervical
cancer, the higher lipid peroxide levels were found in the blood serum compared with
healthy people [61].

Another biomarker reflecting the oxidative stress level is 8-iso-prostaglandin F2α (8-
iso-PGF2α), which is formed as a result of free radical-mediated arachidonic acid oxidation.
It is stable in both urine and blood samples and is available for detection with reliable
quantification methods. Szymańska et al. has found that 8-iso-PGF2α median in urine
was 1.5 times higher in patients with bladder cancer than in the control group. However,
there was no correlation between the 8-iso-PGF2α level and the degree of malignancy and
invasiveness of this disease [62]. Zhang L.J. et al. using tandem mass spectrometry with
ultra-high-performance liquid chromatography (UPLC-MS/MS) found that in the urine
and blood serum of patients with colorectal cancer, compared with healthy volunteers,
abnormal levels of polyunsaturated fatty acid metabolites were observed, in particular,
2,3-dinor-8-iso PGF2α, 19-HETE, and 12-Keto-LTB4 [63]. In addition, the experimental
study on the murine model of colitis-associated colon cancer showed that in urine collected
precisely in the carcinogenesis phase, and not in the acute colitis phase, there is a significant
increase in F2-Isoprostanes (F2-IsoPs), 8-iso-PGF2α, and 2.3-dinor-8-iso PGF2α levels
compared with healthy phenotype animals. The morphological examination showed that
infiltrated monocytes in the tumor mass strongly expressed the NADPH ROS generator
(p22phox). These observations suggest that 8-iso-PGF2α and 2.3-dinor-8-iso PGF2α in
urine may be indices of colorectal cancer [64].

Another important biomarker of oxidative stress and carcinogenesis is 8-OH-deoxyguanosine
(8-OHdG), a modified nucleoside formed in the DNA molecule as a result of exposure to
reactive oxygen species and other damaging factors [65]. Unlike other modified oxidized
guanine forms, 8-OHdG easily penetrates from the cells into the bloodstream. As a result,
it is considered one of the best clinical and laboratory markers, in which its level may be
used to evaluate an existing pathology or predict its early development.

One study has suggested that 8-OHdG is a prognostic factor for epithelial ovarian
carcinoma. High 8-OHdG levels are associated with poor survival in ovarian cancer, which
correlates with traditional factors of poor prognosis and serous histology. The serum
concentration of 8-OHdG was also noticeably higher in stage III–IV carcinomas compared
with more localized ovarian tumors. The increased 8-OHdG levels were found in high-
grade papillary-serous carcinoma, but neither in low-grade papillary-serous carcinoma
nor in cystadenoma [66]. Significantly higher 8-OHdG values were shown in patients with
chronic atrophic gastritis and gastric carcinoma [56]. Similarly to the above, the 8-OHdG
imbalance indicated an increased risk of breast cancer in postmenopausal women [67].
Moreover, it was shown that the average 8-OHdG level in three groups of patients with
colorectal carcinoma (adenoma, early cancer, and advanced cancer) was significantly
increased, which suggested that the increase in 8-OHdG concentration in the blood was
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a risk factor for colorectal adenoma and early cancer [68]. Furthermore, the increase in
8-OHdG level was observed in patients with prostate [69], esophageal [70], as well as head
and [71,72] cancer types.

Table 1 briefly presents the biomarkers that belong to the second and third groups,
which are genetic or enzymatic in nature.

Table 1. Possible biomarkers associated with oxidative stress and the development of cancer pathology.

Gene Enzyme Characteristics of the Enzyme Ref.

COX-2 cyclooxygenase 2

COX-2 is a key enzyme in the biosynthesis of
prostaglandins (mainly PGE2) and thromboxanes due to the
conversion of arachidonic acid.
In malignant neoplasms, COX-2 is an important regulator of
angiogenesis, inflammation, and tumor formation, and
plays an important role in metastasis, as evidenced by the
high level of this enzyme in carcinogenesis.

[73–80]

NOX-4
nicotinamide adenine

dinucleotide phosphate
oxidase subunit 4

Nicotinamide adenine dinucleotide phosphate oxidase
subunit 4 (NOX4) is an enzyme expressed by thyroid cells
and regulates the production of reactive oxygen species
(H2O2). Aberrant NOX4 expression contributes to a high
rate of DNA mutagenesis and correlates with poor tumor
prognosis and low patient survival.

[81,82]

iNOS inducible nitric oxide synthase

Induced nitric oxide synthase is an enzyme responsible for
the production of nitric oxide, which is absent in most cells
under normal conditions. Aberrant induction of iNOS
expression and activation accompanies all stages of
carcinogenesis and is also associated with the development
of drug resistance phenomenon, a high risk of relapse and
death of patients.

[83–85]

CAT catalase

Catalase is a key enzyme in the H2O2 metabolism and
active nitrogen forms. Impairment of the expression and
localization of this enzyme is characterized with tumor cells
in numerous cancer types.

[86–88]

GPx3 glutathione peroxidase 3

Glutathione peroxidase 3 is a member of the selenoprotein
family of glutathione peroxidase and participates in cell
protection from oxidative damage ensuring the reduction of
organic hydroperoxides and hydrogen peroxide via
glutathione. Reduced levels of this enzyme expression are
found in tumor samples obtained from patients with
various types of malignant neoplasms, which indicate its
function as a tumor suppressor.

[89–91]

SOD1 superoxide dismutase

Superoxide dismutases are a class of enzymes that catalyze
the conversion of superoxide radicals into oxygen and
hydrogen peroxide. Copper SOD (Cu/ZnSOD, SOD1) is
responsible for the regulation of superoxide levels in the
intermembrane space of mitochondria, cytosol, and
peroxisome, while manganese SOD (MnSOD, SOD2) is the
main antioxidant enzyme that absorbs the superoxide
radical anion in mitochondria. The enzymatic activity of
superoxide dismutases is often reduced in the early cancer
stages, while tumor cells contain low levels of SOD proteins.

[92–95]

PON serum paraoxonase/
arylesterase

The family of antioxidant enzymes paraoxonases consists of
three representatives: PON1, PON2, and PON3. The
changes in PON status, covering the genotype, activity,
and/or expression, were found in cancer patients, as well as
in various tumor cell lines. The role of these enzymes in the
survival of transformed cells and the formation of
chemotherapeutic resistance is shown.

[96–98]
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The authors of [99,100] have shown that the high NOX4 expression in patients with gas-
tric cancer correlated with worse overall survival, especially in patients with intestinal tu-
mors. NOX4 is also highly expressed in non-small cell lung cancer (NSCLC) and promotes
cancer progression by inducing glycolysis during c-Myc activation via the ROS/PI3K/Akt
pathway, while GKT137831, a selective NOX4 inhibitor, suppresses the growth of tumor
cells both in vitro and in vivo [101]. The high NOX4 expression predicted the worst clin-
ical outcome in terms of overall survival in patients with endometrial [102] and ovarian
cancer [103]. In addition, the knockdown of this gene in ovarian cancer cells has in-
creased the sensitivity to chemo- and radiotherapy, which suggests a key role of NOX4 in
the development of drug resistance. The treatment of urothelial bladder carcinoma cell
lines overexpressing NOX4 with diphenylene iodonium significantly reduced the level
of intracellular ROS and induced cell cycle arrest in the G1 phase. Moreover, the NOX4
blockade with siRNA suppressed the growth of cancer cells in an in vivo mouse orthotopic
model [104].

The analysis of GPx and SOD activity in head and neck tumor tissue samples showed
significantly lower levels of antioxidant enzymes in low-grade tumors [105]. A similar
situation was found in patients with gastric cancer [106], oropharyngeal squamous cell
carcinoma [107], prostate cancer [108], bladder cancer [109,110], ovarian cancer [111],
etc. Similar to superoxide dismutase, the reduced CAT and GPx expression and activity
compared with healthy cells was observed in colorectal cancer [112]. The author of [113]
found that in patients with lung cancer, the catalase activity of erythrocytes was reduced
and significantly decreased in patients with metastases. Interestingly, the decrease in the
proliferation of A549 cells exposed to curcumin was accompanied with the increase in CAT
and SOD activity and the decrease in ROS levels [114]. The high GPx1 expression was
also found to be associated with a poor overall survival prognosis in brain lower grade
glioma [115], acute myeloid leukemia [116], and bladder cancer [110].

Another oxidative stress predictor is an inducible nitric oxide synthase (iNOS), which
generates nitric oxide (NO). Nitric oxide hyperproduction was shown to increase the
resistance of triple-negative MDA-MB-231 cells to cisplatin, while triple-negative breast
cancer patients with reduced iNOS levels in tumor cells after the treatment showed a
better response to platinum-based neoadjuvant chemotherapy [117]. The authors of [118]
found a positive correlation between the high iNOS expression and TNM staging of
breast cancer. The increased iNOS activity was also found in tissue samples of colorectal
cancer [119], which plays a crucial role in the angiogenesis of this type of neoplasm [120],
in patients with bladder cancer [121], who are accompanied with high NO levels in tumor
tissues, urine, and blood serum [52,122], with pancreatic cancer [123], non-small-cell lung
carcinoma [124], as well with head and neck squamous carcinoma [125], glioblastoma [126],
and melanoma [127]. In addition, it is associated with a poor prognosis in patients. Recently,
it has been shown that in colon- [128], lung- [129], and breast cancer [130], NO also regulates
the growth and aggressiveness of cancer stem cells.

The enzymes involved in antioxidant protection are also variously localized paraox-
onases (PONs), including plasma, plasma membranes, endoplasmic reticulum, nuclear
envelope, and inner mitochondrial membrane [98]. The decrease in PON1 activity was
found in the blood serum of patients with genital tract neoplasms, including endometrial
cancer [131], with colorectal [132] and bladder [133] cancers, while the lower PON1 concen-
tration was observed in patients with tumor recurrence compared with patients without
relapse [134]. At the same time, the studies showed the increased PON2 expression in
non-melanoma skin cancers in basal cell carcinoma cells, which had a positive correlation
with metastasis to lymph nodes, parameters, and the pathological stage of the tumor [135].
The increase in PON2 expression was also found in tissue samples obtained from patients
with gastric cancer, which had a significant positive correlation with the diffuse type,
clinical stage, tumor invasion, lymph node metastases, and distant metastases. Moreover,
the survival analysis showed that the aberrant PON2 expression led to a significantly
shorter overall survival compared with patients with a low expression of this gene [136].
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Similar results were obtained in the study of PON2 expression in bladder cancer [137], oral
squamous cell carcinomas [138], and glioblastoma multiforme [139].

The generalized data on changes in the levels of gene expression and the activity of
the corresponding enzymes, as well as the concentration of the final oxidation products in
cancer conditions are shown in Figure 4.
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To summarize, we can say that the previously described disorders are of both en-
dogenous and exogenous origin, which leads to the overproduction of free radicals. As
a consequence, cellular oxidative stress is of great importance in the development of
malignant neoplasms and can be considered as a key biomarker of cancer development
and progression.

2.3. ROS-Induced Pro-Oncogenic Signaling

Numerous studies confirm that ROS and oxidation products control oncogenesis in
cells through pro-oncogenic signaling pathways [140]. In Figure 5, it has been shown
that due to the activation of a number of signaling factors, in particular, p53, TNFα,
NF-κB, HIF1α, VEGF, etc., the reactive oxygen species contribute to the activation of
downstream pathways phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) and
RAS/MEK/ERK (ERK/MAPK), which leads to the transformation of a healthy cell into a
tumor, as well as cell survival and hyperproliferation, avoidance of apoptosis, invasion,
metastasis, and angiogenesis [140–142]. In turn, Ras, as a GTPase, is often involved in
oncogenesis by activating MAPK pathways and regulating transcription. The previously
mentioned pathways all prevail in the cancer development. For instance, inhibition of the
MAPK/ERK and PI3K/AKT pathways through the ROS-dependent pathway leads to the
death of BRAF wild-type thyroid cancer cells [143].
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Figure 5. Activation of transcription factors and triggering of pro-oncogenic signaling pathways
under the ROS action in the context of oxidative stress conditions. Transcription factors, such as
AP-1, NF-κB, HIF1, TNFα, p53, etc. normally regulate important processes of vital activity in the cell
(differentiation, aging, and apoptosis). In the case of oxidative stress conditions, when the excessive
accumulation of free radicals occurs, ROS activate certain signaling cascades including PI3K/AKT
and RAS-MEK-ERK pathways, which leads to genetic cell instability, excessive angiogenesis, inflam-
mation, and uncontrolled proliferation, as well as trigger the process of transformation of a healthy
cell into a tumor.

Moreover, ROS as signal messengers can activate important target molecules involved
in gene transcription pathways, which are capable of regulating the redox status of cells
and influencing the transformation of a normal cell into a tumor cell, the neoplasm growth,
and hyperproliferation. These transcription factors include Nrf2, AP-1, NF-κB, HIF1, TNFα,
and p53 [144–148].

The Nrf2-Keap1 pathway is the major regulator of cytoprotective responses to en-
dogenous and exogenous stresses caused by reactive oxygen species (ROS). Nrf2 is a
transcription factor that can bind to the antioxidant response element (ARE), which leads
to the expression of antioxidant response genes [149,150]. At normal low physiological
ROS levels, Nrf2 is poorly expressed. As soon as the level of free radicals increases by
stimulating the expression of the corresponding gene, conformational changes of the Nrf2
molecule occur due to the separation from the Nrf2-Keap1 complex. This mainly allows
the translocation of the cytoplasmic protein Nrf2 into the nucleus and direct binding to the
ARE, which leads to the increased activation of the gene [151]. The Nrf2-Keap1 complex
serves as a cellular defense mechanism that responds to cellular stress from endogenous
and exogenous agents [152].

ROS, RNS, and lipid aldehydes have been shown to form as a result of exposure to
toxic substances, which leads to the activation of Nrf2, and this may be associated with
cancer induction [153]. Moreover, Nrf2 plays an important role in regulating the expression
of antioxidant enzymes, including glutathione reductase, catalase, superoxide dismutase,
and glutathione peroxidase. Consequently, low levels of Nrf2 expression can indirectly
lead to an increase in ROS formation and, therefore, DNA damage through a decrease
in the normal antioxidant cell capacity [154]. Although Nrf2 was initially recognized as
a target of chemotherapeutic compounds with the ability to activate this transcription
factor [155,156], to date, a large amount of data have been accumulated that show that
Nrf2 is the driving force of cancer progression, metastasis, and resistance of tumor cells
to the treatment [157–160]. The authors of [161] have shown that Nrf2 can accelerate the
proliferation of cancer cells by directing anabolic purine synthesis pathways. This makes
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the cells more susceptible to tumor initiation and transformation, and provides the tumor
cells with advantages in survival and growth. Moreover, it is assumed that the expression
of the gene directed at Nrf2 provides the initial means of adaptation to oxidative stress. At
later redox imbalance stages, due to its translocation into the nucleus, Nrf2 triggers the
expression of a battery of antioxidant genes and activates other antioxidant transcription
factors in the network [144,162] (Figure 6).
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Figure 6. The role of Nrf2 in protecting the cell from oxidative stress. Under stress-free baseline
conditions (A), the level of reactive oxygen species is maintained at a consistently low level due to the
activity of antioxidants. However, with increased oxidative stress (B), Nrf2 activation, which ensures
the adaptation of cells to an increase in ROS, as well as the induction of several genes that encode
detoxification enzymes and antioxidants occur. If the ability of antioxidant systems induced by Nrf2
becomes insufficient to counteract additional oxidative stress (C) or oxidative stress proceeds for a
long time, N2 suppression occurs. In addition, excessive ROS levels, which are not counteracted by
Nrf2-directed protection, trigger additional redox triggers that activate other antioxidant transcription
factors, which leads to various cellular responses, including metabolic reprogramming, damage
repair, avoidance of apoptosis, and other features typical of tumor cells.

Activator protein 1 (AP-1) is another transcription factor that has been shown to be
activated by oxidative stress and changes in the intracellular redox status. In addition, it
includes various members of the Jun, Maf, Fos, and ATF families, which play an important
role in differentiation, proliferation, and apoptosis [163]. Changes in the expression of
AP-1 components are recorded in various malignant neoplasms, in particular, in samples
of patients with breast carcinoma, gynecological cancers, gastrointestinal carcinomas,
and hematological malignancies (in chronic myelogenous leukemia and acute myeloid
leukemia, Hodgkin’s lymphoma and anaplastic large cell lymphoma) [164]. For instance,
increased levels of Jun, JunB, Fos, and FosB mRNA are recorded in the biopsy material
obtained from patients with inflammatory breast cancer, in comparison with healthy
tissue samples [165]. At the same time, a decrease in JunB expression was shown in the
peripheral blood of patients with chronic myelogenous leukemia [166,167], which indicates
the prospects of considering AP-1 as a marker of the progression of malignant neoplasms.

NF-κB is a nuclear transcription factor that participates in a number of normal cellular
and tissue processes, including cell survival and differentiation, as well as the modula-
tion of the inflammatory response [168]. Normally, NF-κB exists in a dimeric inactive
form, while its activation occurs due to the effects of stress factors, including oxidative
stress. The activation of NF-κB is closely related to the process of carcinogenesis, and its
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functional consequences correlate with the development and progression of malignant neo-
plasms. In addition, this NF-κB activity is proven to be a critical mechanism, contributing
to tumorigenic processes in pancreatic cancer [169], lung [170], breast [171], cervical [172],
gastric [173], and prostate cancer [174]. The important role of NF-κB in the cancer develop-
ment is shown by the following factors: (1) The ability to change the metabolism of tumor
cells from mitochondrial-dependent oxidative phosphorylation to anaerobic glycolysis,
which leads to the emergence of the Warburg effect and the adaptation of cancer cells
to hypoxia conditions [175,176]; (2) the assurance that the transformed cells avoid death
by enhancing the expression of antiapoptotic genes; (3) increased proliferation of cancer
cells through the regulation of expression of cyclins and proto-oncogenes; as well as (4)
the promotion of metastasis and angiogenesis [177]. In addition, all of these factors make
NF-κB a promising therapeutic target for the creation of chemotherapeutic agents for the
treatment of malignant neoplasms [178].

HIF1 is a constitutively expressed transcription factor [179] and cell concentration,
which is strictly controlled by the oxygen level. In normal cells, HIF1α is rapidly destroyed
after formation, while in hypoxic cells, the HIF-1α subunit is not hydroxylated and thus
forms a stable complex with HIF-1β. HIF1 is involved in ROS-induced carcinogenesis
in a number of human tumors [180], and its high concentration, especially HIF-1α, was
closely related to the aggressive behavior of tumors and correlated with poor patient
survival outcomes [181]. Significant associations between the HIF1 overexpression and
patient mortality have been shown in various cancer types, including breast [182,183] and
cervix cancer [184,185], non-small cell lung cancer [186], sarcoma [187], etc. Moreover,
HIF1 activation increases the expression of proangiogenic genes, for example, the vascular
endothelial growth factor, which is associated with metastatic disease [188].

P53, a tumor suppressor, has also been shown to play an important role in the antiox-
idant response. Its mutant form may activate TNFα and trigger a cascade of activation
processes of other transcription factors, which leads to tumor transformation [189].

Therefore, it is possible to declare that oxidative stress plays an important role in
the origin and progression of various cancer types. By analyzing the data on numerous
links of tumor pathogenesis that are associated with the processes of redox imbalance, it is
possible to obtain important information on potential therapeutic targets for the search for
multi-targeted effective antitumor agents. Moreover, summing up the knowledge on the
changes occurring in various cancer types with representatives of the antioxidant defense
system and the levels of the end lipid, protein, and DNA oxidation products, it is possible
to identify and predict cancer severity by analyzing these components in the blood serum
or urine.

3. Role of Inflammation in Cancer Progression

At the start of the XIX century, a relationship between cancer and the inflammatory
cascade has been suggested based on observations that inflammatory cells were present
in biopsy tumor samples, which often occurred in chronic inflammation sites [190]. At
a later time, this hypothesis was confirmed by the results of several studies, ranging
from epidemiological studies of patients to molecular studies of genetically engineered
mice [191–195].

Inflammation is one of the most fundamental and pronounced protective body reac-
tions, which includes a long chain of molecular reactions and cellular activity. In addition,
it occurs in response to tissue damage caused by physical trauma, ischemic injury, infection,
exposure to toxins or other types of injuries [196,197]. The inflammatory body reaction
causes cellular changes and immune reactions that lead to the recovery of the damaged
tissue and cell proliferation at the site of its damage [198]. If the cause of inflammation
persists or certain control mechanisms that are responsible for stopping the process fail,
the inflammation becomes chronic [199], which leads to mutations, in particular, that
contribute to the development of cancer [200–202]. Even though many of the molecular
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mediators are equally formed in both acute and chronic inflammation, acute inflammation
is not considered as a risk factor for the neoplasia development (Figure 7).
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Figure 7. Comparison of wound healing in acute inflammation and the neoplasm development in chronic inflammation.
(A) Acute inflammation is caused by stress, such as tissue damage or surgery, as well as by the action of various chemical
agents. Normally, when tissues are damaged, platelets are activated, which forms a hemostatic plug and releases mediators
that regulate vascular permeability and the formation of a fibrin clot; the venous network is restored, and repeated
epithelialization occurs throughout the wound, which promotes healing and termination of the complex process of
interaction of immune, stromal, and epithelial cells. An untimely stop of acute inflammation leads to its transition to a
chronic form. (B) Chronic inflammation can occur for various reasons (continuous contact with infection, autoimmune
diseases, and other inflammatory conditions) and can be a trigger for the formation and progression of cancer diseases.
Hyperactivated cells of the immune system (macrophages, neutrophils, lymphocytes, basophils, and eosinophils) secrete
a variety of inflammatory mediators (cytokines and chemokines). In turn, these systemic increases of mediators are a
trigger for the transformation of normal cells into abnormal cells, which enhance tumor growth in malignant neoplasms,
stimulate angiogenesis, and induce migration and maturation of pathological fibroblasts, which contribute to the spread
of metastases.

In recent years, a significant amount of data have accumulated, indicating that many
malignant neoplasms arise as a result of prolonged infection, and as a consequence of a
chronic inflammatory process that forms the tumor microenvironment through various
pathways [203]. Numerous triggers of chronic inflammation increase the risk of malig-
nancy development and progression (Figure 7), including (1) infections of various origins,
for example, the main risk factor for stomach cancer and mucosa-associated lymphoma
is bacterium Helicobacter pylori, which leads to a significant formation of nitric oxide
that damages the host nucleotide DNA and alters the regulation of transcription through
the activity of DNA methyltransferase [204–207], the Candida fungi increase the risk of
hematological malignancies, cancers of the oral cavity, lips, pancreas, skin, and thyroid
gland [208–210], an infection with Trichomonas vaginalis correlates with an increase in the
cervical cancer incidence [211] and prostate cancer [212], and cells infected with Human
papillomavirus that release various cytokines create an inflammatory environment, which
leads to the activation of pro-oncogenic signaling pathways that contribute to the devel-
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opment of cervical carcinoma [213–217]; (2) autoimmune diseases—inflammatory bowel
diseases, such as Crohn’s disease and ulcerative colitis are associated with an increased
risk of intestinal adenocarcinoma [218–221]; and (3) inflammatory conditions of uncertain
origin, for example, prostatitis in prostate cancer [222,223]. Chronic inflammation has
been proven to be associated with various stages of tumor formation, including cellular
transformation, promotion, survival, proliferation, invasion, angiogenesis, metastasis, and
drug resistance (Figure 8) [224,225].
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Figure 8. Non-oncogenic inflammation pathway and tumor-promoting inflammation. In the case of the acute phase
of inflammation, inflammation is activated which occurs due to pro- and then anti-inflammatory modulators. If acute
inflammation is not eliminated, pathologies with chronic inflammation develop. Chronic inflammatory or infectious
conditions mediate the risk of cancer development and progression due to the activation by tumor-associated immune
cells of transcription factors, mainly nuclear factor NF-κB, signal transducer and activator of transcription 3 (STAT3), and
hypoxia-inducible factor (HIF1) in cells. At the same time, transcription factors coordinate the production of growth factors
and various enzymes, as well as inflammatory mediators, including chemokines and cytokines, which can in turn activate
the same transcription factors in inflammatory, stromal, and tumor cells, contributing to the formation of cancer-related
inflammatory microenvironment. Chronic inflammation leads to mitochondrial dysfunction and a decrease in ATP synthesis,
causing hyperproduction of reactive oxygen species that inhibit the activity of apoptosis regulators and CD8+ cytotoxic
lymphocytes. All of these events that occur in chronic inflammation contribute to cancer progression and participate in all
of the major stages of tumor development, from nucleation to metastasis and the formation of drug resistance.

The tumor microenvironment, as known, consists of dividing tumor cells, stroma,
blood vessels, and various inflammatory cells that are widely involved in oncogenesis [226].
The inflammatory neoplasm component may include a population of leukocytes, neu-
trophils, dendritic cells, macrophages, myeloid derived suppressor cells, eosinophils, and
natural killer cells that are capable of producing a wide range of signaling molecules, in
particular, cytokines, cytotoxic mediators, including reactive oxygen species, proteolytic
enzymes, etc. (Figure 8).

Macrophages play a key role in the process of chronic inflammation, as an important
component of inflammatory infiltrates in neoplastic tissues [227]. Macrophages are differen-
tiated cells of myeloid origin, abundantly present in most microenvironments of malignant
tumors [228]. Tumor-associated macrophages (TAMs) may play a dual role in neoplasms:
They can both kill tumor cells after activation by IL-2, interferon, and IL-12 [229]. In
addition, they perform a variety of functions related to cancer development and progres-
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sion: They promote the release of tumor cells into the circulatory system and suppress
antitumor immune mechanisms and responses [230]. A number of studies have shown that
macrophages can promote extravasation and continuous growth of circulating cancer cells
in remote locations, which is a key factor in the growth of metastatic colonies [231–235].
Moreover, a large amount of data indicate the important role of macrophages in the for-
mation of resistance in tumor cells to the radio and chemotherapeutic treatment [236–238].
In experimental models, it was found that when the number of macrophages is depleted,
tumor progression is inhibited, which indicates their important role in mediating tumor pro-
gression events in the induced transgenic mouse model of precancerous progression [239].

Upon activation, there are two main macrophage phenotypes, classic M1 and al-
ternative M2 [240], in which various inflammatory mediators are formed, that play an
important role in tissue remodeling [241]. Tumor-associated macrophages usually refer to
an alternative M2 phenotype with different subsets. In addition, they represent universal
and multitasking cells that directly affect several stages of tumor development through
critical interactions with cells associated with tumor progression, such as T-regulatory cells
(suppressor T cells), cancer stem cells, T-helper cells, cancer-associated fibroblasts, and
myeloid-derived suppressor cells (MDSC) [242]. Moreover, the second type of macrophages
has negative cross-contacts with tumor suppressor cells, including cytotoxic T cells and
natural killer (NK) cells [243] and can neutralize the effects of the antitumor phenotype
M1 [244], expressing high levels of molecules of the main histocompatibility complex
responsible for the death of cancer cells [245,246].

TAMs affect many different aspects of the tumor cell behavior by producing growth
factors, such as epidermal growth factor (EGF), fibroblast growth factors (FGF), vascular en-
dothelial growth factor (VEGF) [247], as well as due to the production of cytokines capable
of activating pathways that control apoptosis and cell proliferation through the modulation
of certain genes. For instance, IL-6 activates STAT3, which controls cell survival by acting
on various factors, such as cyclin D, B-cell lymphoma-extra-large (Bcl-XL), B-cell lymphoma
2 (Bcl-2), and induced myeloid leukemia cell differentiation protein (Mcl-1) [248,249]. In
the hypoxic microenvironment of growing tumors, macrophages secrete a number of
proangiogenic factors and produce several proteolytic enzymes and other mediators (for
example, MMPs and cathepsins), which are involved in the remodeling of the extracellular
matrix, the degradation that promotes the tumor cell penetration into blood vessels and
the metastases spread [250].

Neutrophils are also one of the most common immune cells that are involved in in-
flammatory reactions in oncopathologies. Neutrophils play both a pro- and anti-tumor role,
while with the development of a tumor, the number of neutrophils increases, eventually
amounting to 90% of leukocytes [251]. Tumor-associated neutrophils (TANs) have been
shown to have the ability to switch their phenotype from supportive to cytotoxic in mouse
models. Depending on the tumor stage and the function performed, tumor-associated
neutrophils are divided into three subgroups [252]: (1) High-density neutrophils and
(2) low-density neutrophils with an antitumor effect, as well as (3) granulocytic-myeloid
derived suppressor cells (G-MDSC), which due to the production of reactive oxygen
species inhibit the activity of cytotoxic CD8+ lymphocytes, promoting tumor growth and
progression (Figure 8) [253].

In addition to macrophages and neutrophils, the mast cells, eosinophils, and activated
T-lymphocytes also play an important role in the potentiation of tumor processes, which
contribute to malignant neoplasms by releasing extracellular proteases, proangiogenic
factors, and chemokines [254–256]. In other words, inflammatory cells contribute to the
destruction of the basement membrane, remodeling of the extracellular matrix, and cancer
cell migration through the secretion of inflammatory mediators [224]. Interestingly, some
of these cells induce the production of ROS and NOS in non-phagocytic cells by binding to
specific receptors.

Tumor necrosis factor α (TNFα) is a multifunctional inflammatory cytokine that is
secreted mainly by activated macrophages and plays a crucial role in many processes
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of functioning of both normal and malignant cells, including survival, apoptosis, and
necroptosis, as well as intercellular communication [257]. A violation of the regulation
of this complex signaling network is a distinctive feature of a wide range of inflamma-
tory diseases [258], in particular, oncological pathologies [259–262]. TNFα functions by
binding to two receptors (TNFR1 and TNFR2 receptor), which leads to the regulation of a
number of cytokines, proteases, and growth factor production [263]. Both the tumor and
stromal cells of solid tumors secrete TNFα. Interestingly, TNFα is able both to stimulate
and inhibit tumor growth [259]. For instance, in patients with breast cancer, high levels
of this cytokine are found both at the tumor site and in blood, which correlates with the
invasive/malignant phenotype of the tumor and contributes to the development of this
pathology in all stages, including the development of the primary tumor, epithelial mes-
enchymal transition, metastasis, and disease recurrence. Evidently, this is due to the ability
of TNFα to trigger specific pro-oncogenic signaling pathways in the transformed cells [259].
The correlation of high levels of TNFα with the stage of clinical disease of breast cancer and
metastases in the lymph nodes, as well as with the expression of antigens estrogen receptors
and human epidermal growth factor receptor 2, is also described in [260]. Recently, Yoshi-
matsu et al. showed that TNFα enhances TGF-β-dependent endothelial-to-mesenchymal
transition [264] and promotes cell development hepatocellular carcinoma [265]. In turn,
the antitumor mechanism of TNFα lies in its targeting of the tumor-associated vasculature,
causing increased permeability and destruction of the choroid, and as a consequence,
leads to the selective accumulation of cytostatic drugs inside the tumor [266]. Therefore,
it was shown that the addition of TNFα can modulate the activity of doxorubicin and
lead to a significant increase in its content in the tumor tissue in models of sarcoma, as
well as the effective regression of fibrosarcoma BN175 and osteosarcoma ROS-1 [267]. The
enhancement of the antitumor effect of doxorubicin by TNFα, due to the suppression of
the antiapoptotic activity of p21, was also confirmed by Jiang et al. [268], an in vivo bearing
hepatoma H22 and sarcoma S180 allografted tumors [266].

TNFα has also been shown to induce the ROS production by neutrophils [269] in many
cell types [270–272]. In addition, TNFα knockout mice demonstrate a significant decrease in
the development of skin tumors in response to the treatment with 1,3-dimethylbutylamine
(DMBA) [273]. In a study by Moon et al. [274], it was found that the treatment of human
leukemia cells U937 by rosmarinic acid significantly sensitizes TNFα-induced apoptosis,
which is accompanied by the suppression of nuclear transcription factor NF-κB and a
decrease in the production of reactive oxygen species. The similar effect was shown in
the investigation of the cell death profile of prostate cancer cells LNCap under arbutin
action, which dose-dependently reduces the expression of TNFα and intracellular ROS
when using tert-butyl hydroperoxide (TBHP) as an ROS inducer [275].

Interleukins are the class of inflammatory molecules, in which the main ones are
IL-1β, IL-6, and IL-10, that are produced and secreted by various types of cells. The
production of IL-1β stimulates inflammation at an early stage, and in cancer, this cytokine
is associated with a dedifferentiated and more aggressive disease. This cytokine functions
by activating the vascular endothelium, causing the infiltration of tumor inflammatory
cells. IL-6 is a pleiotropic cytokine that is immediately released by immune cells (in
particular, monocytes and macrophages) in response to an infection or tissue damage,
thereby playing an important role in the acute phase responses and immune reactions that
protect the host. IL-6 has also been shown to be overexpressed by several types of tumor
tissues and can play an important role in various aspects of tumor behavior, including
apoptosis, proliferation of tumor growth cells, migration and invasion, angiogenesis, and
metastasis [276]. In addition, it has been shown that the protection of cancer cells from
therapy-mediated damage occurs by transmitting signals that promote survival, anti-
apoptosis, and recovery processes. IL-10, an interleukin produced by almost all leukocytes,
functions as a suppressor of inflammatory mediators and plays an antiangiogenic role,
which leads to tumor proliferation and metastasis by enhancing Bcl-2 regulation and
immunosuppression [277,278].
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High levels of interleukins were found in the blood and tumor tissues in most can-
cers, in particular, breast cancer (IL-6, IL-8, and IL-1β) [260,279,280], colorectal cancer
(IL-6, IL-17, and IL-34) [281–283], prostate (IL-6) [284] and ovarian cancer (IL-6, IL-8,
and IL-33) [285–287], lung cancer (IL-6, IL-17, and IL-1β) [288–290], pancreatic (IL-6 and
IL-18) [291,292] and cervical cancer (IL-6 and IL-10) [293,294], multiple myelomas (IL-6,
IL-8, and IL-1β) [295,296], etc. This increase in interleukin levels is associated with ag-
gressive tumor growth and the development of a resistance phenomenon in response to
therapy [297–299]. An interesting factor is that at the end of the last century, it was shown
that the treatment of glia and cultured smooth muscle cells of the rat colon with IL-1β
led to a significant increase in the activity of inducible nitric oxide synthase (iNOS) [270].
Similarly to the above, it was found that a decrease in IL-1β and IL-6 levels, as well as
the suppression of mRNA expression of genes encoding these cytokines, correlated with
the lower NO release levels in RAW264.7 cells inflammation model under the action of
anti-inflammatory fraction A [300]. IL-6 was also known to be activated by prostaglandin
E2 (PGE2) that is formed during the reaction catalyzed by cyclooxygenase-2 [301], in
which the elevated levels are observed in inflammatory macrophages in various types of
cancer [75,302–304].

Chemokines are small molecules, which are secreted by a wide range of immune
cells and may directly influence carcinogenesis and metastasis via modifying the tumor
phenotype [305]. However, tumor cells not only regulate the expression of chemokines
to recruit inflammatory cells, but also use these factors for further neoplasm growth and
progression. For instance, it was found that the chemokines C-X-C motif ligand 1, 2, 3,
and 8 (CXCL1, CXCL2, CXCL3, and CXCL8) are overexpressed in melanomas, which is
accompanied by increased proliferation of tumor cells and tumor metastasis [306,307]. At
the same time, blocking the receptors GROα, GROβ, GROY, and CXCR2, specifically asso-
ciated with these chemokines, weakens these effects. The study results [308] showed high
concentrations of chemokines CXCL1–2, CXCL4–5, CXCL7–10, CXCL12–14 in peripheral
blood and blood drainage from tumors of patients with early gastric cancer. Interestingly,
patients with low CXCR1 and CXCR3 expression had a smaller tumor volume and a lower
TNM stage. However, with a decrease in CXCR2 and CXCR4, the opposite picture was
observed. Paczek et al. and Lukaszewicz-Zajac et al. [309,310] showed that in the blood
serum obtained from patients with colorectal and oesophageal cancers, the increase in
the CXCL8 level was found, rising in the group of patients with distant metastases. The
CXCL8 knockdown using an antisense vector led to the increase in cell death and the
decrease in tumor growth in mouse models carrying xenografts [311]. A similar effect
on CXCL13 was observed in patients with resistance to 5-fluorouracil [312]. It has also
been shown that CXCL5 overexpression promotes tumor angiogenesis by activating the
AKT/NF-κB/FOXD1/VEGF-A pathway [313], and correlates with lymph node metastasis
and poor prognosis [314].

Transcription factors that modulate the synthesis of key inflammatory mediators, the
recruitment of immune cells, and the functions of these cells in the tumor microenvironment
also play an important role in cancer-related inflammation.

NF-κB is a family consisting of five transcription factors, involved in the innate
immunity formation and in coordinating inflammatory responses [315]. NF-κB activation
can be mediated both by signaling pathways of Toll-like receptor TLR-MYD88 and the
previously mentioned inflammatory cytokines TNFα and IL-1β [316–318], as well as genetic
changes in tumor cells [319]. In most cases of malignant neoplasms, NF-κB is constitutively
active and plays a role in oncogenic transformation through aberrant activation of anti-
apoptotic genes [320,321] and cell cycle progression, stimulating chronic inflammation,
thereby contributing to tumor development [195]. In inflammatory and tumor cells, as
well as cells at risk of transformation, NF-κB is a key regulator of the production of growth
factors, inflammatory cytokines, chemokines, and angiogenic factors, by triggering the
expression of their coding genes [322]. It has been shown, for example, that the deficiency
of the TIR8 gene highly expressed in the intestinal mucosa and encoding the receptor
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of the same name, which is in turn an inhibitor of NF-κB, correlates with the increased
susceptibility to intestinal inflammation and carcinogenesis [294,295]. The inhibition of the
NF-κB signaling pathway showed significant suppression of macrophage activation and
neutrophil exudation in a mouse peritonitis model [296], as well as a decrease in tumor
growth in mice carrying A549 xenografts [297].

Signal transducers and activators of transcription 3 (STAT3) is another cell signal
transcription factor that plays an important role in the regulation of the antitumor immune
response and, as a consequence, these processes of differentiation, proliferation, survival,
angiogenesis, and invasion [323,324]. Hyperactivation of STAT3 is prevalent in both cancer
cells and immune cells of the tumor ecosystem of various origins [325–327]. Moreover,
STAT3 can be a convergence point for several oncogenic signaling pathways [328,329].
More importantly, aberrant STAT3 activation plays a key role in tumor progression, in the
development of resistance to therapy, and relapses [330,331].

Hypoxia-inducible factors are a family of transcription factors that are the main
regulators of the cellular response to hypoxia and coordinate the transcription program that
ensures optimal functional, metabolic, and vascular adaptation to oxygen deficiency [332].
The family includes a number of representatives, in which the most known are HIF-1α. This
is widely expressed and found in almost all populations of innate and adaptive immunity,
and HIF2α, in which the expression is observed in a number of cell types, including
endothelial cells associated with tumor macrophages [333,334], etc. It is well known that
hypoxia is a typical feature of solid tumors [335] and leads to the HIF1α stabilization in
cancer cells, promoting the recruitment of myeloid cells in two ways: Activating chemokine
receptors and stimulating the chemokine production, as well as increasing the cytokine
secretion. HIF1α removal in macrophages has been shown to lead to a decrease in tumor
growth in the model of spontaneous breast adenocarcinoma PYMT, which is the result of
an improvement in the proliferative ability and function of lymphocytes in the absence
of myeloid HIF1α [336,337]. HIF-1α signaling in primary breast tumors leads to the
induction of members of the lysyl oxidase family and to the metastatic colonization of lung
cells [338]. For HIF2α knockout mice, there was a decrease in infiltration, migration, and
TAMs expression in mouse models of hepatocellular and colitis-associated colon carcinoma,
which is associated with a decrease in the proliferation and progression of tumor cells [339].
HIF2α inhibition causes tumor regression in mouse models of primary and metastatic clear
cell renal cell carcinoma [340].

Chronic inflammation can lead to conditions that contribute to genomic damage,
as well as the emergence and progression of tumors. It is important to note that the
production of free radicals, such as reactive oxygen species (hydroxyl radical (OH•) and
superoxide (O2

−•)) as well as nitrogen (nitric oxide (NO•) and peroxynitrite (ONOO−)),
is one of the effector mechanisms, in which the body fights an infection. In addition,
it is regulated precisely by inflammatory signaling pathways [341] (elimination of the
pathogen by macrophages that primarily occur via the ROS and RNS formation through
the plasma membrane-bound nicotinamide adenine dinucleotide phosphate, a reduced
form of (NADPH) oxidase [342]). Although radicals are part of the arsenal for fighting
infection and are formed to destroy pathogens, it is not surprising that the prolonged
exposure to various tissues of highly reactive forms of nitrogen and oxygen, which are
released by inflammatory cells, also lead to epigenetic impairments, inhibition of DNA
repair mechanisms by cells, accumulation of DNA mutations (such as point mutations, gene
deletions or gene rearrangement [321]), and ultimately contributes to some uncontrolled
hyperproliferation of transformed cancer cells [322,323]. Therefore, in the blood plasma
of patients with cholangiocarcinoma, higher levels of isoprostanes and malonic aldehyde
were found, which are markers of DNA oxidation, proteins, and lipid peroxidation [343].
Moreover, it is known that chronic inflammation causes oxidative stress and reduces the
antioxidant capacity of cells, not only due to the excessive production of free radicals, but
also to the depletion of its own antioxidant defense system. In addition, an increase in the
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levels of reduced glutathione, superoxide dismutase, and catalase was considered as an
effective inhibitor of inflammation in damaged brain cells [344].

ROS and RNS regulate inflammation by activating pro-inflammatory cytokines and
NLRP3 inflammasome [345]. In particular, it was found that mitochondrial ROS act as
signaling molecules that trigger proinflammatory cytokine production, in particular, IL-1,
IL-6, and TNFα [346], which activate NF-κB and STAT3 [347–349], the role which was
previously mentioned. TNFα has been found to induce tumorigenesis through ROS gen-
eration and subsequent DNA damage [350]. Interestingly, ROS also play an important
role in the regulation of a family of NOD-like receptors, the NLRP3 inflammasome, which
are responsible for the activation of the inflammatory response [351]. The NLRP3 inflam-
masome has been identified as an oncogene in genomic analyses of non-small cell lung
cancer, and in breast [352], head, and neck [353,354] cancers. In addition, melanoma [355]
NLRP3 contributes to the progression of malignant neoplasms in all stages, including
tumor growth, proliferation, invasion, and metastasis, that also indicate the pathogenic role
of inflammasomes in oncogenesis. Interestingly, in NLRP3 deficiency conditions, there is a
significant decrease in the IL-18 level in the intestine [356] with a pronounced antitumor
effect in colorectal cancer [357]. In addition, mice with NLRP3 knockout show an increase
in colorectal cancer metastases in the liver [358]. In human hepatocellular carcinoma tissue,
a decrease in the regulation of NLRP3 inflammation was found [359]. In epidermoid
carcinoma cells, inhibition of NLRP3 inflammation led to cell death [354].

Therefore, if we summarize the analysis of data on the role of oxidative stress and
inflammation in the cancer development, we can say that these are complex, multilevel,
closely interrelated processes that can generate each other, forming a vicious closed circle of
pathologies. For instance, the main substances linking inflammation with cancer through
oxidative stress are prostaglandins and cytokines, which can in turn affect the occurrence of
an imbalance between the activity of pro-oxidant and antioxidant enzymes (lipoxygenase,
cyclooxygenase, and phospholipidhydroperoxide glutathione peroxidase), that lead to
the hyperproduction and accumulation of harmful free radicals, such as hydroperoxides,
lipoperoxides, and peroxynitrite. On the other hand, ROS and other overabundant radical
contribute to the activation of various transcription factors and hyperproduction of these
informational pro-inflammatory molecules, such as cytokines. These processes can all shift
the normal metabolism of healthy cells towards the formation of a tumor-like state, which
leads to a stop of differentiation and apoptosis avoidance. Therefore, when developing
modern effective drugs of multitargeted antitumor action, information on important links
in the cancer pathogenesis—oxidative stress and inflammation, should be considered.

4. Natural Compounds and Important Targets Associated with Chronic Inflammation
and Oxidative Stress in Cancer Treatment

In this section of the review, we tried to combine the data available to date, from
experimental works and clinical studies on the use of substances of natural origin, that can
modulate the redox balance of the cell and the process of inflammation in cancer therapy.

Researchers have repeatedly attempted to use antioxidants to prevent and treat can-
cer [360]. Antioxidants can be categorized as natural (dietary), endogenous (glutathione),
and synthetic [361]. A large number of reviews exist on the pre- and clinical use of antiox-
idants and the key mechanisms associated with them [362,363]. A very interesting and
intensively developing area of research is the study of natural antioxidants, in which an
increasing number of experimental works and reviews are devoted [364,365].

Natural compounds are secondary metabolites of plants or other living organisms,
formed externally for protective purposes. Certainly, they are widely represented in
plants that humans eat [366–368]. In addition, they belong to the most diverse classes of
compounds: Alkaloids, terpenoids, flavonoids, sesquiterpene lactones, steroid compounds,
etc. The most extensive and well-known group with antioxidant activities are phenols and
polyphenols [369] (Figure 9).
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Natural compounds and antioxidants are no exception, and are superior to synthetic
compounds with their exceptionally broad activity [370,371]. A large number of these com-
pounds are at various stages of clinical and preclinical research [365,372]. The most studied
and interesting flavonoids (Figure 9) are shown below, many of which are at different
stages of pre- and clinical studies, the activity which is aimed at redox-sensitive pathways
and transcription factors that lead to the overproduction of free radicals, oxidative stress,
factors of chronic inflammation, activation or inhibition of transcription factors Nrf2 and
NF-κB [373–376].

Apigenin (4′,5,7-trihydroxyflavone) (Figure 9) is one of the most abundant flavonoid
in plants and belongs to the flavone subclass. It is considered safe even at high doses,
and its toxicity has not been reported in the literature [377]. Plants belonging to the
Asteraceae family, such as the genera Artemisia [378,379], Achillea [380], Matricaria [378], and
Tanacetum [381], are the main sources of this compound.

To date, there is enough in vitro and in vivo experimental data confirming the presence
of the therapeutic potential of apigenin in the cancer treatment. Among the mechanisms of
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antitumor action of apigenin, the ability of this flavonoid to have anti-inflammatory [382]
and antioxidant [383] effects, as well as to cause cell cycle arrest at various proliferation
stages [384,385] and apoptotic death of neoplastic cells by modulating the expression of
apoptotic proteins and signaling pathways [386] are distinguished. The apigenin feature to
interfere in the process of carcinogenesis has been shown for a large number of malignant
neoplasms [387]. For instance, in [388], it was found that apigenin is able to effectively re-
duce the expression of the casein kinase 2 in stem cells derived from the cell line of cervical
cancer HeLa, an aberrant activation which is detected in various types of cancer [389]. In
addition, Zheng et al. demonstrated the ability of apigenin to stop the HeLa cell cycle in
the G1 phase, which also correlated with the induction of expression of apoptotic proteins
and a decrease in the level of antiapoptotic factors that leads to a significant decrease in
the cell survival [390]. In breast cells MCF-10A and MCF-7, apigenin reduced the expres-
sion of the enzyme cyclooxygenase 2, which catalyzes the conversion of arachidonic acid
into prostanoids and is associated with tumor transformation. Moreover, the sensitivity
of pre-transformed cells MCF-10A to apigenin is significantly higher, in order for it to
be more effective as a chemopreventive drug rather than a therapeutic [391,392]. Api-
genin has also been shown to modulate various anti-inflammatory pathways, in particular,
in [393], apigenin weakened the growth of human melanoma cells A375SM, triggering
apoptotic cell death by regulating the signaling pathways Akt and MAPK. The treatment
of choriocarcinoma cells JAR and JEG3 with this flavonoid inhibited the progression and
metastasis of the cells through regulation of the PI3K/Akt and ERK1/2 MAPK signaling
pathways. Zhou et al. have also shown that apigenin has antiproliferative, anti-migration,
and anti-invasive effects on human lung carcinoma cells A549 by targeting the PI3K/Akt
signaling pathway [394]. Recently, in [395], it was found that apigenin may be an ap-
propriate candidate for the treatment of multiple myeloma due to its inhibition of the
STAT1/COX-2/iNOS signaling pathway, which is an important mechanism not only for
suppressing inflammation, but also for the apoptosis induction. It was reported that by
reducing the level of proinflammatory cytokines, apigenin suppressed inflammation and
inflammation-induced carcinogenesis in colon cells by regulating the activity of NF-κB
and STAT3 [396], and also greatly reduced TNFa levels in the MDA-MB-231 TNBC cell
line [397].

Interestingly, apigenin can restore the reduced Nrf2 activity in JB6 P+ epidermal cells
by demethylation of CpG. The epigenetic mechanism of action of apigenin is realized
through a decrease in Nfe2l2 hypermethylation. Induction of miR-101 expression was
directed to Nfe2l2 mRNA, while in DNMT1, DNMT3a, and DNMT3b, HDACs are inhibited.
Therefore, apigenin may play an important role in cancer prevention and treatment, also
through epigenetic modifications [398,399].

Quercetin, 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one (Figure 9), is
a member of the flavonol family. Its compounds are characterized by a 3-hydroxyflavone
skeleton. The name has been used since 1857 and comes from the word quercetum (oak for-
est), after Quercus. It is easily isolated from a variety of food sources, such as cherries, apples,
red wine, etc. Quercetin has a wide range of biological effects: Anti-inflammatory [400,401],
anti-infective [402], anticancer/chemopreventive [403,404], neuroprotective [405], hypoten-
sive [406], and blood glucose-lowering properties. Quercetin suppresses the lipopolysaccha-
ride (LPS)-induced production of tumor necrosis factor α in macrophages [407]. Moreover,
Bureau et al. showed that quercetin in glial cells could inhibit LPS-induced levels of mRNA,
TNFα, and IL-1α. This effect of quercetin led to a decrease in apoptotic death of neuronal
cells, which is caused by the activation of microglia [408]. Quercetin suppresses the pro-
duction of many inflammatory enzymes, such as COX and LOX [409]. It was shown that
this flavonoid reduces the production of inflammatory factors in colon cancer Caco-2 cells,
which simultaneously correlated with the suppression of the migration and invasive ability
of this cell line through TLR4- and/or NF-kB-mediated signaling pathway by inhibiting
the expression of metastasis-related proteins [410]. A number of studies have found that
the treatment of breast cancer cell lines with quercetin triggers the process of tumor cell
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death along the apoptosis pathway, in particular, by stopping the G1 phase of the cell cycle
and suppressing the expression of proliferative activity proteins CyclinD1, p21, Twist, and
phospho p38MAPK [411], as well as by inhibiting STAT3 signaling [412]. Blocking of the
STAT3 pathway by quercetin also plays an important role in the treatment of glioblastoma,
which leads to an effective decrease in the proliferative and migration properties of T98G
and U87 cells. Michaud-Levesque et al. have shown that in glioblastoma cells, quercetin
leads to a decrease in STAT3 activation and suppression of the expression of the regulated
target genes [413]. In a recent study [414], quercetin also reduced IL-6 release and STAT3
phosphorylation in two glioblastoma cell lines U87MG and U373MG, which correlated
with a significant decrease in their viability. In [415], quercetin reduced the survival of
gastric cancer stem cells by inducing mitochondrial-dependent cell apoptosis through the
blockade of the PI3K/Akt signaling pathway and led to a decrease in the mitochondria
transmembrane potential, activation of caspase-3 and -9, and suppression of the activity
of the apoptosis suppressor Bcl-2, as well as increased Bax and cytochrome C regulation.
The antitumor potential of quercetin in prostate cancer therapy is associated with the
ability of the flavonoid to exert its anticancer effect by modulating ROS, Akt, and NF-κB
pathways [416].

Anti-inflammatory effects were also found for quercetin due to the ability to suppress
the expression of matrix metalloprotease-9 (MMP-9) and intercellular adhesion molecule-1
(ICAM-1), as well as block the activation of MAPK and NF-kB signaling pathways [417].
Additionally, in [418], a comparison of the anti-inflammatory properties of polyphenols on
the NiCl2-induced model of migration and invasion in H1975 and A549 human lung cancer
cells, the best overall therapeutic efficacy was revealed for quercetin, which can significantly
reduce the secretion of cytokines IL-1β, IL-6, TNFα, and IL-10 and the MMP-9 expression.
In addition, it suppresses the mRNA and protein expression of TLR4 and Myd88 and NF-
kB phosphorylation. Interestingly, in an in vivo study on rats with doxorubicin-induced
cardiomyopathy, quercetin reduced the biochemical and histological abnormalities caused
by the negative effect of cytostatic by increasing the Nrf2 expression [419]. Therefore,
the wide range of therapeutic possibilities of quercetin provided by various mechanisms
against various cancer types indicates the prospects of considering this flavonoid as an
effective tool for the treatment of oncopathologies.

Myricetin (Figure 9) (3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)-4H-chromen-4-one)
was first isolated from the bark of tree Myrica rubra (Lour.) S. et Zucc and received its name
after this plant. Myricetin is one of the most abundant flavonoids in plants as well as plant-
derived food products, such as honey, wine, tea, etc. [420,421]. In addition to the previously
discussed flavonoids, apigenin and quercetin, myricetin is effective against many diseases,
including those associated with oxidative stress, inflammatory and oncological diseases. Its
therapeutic effects are related to its influence on many key stages of diseases and signaling
pathways that determine the development of these diseases. Here, we only consider
some of the mechanisms of action of myricetin on inflammatory and oncological diseases,
as well as the main signaling pathways of these diseases on which it exerts its effect.
In many LPS-induced diseases, myricetin acts on inflammation by suppressing several
key inflammatory factors, primarily TNFα, IL-6, and IL-1α. In this process, two main
signaling pathways are involved, in which their endpoints have a nuclear factor NF-κB:
AKT-IKK-NF-κB pathway and the TLR4-MyD88-NF-κB signaling pathway [422,423]. In
inflammatory diseases, myricetin was found to inhibit IκB-NFκB, Akt, and mTOR signaling
pathways, which leads to the decrease in the upregulation of COX-2 and thus decreased
levels of many pro-inflammatory cytokines and chemokines [424]. Myricetin can reduce
oxidative stress both through its own strong antioxidant action and by influencing the
endogenic antioxidant defense system, increasing the activity of antioxidant enzymes,
primarily SOD [425].

This was also confirmed in the study by Hassan et al., where myricetin blocks the
formation of pro-inflammatory factors, such as Nrf-2, TNFα, NF-κB, etc. [426]. A study
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by Cho et al. also showed that myricetin regulates the levels of Nrf2-mediated heme
oxygenase-1 (HO-1) [427].

Numerous studies have confirmed that myricetin has potent anticancer effects against
various types of cancer through a variety of mechanisms that are largely similar to anti-
inflammatory mechanisms. Therefore, myricetin acts on the MAPK signaling pathway,
regulating the phosphorylation of ERK1/2, JNK, and p38, and inhibits the phosphorylation
of Akt [420]. In the study by Li et al., myricetin as well as the previously discussed
flavonoids, were shown to have the ability to induce apoptosis in a number of tumor cell
lines by decreasing the expression of key signaling pathways, such as glycogen synthase
kinase-3 (GSK-3) and Wnt-β-catenin pathways [428]. In the study by Zhu et al., the ability
of myricetin was shown to induce apoptosis by modulating the PI3K-Akt-mTOR signaling
pathway in glioblastoma U-87 cells [429].

Cyanidin 3-glucoside. Anthocyanins are natural plant dyes and are found in fruits and
vegetables in the human diet [430]. Anthocyanins are known antioxidants and are positively
charged with respect to the oxygen atom of the C-ring of the main structure of flavonoids
(Figure 9) [431], which distinguishes them from other groups of flavonoids. In the last few
years, increased attention has been paid to the study of cyanidin 3-glucoside as antioxidant
mediators of the Nrf2 pathway. Several studies have demonstrated the antioxidant potential
of cyanidin 3-glucoside and its correlation with a decrease in ROS levels, especially in vitro.
The two major pro-inflammatory pathways of cytokine production, the MAPK pathway
and the NF-κB pathway, were inhibited in cells treated with cyanidin 3-glucoside [432]. The
expression of Nrf2-mediated enzymes heme oxygenase-1 (HO-1) and NAD(P)H quinone
dehydrogenase 1 (NQO1) increased upon exposure to cyanidin 3-glucoside. Moreover,
the treatment with cyanidin 3-glucoside leads to the increased accumulation of Nrf2
in the nucleus, but not in the cytoplasm. This is due to the accumulation under the
influence of cyanidin 3-glucoside Nrf2, which is not associated with the trimer complex
with Keap1 [433]. Therefore, under the influence of cyanidin 3-glucoside, we received
protection against a variety of conditions caused by oxidative stress. The bioavailability
and solubility of cyanidin 3-glucoside can be further improved through targeted delivery
and nanocrystal or encapsulation technologies [432], which will undoubtedly lead to its
more successful application.

Epigallocatechin gallate (EGCG) is composed of ((2R,3R)-5,7-dihydroxy-2-(3,4,5-trihydroxy-
phenyl)-chroman-3-yl-3,4,5-trihydroxy-benzoate) [434,435]. Its main disadvantage is its
low stability in aqueous solutions and poor solubility in non-polar solvents, which requires
special attention and the development of delivery systems, including nanotechnology
complexes [436–438]. EGCG, as well as other food flavonoids, is well known for its broad
spectrum of biological activity and is considered as an anti-inflammatory and antitumor
promising substance due to its antioxidant potential [434]. In the study by Sharifi-Rad et al.,
EGCG is able to modulate the expression of ERK, MAPK, and NF-κB signaling factors [434],
as well as increase the level of proapoptotic proteins Bax and Bcl-2, resulting in the downreg-
ulated EGFR-RAS-RAF-MEK-ERK signaling pathway, one of the key signaling pathways
in the tumor and in apoptosis [439]. The treatment of various tumor cells by EGCG was
associated also with the regulation of autophagy. As a result of its action, the cell cycle was
stopped through the influence on the balance of the activation/suppression of signaling
pathways, in which proteins p1/p21, Kip1/p27, p16/INK4A, cyclin D1, cyclin E, CDK2,
and CDK4 were involved [440,441]. The authors of [442,443]] have shown that EGCG is
able to activate several caspases and induce apoptosis through the modulation of nuclear
factor NF-κB. EGCG in A549 lung adenocarcinoma cells, by modulating reactive oxygen
species (ROS), triggers Nrf2/Keap1 signaling and apoptosis [443]. EGCG has the ability
to regulate multiple pathways, including Nrf2 activation and NF-κB inhibition [444]. The
epigenetic regulation of tumor signaling pathways is currently considered as a promising
way to create antitumor drugs [445]. In several studies, the epigenetic activity of EGCG has
been demonstrated. At the molecular level, it modulates the expression of DNA methyl-
transferases (DNMT) and histone deacetylases (HDACs). Similar to the other flavonoids,
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EGCG has an influence on Nrf2, preventing oxidative damage and inflammation. However,
it does not help if Nrf2 is able to form the trimer complex with KEAP1 [446,447].

Resveratrol (5-[E-2-(4-hydroxy-phenyl)ethenyl]benzene-1,3-diol), here referred to as
stilbene (Figure 9), is primarily known due to the French paradox, when a relatively
low incidence of cardiovascular and oncological diseases associated with the use of red
wine was found to be high in resveratrol [448,449]. This natural stilbene has a lot of
biological activities: Hepatoprotective [450], antidiabetic [451,452], anticancer [453,454],
antioxidant [455], anti-inflammatory [456] action, etc. These unusually broad therapeutic
effects are mainly related to its strong antioxidant activity. Therefore, Kabel et al. [457]
investigated the effect of resveratrol on an experimental model of kidney cancer in rats.
Resveratrol has been shown to have anti-inflammatory and antioxidant activities due to
its modulating effect on the Nrf2/HO-1 and STAT3/NF-κB signaling pathway. Clear cell
renal cell carcinoma normally shows reduced levels of Nrf2/HO-1. The treatment with
resveratrol restored the content of Nrf2/HO-1, which can in turn improve the treatment
of this disorder. Of note, resveratrol managed to avoid the metastatic effect. It reduced
the expression of xanthine oxidase, IL-6, TNFα, TGF-β1, and LDH in renal tissue. In
addition to the chemopreventive and antitumor effects, resveratrol increased the sensitivity
of tumor cells to chemotherapeutic drugs. Li et al. [458] found that resveratrol improved
the resistance to anthracycline antibiotics by modulating the PI3K/Akt/Nrf2 signaling
pathway in promyelocytic leukemia cells (HL-60). Whereas Cheng et al. [459] showed that
resveratrol improved the response of pancreatic cancer cells to gemcitabine, increasing
the efficacy of gemcitabine in pancreatic cancer therapy, which was associated with the
ability of resveratrol to inhibit the expression of nutrient-deprivation autophagy factor-1
(NAF-1) through stimulation signal transmission Nrf2. Moreover, resveratrol dissociates
trimer Nrf2-Keap1 and increases Nrf2 translocation into the nucleus [460].

Curcumin, 1E-6E-1,7-bis-(4-hydroxy-3-methoxy-phenyl)-1,6-heptadiene-3,5-dione, was
first isolated in 1815 by two German scientists, Vogel and Pelletier, from the well-known
spice turmeric (Curcuma longa L.) [461]. Turmeric has been used in India for thousands of
years as a spice and ayurvedic drug. Curcumin has a wide range of biological activities,
including antioxidant, anti-inflammatory, anti-tumor, antiviral, antibacterial, and antidia-
betic properties [461,462]. Curcumin provides the selective modulation of multiple cellular
signaling pathways associated with various chronic diseases, which strongly suggests that
it is an effective multitarget polyphenol [461]. Curcumin modulates several transcription
factors, such as Nrf2, β-catenin, NF-κB, inflammatory mediators, and MAPK kinase. Ac-
cordingly, it is able to inhibit the JNK-MAPK and ERK-CREB signaling pathways [463]. The
mechanism in which curcumin exerts its varied effects is also related to the epigenetic regu-
lation [464]. Several recent studies show that curcumin can modulate some of the epigenetic
regulators, histone acetyltransferases (HATs) and histone deacetylases (HDACs) [465–467].
This regulation includes not only the acetylation of lysine residues in Nrf2, but the in-
teraction with acetyl “reading” proteins of the bromodomain and extraterminal domain
(BET) [398]. The antitumor effect of curcumin is also achieved by the inhibition of many
proinflammatory cytokines, such as TNFα and different interleukins [461,468].

Using natural compounds as an example, it has been convincingly shown that target-
ing redox-sensitive pathways and transcription factors, which leads to the overproduction
of free radicals and, as a consequence, cellular oxidative stress, as well as chronic inflam-
mation, opens up great prospects for the prevention and treatment of cancer. Moreover,
natural compounds, as substances with an exceptionally wide spectrum of action and that
influence many fundamental signaling pathways for the development of inflammation and
cancers, represent a promising group for the development of anticancer drugs. However, it
is clear that additional experimental research and pharmaceutical development are needed
for natural compounds to successfully reach clinical trials.
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5. Conclusions

Modern data confirm the key role of oxidative stress and chronic inflammation in
various stages of tumor development: from initiation to metastasis and the formation
of therapeutic resistance. The cancer formation is a multi-step process that includes the
mutation and modification of cell growth. The overproduction of highly reactive free
radicals and disruption of the cell inherent antioxidant defense system leads to persistent
oxidative damage to various macromolecules. This can in turn induce genetic mutations
and affect the gene expression, which is important in cancer by modifying the activity of
transcription factors. The information presented in this review concerns the following spe-
cific mechanisms: (1) Regulation of the inflammation that occurs in various types of cancer
by representatives of the antioxidant defense system, (2) the biomarkers of inflammation
and oxidative stress recorded in the biological fluids of patients with malignant neoplasms,
(3) the use of natural compounds as substances with an extremely broad spectrum of action
that influence many fundamental signaling pathways for the development of inflammation
and cancer diseases. This can be useful in the development of potential multitarget effective
anticancer agents aimed at modulating the cell redox balance and inflammation process
and at monitoring the progression of cancer diseases.
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