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Abstract

From the action potentials of neurons and cardiac cells to the amplification of calcium sig-

nals in oocytes, excitability is a hallmark of many biological signalling processes. In recent

years, excitability in single cells has been related to multiple-timescale dynamics through

canards, special solutions which determine the effective thresholds of the all-or-none

responses. However, the emergence of excitability in large populations remains an

open problem. Here, we show that the mechanism of excitability in large networks and

mean-field descriptions of coupled quadratic integrate-and-fire (QIF) cells mirrors that of the

individual components. We initially exploit the Ott-Antonsen ansatz to derive low-dimen-

sional dynamics for the coupled network and use it to describe the structure of canards via

slow periodic forcing. We demonstrate that the thresholds for onset and offset of population

firing can be found in the same way as those of the single cell. We combine theoretical anal-

ysis and numerical computations to develop a novel and comprehensive framework for

excitability in large populations, applicable not only to models amenable to Ott-Antonsen

reduction, but also to networks without a closed-form mean-field limit, in particular sparse

networks.

Author summary

Excitability, the ability of a system to transiently amplify perturbations, is the hallmark of

many biological and chemical processes and underlies their ability to send signals. Recent

mathematical advances in slow-fast systems provide a rigorous framework for defining

excitability in single cells. Here we combine these advances with a recent approach from

statistical physics that allows us to extend the notion of excitability to networks of hetero-

geneous coupled cells. We show through a combination of numerics and analysis that the

mechanisms of excitability in single cells pass through to these large networks even when

individuals are not themselves excitable.
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Introduction

Excitability is a fundamental all-or-none property of many living cells including neurons. For

simplicity, we describe neuronal excitability, but this notion extends beyond membrane bio-

physics. It manifests itself by a very nonlinear response to a sufficiently strong external input,

leading to the emission of an action potential before going back to a rest state, whereas any

weaker input has no effect on the cell other than a small fluctuation of the membrane potential

around its equilibrium value. The concept of excitability is well known to biologists, in particu-

lar through the existence of a non-observable boundary in the response space marking the

abrupt transition from rest to spike. However, while the geometry of single-cell excitability is

well understood [1], the idea of population excitability (for example in a network of coupled

neurons) has been far less studied. What makes a population respond normally (such as in

working memory tasks [2]) or abnormally (such as in seizures and other pathologies [3]) is a

critical question in neuroscience.

Most class-II membrane models [4] —Hodgkin-Huxley, FitzHugh-Nagumo, Morris-

Lecar— have a slow-fast structure, with excitability threshold given by so-called canard solu-
tions [5–7]. In single cells, canard solutions underpin complex biological rhythms [8], organise

transitions from resting to spiking states [9], and from spiking to bursting regimes [10].

The canonical class I excitable systems, such as the QIF neuron models [11], do not intrinsi-

cally possess multiple timescales. Nevertheless slow periodic forcing can bring out a bursting

rhythm in theta neurons and the threshold to bursting dynamics is again formed by canard

solutions [12]. Networks of QIF neurons are capable of generating similar bursting rhythms

upon periodic input [13, 14], so the question of network excitability in relation to threshold

comes naturally in this context.

In this article, we provide a novel approach to the question of population excitability by

showing that the geometry of excitability at the microscopic level scales up to large networks,

involving similar key objects related to the slow-fast nature of the system. Excitability in a sin-

gle neuron is determined by studying how a model responds to small perturbations in the

external input or initial conditions: an excitable’s system all-or-none response is mapped in

parameter and phase space, by carefully selecting perturbations so that a boundary between

markedly different behaviour reveals itself [4, 15, 16]. A major obstacle towards transferring

such study from single neuron to population excitability is that it is often unclear how to trans-

late the small perturbations used for single neurons to network and mean field level. In this

paper we show that such step is possible and natural for QIF networks, the canonical class I

neurons, and that canard solutions are the fabric of excitability thresholds, from single neurons

to mean-field descriptions. Dissecting this transition is important, as excitability is a funda-

mental aspect of the cortex providing a substrate for the propagation of information from one

location to another: at the single cell level (via action potentials) and at network level, via prop-

agating waves (for example, see the recent reviews [17, 18] for network models).

Initially, we build on the results by Montbrió et al. [13] (extending previous work by Ott

and Antonsen [19]) in the case of dense (all-to-all) networks of QIF neurons, with randomly

distributed constant inputs following a heavy-tail (Lorentzian) distribution. For this network,

several groups have studied the existence of a simple mean-field limit [13, 20–24]. We show

that excitability in large networks of this type is organised via canards in the very same way

that it is at the mean-field limit, and we showcase these results computationally, by exhibiting

an accurate approximation of the network threshold for networks of size N = 105.

What is more, we extend this approach to a much wider class of networks of QIF neurons,

including: networks with heterogeneous weights, sparsely-connected networks, networks with
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electrical as well as chemical synaptic coupling, networks with asymmetrically-spiking neu-

rons, and multi-population networks that combine any of the above features.

The geometry of excitability in all such QIF neural networks beautifully persists across

scales, in great generality. For large-enough networks (and up to the mean-field limit) this per-

sistence reveals itself once we consider the correct macroscopic variables, namely the firing

rate and the mean membrane potential. This is in contrast to the single-neuron level where the

slow-fast variables endowed with this excitable geometry only encompass the membrane

potential.

We show that systems of the type above, at any scale, support a continuous route from non-

bursting to bursting solutions, upon slow (external) periodic forcing. This continuous route

visits canard solutions, which form an interface for excitable transitions, from down network
states (neural population silent phase) up to network bursting —as observed in [13] but without

explanation of the threshold transition— as well as for the dual transitions from up network
states (neural population tonic firing) down to network bursting which was not been reported

before and involves the same canard geometry and dynamics.

As stated this geometry emerges through a slow periodic forcing. While the best known

slow modulatory rhythms in cortex are theta oscillations with frequencies of 5 to 8 Hz, these

are not the only slow rhythms that modulate the activity of the cortex. There is a global oscilla-

tion that organizes the activity of cortex operating at less than 1Hz and causes a transition

from the down state (inactive) to the up state (active). This slow oscillation is present during

sleep and anaesthesia (see [25] for a recent review, and also [26, 27]). In addition, there exist

slow “delta” oscillations whose frequency ranges from 0.5 − 4 Hz. These have been shown to

modulate gamma oscillations in the whisker barrel cortex of awake mice and are coupled to

respiration ([28]). These oscillations modulate the excitability allowing gamma and other high

frequency oscillations.

In the paper we follow a didactic approach, whereby calculations are performed initially on

the original mean field QIF network derived by Montbrió, Pazó, and Roxin in [13], to which

we add a synaptic variable as the same group considered in [21]. We henceforth denote this

model as the MPR network. With this example we develop intuition and all the technical

ingredients to describe the canard population thresholds. We then show how to extend this

approach to more general cases.

The paper is organised as follows: in section 1 we introduce the MPR model, present

excitability and routes to bursting at single cell and network level; in section 2 we present the

mathematical tools to study excitability through folded-saddle canards, and we use them to

interpret network excitability, which we showcase numerically in networks of 105 neurons; in

section 3, we explain how this approach naturally extends to QIF networks in great generality;

in section 4 we demonstrate that the same continuous routes to bursting exist in sparse net-

works, in the absence of an exact mean field limit for the network; we conclude in section 5.

1 Population threshold in MPR networks

1.1 QIF Network model

We study a network of N all-to-all coupled QIF neurons. The ith neuron has membrane poten-

tial Vi, synaptic variable si, and is subject to both a background current ηi, and an external,

zero-mean current I(t) = A sin(εt), leading to

V 0i ¼ V2
i þ Zi þ IðtÞ þ

J
N

XN

j¼1

sj; s0i ¼ � si=ts; ð1Þ
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for 1 ⩽ i ⩽ N. We refer to the sum Ki = ηi + I(t), as the (external) input to the ith cell. The

ODEs above hold between two consecutive firing times: these are the finite, computable times

at which a membrane potential in the network diverges to +1. Each time this condition is met

by Vi we: (i) stop the simulation, (ii) reset Vi to −1, (iii) send a spike to all synapses, whose val-

ues are instantaneously incremented by an amount 1/N; (iv) restart the simulation of system

(1) from these updated initial conditions. A voltage threshold at +1 is clearly non physical,

but one typically addresses this problem in two ways. Firstly, it is possible to use the transfor-

mation Vi = tan θi/2 to obtain

y
0

i ¼ 1 � cos yi þ ð1þ cos yiÞ IðtÞ þ Zi þ
J
N

XN

j¼1

sj

" #

; s0i ¼ � si=ts;

one then computes a firing event when θi crosses the value π/2 from below. Secondly, voltages

at Vt =1, Vr = −1may be replaced by finite, large values Vt = −Vr. Below we shall present

two types of numerical simulations: for N = 1, we use the above transform, hence thresholds

are attained at V!1; for N> 1, we use the second strategy instead. The simulation for N = 1

in θ presents no appreciable difference to the one with N = 1 with finite threshold and reset.

This system is ideally suited to study excitability across scales because: (i) we can analyse

and compare single cell-dynamics, N = 1, network dynamics N� 1, and mean-field dynamics

N!1; (ii) one can switch from constant input currents (ε = 0) to slowly-varying, oscillatory

currents (0 < ε� 1) in order to uncover transitions between various cellular regimes.

1.2 Single-neuron excitability

Let us set N = 1, ε = 0, and examine a QIF neuron with self-coupled synapse [29], subject to a

constant input current K1 = η1, as in Fig 1a and 1e. When 0< τs� 1 and Jτs is sufficiently

large, the cell supports two coexisting attracting states: an equilibrium (down state), and a peri-

odic solution with tonic firing (up state), separated by an intermediate unstable equilibrium.

The equilibria belong to a curve which folds when the input K1 is null; periodic solutions col-

lide with unstable equilibria at a homoclinic bifurcation, when K1 = h. In passing we note that

in Fig 1a, 1b, 1e and 1f are only schematics of bifurcation diagrams, without units or scales,

which is why they feature “states” on the ordinates. This is in contrast to Fig 1c, 1d, 1g and 1h,

which show voltages of computed trajectories.

When ε = 0 and η1 2 (h, 0) in the intrinsically bistable regime, Fig 1a, initial conditions

determine whether the voltage is attracted to the down or to the up state; the threshold is given

by the middle unstable state. When η1 > 0, the only attractor is the periodic solution, hence

the cell is intrinsically tonic, Fig 1e. We are interested in how the cell (and later on, the net-

work) transitions from the rest state to the repetitive firing state, and how the two states are

concatenated together to form a bursting state. In a standard QIF model without synapses

(J = 0), there is no bistability (the up state is to the right of the fold): this changes some of the

waveforms supported by the cell, but not the mechanisms we aim to describe, namely the

bursting transitions between down and up states [12].

To study these transitions, one sets ε> 0 small and hence examines slow forcing [1, 4], as

sketched in Fig 1b and 1f. This causes the input to oscillate around the mean value η1 (see ellip-

ses on the horizontal axes). The exact dynamics of the system depends on A, the amplitude of

the input oscillations, and on the sign of η1. By varying these two parameters, one can con-

struct a great variety of solutions where up and down states alternate. Some trajectories stand

out, in that they signal the onset or termination of a phase. With reference to Fig 1b, small-

amplitude forcing with average η1 2 (h, 0) causes the cell to oscillate around its rest state; these

are subthreshold oscillations, which stick to the down state at all times; upon increasing the
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amplitude A (see ellipse around η1), the trajectories reach a turning point, when η1 + A� 0,

that is, for A� −η1; near this value, there are trajectories which follow the branch of unstable

states for increasingly longer times, before jumping to the down state, or to the up state (seg-

ments 1–2). A temporal profile of solution jumping down is given in Fig 1c, obtained for

A = 0.20318, ε = 0.01 (green); a profile of a solution jumping up is also in Fig 1c, for A to

0.20319 (purple curve). The narrow region of parameter space between A = 0.20318 and

A = 0.20319 contains an entire family of solutions, which spend O(1) times near the repelling

branch of equilibria of the system with ε = 0. This is surprising: when ε is small, one would

expect the ε = 0 analysis to play a role, and therefore trajectories to be repelled exponentially

fast from the unstable branch; on the contrary, here we consider trajectories that stay close to

the unstable branch for long times. Orbits with such a feature, like the ones labelled with seg-

ments 1–2 (and 3–4) in Fig 1 are called canards.
These counter-intuitive canard solutions (marked with colors and numbers in Fig 1b), con-

stitute a computable interface between subthreshold oscillations (down-down orbits) and

Fig 1. Dynamics of a single QIF neuron (N = 1 in Eq (1)) in the bistable regime (a)–(d), and in the tonic regime (e)–(h). (a): Sketch (not to scale) of

the bifurcation diagram of steady states (curve) and periodic solutions (cylinder) of the single QIF neuron subject to a constant input K1 = η1 (ε = 0). A

stable quiescent state (down state) coexists with a stable tonic firing solution (up state), separated by an unstable equilibrium (dashed curve). A

homoclinic bifurcation is present when K1 = h. In this intrinsically bistable regime (K1 = η1 2 (h, 0)), the cell selects the up or down state depending on

initial conditions. (b): When 0< ε� 1, K1(t) = η1 + A sin(εt) becomes a slowly varying quantity, oscillating around the value of η1 (ellipses on the K1

axes) with amplitude A, and transitions between the up and the down phases become possible. The onset between phases is determined by a family of

canard solutions 1–2 (see text); in the bistable regime they appear in the down-down (green), and down-up (purple) transitions. (c): Time profiles of

two solutions for the system with slow input K1(t), displaying a down-down and down-up transition, containing a canard segment (1–2). (d) The

solutions in (c) are plotted in the variables (V1, K1), and superimposed on the curve of equilibria of the ε = 0 system (grey parabola), providing evidence

of canard behaviour (1–2), and part of the orbits greyed out to enhance visibility. Parameters: ε = 0.01, J = 6, τs = 0.3, η1 = −0.2; A values are reported in

the panels. (e): Sketch of the bifurcation diagram of steady states and periodic solutions with constant input (ε = 0) in the tonic regime k1 = η1 > 0). In

this regime the cell displays solely the firing solution (up state). (f): When 0< ε� 1 transitions between the up and the down phases become possible,

mediated by canard solutions which are possible as up-up and up-down transitions (3–4), but not vice-versa. (g): Time profiles of two solutions in the

tonic regime, with slow input K1(t), displaying an up-up and up-down transition, containing a canard segment (3–4). (h): The solutions in (f) are

plotted in the variables (V1, K1), and superimposed on the curve of equilibria of the ε = 0 system (grey parabola), providing evidence of canard

behaviour (3–4), and part of the orbits greyed out to enhance visibility. Parameters: ε = 0.01 J = 6, τs = 0.3, η1 = 0.5; A values are reported in the panels.

https://doi.org/10.1371/journal.pcbi.1010569.g001
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bursting states (down-up orbits). The canards segments in Fig 1b are marked in the time pro-

files Fig 1c, and are also visible in the phase-plane projection Fig 1d. In the latter the variables

(V1, K1) are used, and are superimposed on the curve of equilibria of the ε = 0 system (grey

parabola), providing evidence of canard behaviour (1–2).

The fact that canards occur in such a small range of parameter space makes one wonder

whether they are detectable and useful in nature. As we shall see below, canard solutions deter-

mine the effective thresholds of the all-or-none responses in a model; they act as excitability

thresholds, whose biological relevance is well established [4, 15, 30], even though isolating

such threshold may be challenging in experiments. To observe a canard in experiments, one

would need access to phase-plane information similar to Fig 1b and 1f, but most electrophysio-

logical experiments record only one observable time trace, like membrane potential, which

does not allow for a phase plane interpretation. Nevertheless, time traces can display canard

signatures, as we show in Fig 1c and 1g, and similar traits are found in experiments [31], in

particular when discussing delayed onset of firing [32]. In addition, analog circuits engineered

to reproduce excitability display a clear canard behaviour as they provide access to experimen-

tal phase plane data [33].

We then move to the intrinsically tonic regime, for η1 > 0, Fig 1e–1h. We find up-up and

up-down orbits with canards in Fig 1f–1h, whereas it is possible to prove that down-down and

down-up canards cannot exist, that is, the transition at the fold is a jump. This is why we have

segments of type 3–4, but not of type 1–2, in this scenario. In Fig 1g and 1h show many spikes,

most of which are greyed-out for enhancing visibility of the canard segments. In passing we

note that segments of type 3–4 are also present in the bistable scenario, but we do not discuss

them in the single cell, for the sake of brevity.

The orbits described above capture excitability transitions at a single-cell level. Developing

a mathematical understanding of these special orbits is crucial, because canards act as basin

boundaries between different cellular responses: biophysical and idealised single-cell models

support generically continuous canard-mediated transitions [7, 9], as we will exemplify in a

moment. The transitions are brutally sharp, but can be continuous, even though they may

appear discontinuous upon running simulations. The main contribution of this paper is to

show that this scenario also occurs generically and robustly in networks of type-I neurons, of

which QIF are universal prototypes.

In addition, the canard-mediated transition from non-bursting to bursting states in net-

works of QIF neurons transfers across scales: in an isolated QIF cell, as well as in a networks of

QIF cells, there exists a continuous route from non-bursting to bursting states, and this path is

made of solutions with canard segments such as the ones seen in Fig 1.

Fig 2 shows an example of such transition in a single cell in the tonic regime. When ε = 0

the natural solution is a purely tonic one: it locks on the upper branch of Fig 1e. According to

Fig 1f, we expect to observe a transition from non-bursting to bursting states, involving solu-

tions with canard segments 3–4, when a slow forcing (ε 6¼ 0) is switched on. When the forcing

has amplitude A = 0.83, the cell exhibits a tonic state with slow frequency modulations, as seen

in Fig 2a. This solution is a non-bursting state, the frequency modulation is present because

the solution hovers on the top branch in Fig 1f, which is composed of periodic orbits with

varying period. When the forcing is increased slightly, A = 0.8892, we observe a bursting solu-

tion, concatenating a tonic spiking phase to a quiescent phase; see Fig 2b.

Fig 2c shows a portion of the continuous path connecting the non-bursting (Fig 2a) to the

bursting (Fig 2b) state, as A is varied in a narrow band of values. In the plot, we monitor the

states using the reciprocal of the integral of s, ksk =
R
s(t)dt as A varies. The sharp increase

along the branch is typical of canard-mediated transitions, and it is called a canard explosion.
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In Fig 2d we plot 100 solutions along the path, near the canard explosion. The trajectories

are superimposed in grey, but we highlight the canard segments in blue: with reference to Fig

1h, solutions morph from up-up to up-down states, while growing a canard segment of type

3–4.

We label the scenario above as a up-to-down route to bursting. Other routes to bursting are

also possible (from down to up states, for instance) when η varies. We do not pursue a classifi-

cation of bursting routes for a single QIF cell, but we will do so for the mean-field network,

after showing that continuous routes to bursting persist across scales, when N!1.

1.3 Network excitability

Let us now consider the network (1), together with reset conditions, subject to random back-

ground currents: ηi are taken from the Lorentzian distribution with density

gðZÞ ¼ D=ðpðZ � �ZÞ
2
þ pD

2
Þ, hence the network is heterogeneous, with some neurons in the

bistable regime, and others in the tonic regime. However, the centre of the distribution �Z will

turn out to play a role. If �Z < 0 (�Z > 0) we say that distribution, or the network, is predomi-

nantly bistable (tonic). For N!1, there is a well-known mean-field limit [13, 21] for the cou-

pled system:

r0 ¼ D=pþ 2rv;

v0 ¼ v2 � pr2 þ Jsþ �Z þ IðtÞ;

s0 ¼ ð� sþ rÞ=ts;

ð2Þ

where r, v, s are the mean firing rate, mean membrane potential, and mean synaptic input,

respectively. The external input is now given by KðtÞ ¼ �Z þ IðtÞ. Recall that at microscopic

Fig 2. Continuous up-to-down route from non bursting (a) to bursting (b) states of an isolated QIF neuron in the tonic regime, upon increasing

the amplitude of A of the slow forcing. (a): The non-bursting state is visible when A = 0.83; the cell exhibits a tonic state with slow frequency

modulations, because the solution hovers on the top branch of Fig 1f, without jumping down. (b): When the forcing amplitude is increased slightly

(A = 0.8892) we observe a bursting solution, jumping from the top to the bottom branch of Fig 1f. (c): a continuous path connects the orbits in (a,b), as

A is varied in a narrow band of values; the figure shows the reciprocal of the integral ksk of s(t) in t 2 [0, 70] as a function of A; the sharp increase is

typical of canard transitions. (d): we plot 100 solutions along the path in (c), near the sharp increase; the trajectories (grey) are superimposed, and the

canard segments are highlighted in blue; with reference to Fig 1h, solutions morph from up-up to up-down states, while growing a canard segment of

type 3–4. Parameters: ε = 0.1 J = 6, τs = 0.3, η1 = 0.5.

https://doi.org/10.1371/journal.pcbi.1010569.g002

PLOS COMPUTATIONAL BIOLOGY Cross-scale excitability in QIF networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010569 October 3, 2022 7 / 22

https://doi.org/10.1371/journal.pcbi.1010569.g002
https://doi.org/10.1371/journal.pcbi.1010569


level the background current is constant but heterogeneous (ηi, sampled from a Lorentzian

distribution), whereas in the mean field limit it is constant and homogeneous (equal to �Z).

Note that alternative Ott–Antonsen QIF reductions of QIF networks use amplitude and

phase of a complex-valued order parameter in place of mean voltage and rate [20, 23]. The

order-parameter and rate-voltage descriptions are related through a conformal mapping [13].

It is important to remark that the mean-field limit introduces a new quantity, the popula-

tion firing rate, r [21] that is not a part of the single or finite system of equations. It emerges in

the limit as N!1 of the microscopic model (1). As seen in Fig 3, when ε = 0, hence

KðtÞ � �Z, the equilibria of the system lie on an S-shaped curve. More precisely, it can be

shown that the curve has no folds or 2 folds ([34], Eq 12 and Fig 2(c)). Henceforth we shall

assume that J is sufficiently large to guarantee the existence of 2 folds, which must occur for

negative values of K.

In the down state all neurons are close to rest (quiescent network state), whereas the up

state corresponds to asynchronous network tonic firing, an averaged version of the tonic state

in Fig 1e–1f. The up state can be a stable focus away from the fold and have complex eigenval-

ues. Between these two stable fixed points is an unstable (saddle) point that serves as a separa-

trix between the two stable states. Remarkably, when 0< ε� 1, the geometry of excitability

still persists in this macroscopic description, and transitions are now determined by the distri-

bution peak at �Z. We now show that the orbits of the mean field and of the network directly

parallel the transitions of the single neuron model, involving the same canard types.

Fig 4b shows a simulation with ε = 0.05, �Z ¼ � 15:1 for two different values of the maxi-

mum amplitude of the stimulus, A, superimposed on the S-shaped curve of equilibrium for ε =

0 (grey). One trajectory (green) follows the down state, along the bottom branch. The trajec-

tory hugs the unstable branch of fixed points (the canard segment) past the fold F−, and then

jumps down. Small changes in A result in a divergence from the down-down (green) to the

down-up (purple) states.

The qualitative difference between the two behaviors is more striking in the time traces of

the two curves, shown in Fig 4a, where the transition to the up state is accompanied by a burst

while for the smaller input, there is just a subthreshold oscillation. The reason for the burst is

that the up state is a stable spiral for a range of input values. When A� � �Z, as expected, the

network jumps (without canards) from asynchronous to synchronous firing, following the

upper branch of the S-shaped curve in Figs 3a and 4b.

Fig 3. Schematic bifurcation diagram (not to scale, top panels) of the mean-field for the network with randomly-

distributed ηi (bottom panels); some neurons are bistable (blue), and others tonic (red), with distribution centred

at �Z. The ε = 0 equilibria lie on S-shaped curve (grey), whose folds occur for strictly negative values of K. The up state

is now a high-voltage, high-rate equilibrium. The geometry of excitability persists when ε� 1, and K(t) oscillates

slowly around �Z. (a): Down-down and down-up transitions for predominantly bistable distributions (�Z < 0). (b): Up-

up and up-down transitions for predominantly tonic distributions (�Z > 0).

https://doi.org/10.1371/journal.pcbi.1010569.g003
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In conclusion, the trajectories displayed in Fig 4a and 4b are the mean-field equivalents of

the single cell ones in the bistable regime, shown in Fig 1c and 1d, respectively. They undergo

similar transitions from down-down to down-up states, with canards being the threshold.

The tonic case (�Z ¼ 5) is simulated in Fig 4c and 4d. A similar situation occurs in this case,

but the dynamics revolves around the upper fold F+, and features canards in up-up and up-

down orbits.

2 Folded-saddle canard behavior across scales

We now derive three central results of the paper: firstly, we characterise the mean-field transi-

tions described above, valid at the ODE level (system (2)), using standard methods from Geo-

metric Singular Perturbation Theory [35]; secondly, we use this characterisation to infer the

existence of canard behavior at the network level (system (1)) with N = 105 neurons, and pro-

vide numerical evidence of this phenomenon; thirdly, we explore canard-mediated routes to

bursting at the network level, a feature that persists from the single neuron level. The latter

results are remarkable and novel, as canard behavior in large networks is greatly unexplored,

in particular for systems with resets and random data.

As anticipated, we initially present the theory for the network described above, and then

adapt these results to more general networks. To study the behavior of (2) for small ε> 0, we

extend the system with two ODEs describing the oscillatory dynamics of K(t), namely

K 0 ¼ εQ;

Q0 ¼ � εðK � �ZÞ:
ð3Þ

Note that in [13, 24], the mean-field limit model assumes instantaneous synaptic processing,

which amounts to taking τs = 0 and replacing s by r in the equations for r and v. However,

Fig 4. Mean field dynamics of system (2) when the input is slowly varying. Top (bottom) panels show the bistable

(tonic) regime, reaching population bursting via two canard scenarios, down-up and up-down, respectively. (a,c): time

traces of mean voltage, which display mean-field transitions analogous to the single cell ones in Fig 1e and 1g,

respectively. (b,d), same data as in (a,c), plotted in the variables (v, K), where K ¼ �Z þ IðtÞ, superimposed on the

folded critical manifold (grey); these figures are the analogues of Fig 1f and 1h, respectively. Parameters are Δ = 1,

J = 15, τ = 0.002, ε = 0.05, and (a,b) �Z ¼ � 15:1, (c,d) �Z ¼ 5.

https://doi.org/10.1371/journal.pcbi.1010569.g004
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assuming 0< τs� 1, that is, a fast synapse, does not change anything about the threshold

analysis below while making it more general.

Now that we have expressed the slow dynamics of the current I using a second-order har-

monic equation, we rescale time in Eqs (2) and (3) so as to parametrise them by the slow time

τ = t/ε, as was done in [36], and obtain

ε _r ¼ D=pþ 2rv;

ε _v ¼ v2 � pr2 þ Jsþ K;

ε_s ¼ ð� sþ rÞ=ts;

_K ¼ Q;

_Q ¼ � ðK � �ZÞ:

ð4Þ

To shed further light onto the transition from low-rate (down) states to high-rate (up) states

of the mean-field, it is key to consider the slow limit of (4) as the forcing speed ε tends to 0.

Therefore, we set ε = 0 in (4) and obtain the three algebraic constraints

s ¼ r; r ¼ �
D

2pv
; v2 � pr2 þ Jsþ K ¼ 0;

In the ε! 0 limit, the system variables (r, v, s, K, Q) evolve on a three-dimensional manifold

inR5
, the so-called critical manifold, given by

S0 ¼ fs ¼ r ¼ �
D

2pv
; 0 ¼ K þ cðvÞg;

where

cðvÞ ¼ v2 � D
2
=ð4pv2Þ � JD=ð2pvÞ: ð5Þ

The subscript 0 in S0 refers to the fact that this manifold is found by setting ε = 0 in (4). The

transitions discussed in this paper occur when S0 is folded, and it is the union of two attracting

and one repelling submanifolds. These conditions occur generically: for common choices of

parameters J, Δ and �Z (see [13], Fig 1(a)), one finds that S0 has two loci of folds (two lines of

folds), F+ and F−, corresponding to the set {Dψ(v)≔ ψ0(v) = 0}. A projection of the manifold

S0 onto the (K, v) plane is visible in Fig 4b and 4d, where the fold lines project onto points F±;

compare with Fig 5 where S0 is projected onto the (K, Q, v) space and the fold lines are fully

visible.

The ε! 0 limit introduced above corresponds to a differential-algebraic problem referred

to as the slow subsystem of the original equation, and in the present case it reduces to

0 ¼ K þ cðvÞ;

_K ¼ Q;

_Q ¼ � ðK � �ZÞ:

ð6Þ

The algebraic constraint in (6) hides the dynamics of v in this slow limit. To reveal it, we

then differentiate the constraint with respect to time, and obtain the following set of ODEs
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defined for (v, K, Q) 2 S0

� c
0
ðvÞ _v ¼ Q;

_Q ¼ �Z þ cðvÞ:
ð7Þ

One can relate system (7) to the canards shown in Fig 5: we are considering the ε = 0

dynamics, hence we focus on the black curves on S0, and we take the one in Fig 5a as an exam-

ple. It would appear that system (7) breaks down at points where ψ0(v) = 0, that is, along the

fold set F±. Along such folds the first equation reduces to Q = 0 hence (7) is undefined at points

along the folds where Q 6¼ 0. However, an inspection of Fig 5a shows that the flow is well

defined at one specific point, which is called a folded singularity and is marked as (fs). In fact,

there are two other points on F+ where the trajectory seems to cross the fold. However, these

are not associated with canard dynamics, and the flow is not passing through the fold, as the

system (7) is singular at those points.

It is around this point that canard solutions are born, because the trajectory passes through

(fs) from an attracting to a repelling sheet of S0. We also note that for ε� 1 this behaviour

Fig 5. Dynamics of network system (1) with N = 105 neurons when the input is slowly varying, in the bistable (a,b) and tonic (c,

d) regimes. Shown are the down-down (green) to down-up (purple), and up-up (cyan) to up-down (red) transitions in the network,

which mirror the mean-field solutions in Fig 4, as well as the single-cell solutions in Fig 1. To facilitate the comparison between

network simulations and mean-field canard theory (see text), network orbits are shown in the 3D phase space (K, Q, v), where Q =

I0. We superimpose them onto the (grey) surface of ε = 0 mean-field equilibria, S0, and fold lines F± (also shown in Fig 4b and 4d).

On the surface are visible the folded saddle singularity (fs) and its associated canards (black). The networks follows the canard orbits

predicted by the mean-field theory remarkably well. Parameters are Δ = 1, J = 15, τ = 0.002, ε = 0.05, Vt = 100 = −Vr, A as in Fig 4,

and �Z ¼ � 15:1 (a,b), �Z ¼ 5 (e,f).

https://doi.org/10.1371/journal.pcbi.1010569.g005
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persists (green curve in Fig 5a): slow-fast theory predicts [37] that canards at ε = 0 survive for

small-enough ε> 0 and, as we will see below, they organise the excitable structure of QIF

networks.

We therefore investigate the passage through (fs) more precisely: intuitively, at (fs) ψ0(v) = 0

and Q = 0, so that the quotient Q/ψ0(v) stays finite, and the flow of (7) is well defined. We for-

malise this step by: (i) desingularising (7) with a time rescaling, (ii) identifying (fs) as an equi-

librium point of the desingularised problem, (iii) classifying the type of equilibrium, which in

turn determines the type of canard in the original system (as done in [36]).

In step (i), we desingularise system (7), and rescale time by a factor −ψ0(v), which eliminates

the prefactor to _v, and regularises the problem, leading to the desingularised reduced system
(DRS).

v0 ¼ Q;

Q0 ¼ � c0ðvÞð�Z þ cðvÞÞ:
ð8Þ

An important subtlety is that the time rescaling by −ψ0(v(t)) depends on the state variables v,

hence the time orientation depends on the position on S0. In fact, the time rescaling transform-

ing the reduced system (7) into the desingularised reduced system (8) is such that the flow in

both systems has the same orientation on the attracting sheets of S0 but opposite orientation

on its repelling sheet.

In step (ii) we look for equilibria of (8), which satisfy ψ0(v) = 0 and Q = 0, hence they geo-

metrically coincide with (fs). Such equilibria are of the form (v, Q) = (v�, 0), where v� satisfies

ψ0(v�) = 0.

In step (iii) we study the linear stability of these equilibria, which is determined by the Jaco-

bian matrix

J ¼
0 1

� c
00
ðv�Þcðv�Þ 0

" #

;

whose eigenvalues are given by

l ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� c
00
ðv�Þcðv�Þ

q

:

The equilibrium (v�, 0) is therefore either a saddle or a center: in the former case the point (fs)

is called a folded saddle, and gives rise to folded-saddle canards; in the latter case (fs) is a folded
centre; it is known that this singularity does not give rise to canards, but rather to a discontinu-

ous transition.

A quick calculation reveals that: (1) In the bistable regime, when �Z < 0, there are two (fs)

points, one on F+ and one on F−, both of which are folded saddles; both folded saddles are visi-

ble (in projection) as F+, F− in Fig 4b, whereas only the latter is shown in Fig 5a and 5b. (2) In

the tonic regime, when �Z > 0, the singularity on F+ is still a folded saddle, whereas the one on

F− is a folded centre, and both are visible in projection in Fig 4d; we show only the folded sad-

dle as (fs) in Fig 5c and 5d. In passing, we note that these findings remain valid for a much

larger class of networks and mean field limits, as we will show below.

Fig 5 displays the dynamics of system (7) (ε = 0, in black) superimposed on the dynamics of

(1) with N = 105 (ε> 0, in color), for both subthreshold and suprathreshold forcing. Fig 5a

shows, in green, the full network orbit with N = 105 for A slightly below threshold. A canard

segment is visible, where the trajectory hugs the black curve on the fold before falling back to

the down state. Fig 5b shows the same projection, but for slightly larger A; in this case, the
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trajectory makes the jump to the up state before falling back down. The folded-saddle canards

predicted by mean-field theory (in black) are in striking agreement with the behaviour of the

network, and the correspondence with the similarly coloured mean-field transitions in Figs 4a,

4b, 1c and 1d is remarkable. These solutions define analogue scenarios to the down-down and

down-up states for the single neuron model, but they are exhibited at the level of the network.

Interestingly, at single cell level we have a bistable neuron (η1 < 0), while at the network level

some neurons will be tonic, but the network is predominantly bistable (�Z < 0). Similar consid-

erations apply to the predominantly tonic network scenario, showcased in Fig 5c and 5d, and

corresponding to Figs 4c, 4d, 1g and 1h.

2.1 Continuous routes to bursting

We will now show that for any value of �Z, the network robustly supports a continuous route

from a non-bursting state to a bursting state upon increasing the input amplitude; this transi-

tion involves a canard explosion, as seen in Fig 2 for the single cell.

For sufficiently large coupling values J, the critical manifold S0 is S-shaped, with folds occur-

ring at η+ < η−< 0. As depicted in Fig 6a, there exist 4 different scenarios depending solely on

Fig 6. Continuous routes to bursting and non-bursting solution branches, in the mean field model (4) for four different values of �Z

corresponding to the four different scenarios described in the main text. The associated four regions I, II, III and IV are highlighted on top of the

critical manifold S0 in panel (a). The three values of �Z at the transitions between these scenarios are denoted η+ ≔ η(F+), η−≔ η(F−) and η0 = (η+ + η−)/

2, where F± are the two folds of S0. The chosen values of �Z in each region are �Z ¼ � 6:5, �Z ¼ � 5, �Z ¼ � 3:5 and �Z ¼ � 2, respectively. Panels (b–d)

display both the solution branches obtained by varying the forcing amplitude A for a given value of �Z (top), and a selection of solutions on the branch,

plotted in the phase plane (K, v) on top of S0 (bottom). As observed, a continuous branch of solutions bridging from the non-bursting regime to the

bursting regime always exists, regardless of the �Z value. This branch connects in parameter space a down-down non-bursting solution to a down-up

bursting one for �Z < Z0 (panels b,c), or an up-up non-bursting solution to an up-down bursting one for �Z > Z0 (panels d,e). Additionally, for

Zþ < �Z < Z� , another solution branch exists, starting at low A amplitude and which does not connect to the bursting regime; this branch contains up-

up (resp. down-down) solutions for Zþ < �Z < Z0 (resp. Z0 < �Z < Z� ). Parameter values are: Δ = 1, J = 15, τs = 0.02, ε = 0.05; �Z and A as indicated in the

panels.

https://doi.org/10.1371/journal.pcbi.1010569.g006
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the value of �Z with respect to the fold values η± and the midpoint η0 = (η++ η−)/2 between

them. This is due to the symmetry of the forcing amplitude around �Z.

Case I: �Z < Zþ. Since the forcing oscillates around �Z < Zþ, when a low-amplitude forcing is

switched on, the network can only oscillate near the bottom branch of S0 (orbit 1 in Fig 6b).

Upon increasing the amplitude of the forcing, the orbit reaches the fold and hugs the middle

unstable branch of S0 (orbit 2 in Fig 6b). A continuum of orbits with canard segments are now

visited by the network: in this transition to bursting visible in the (A, Δr) diagram in Fig 6b,

the branch of solutions is almost vertical, as A varies in a tiny region of parameter space. As we

ascend the branch, we pass from a down-to-down solution (green, labelled as 2) to a down-to-

up solution (purple, labelled 3) with canard segments. Past the vertical branch, we obtain a

fully developed bursting solution (4). The solution branch in Fig 6b reveals a continuous down-
to-up route from non bursting to bursting network solutions. All solutions with canard segments

in this case are of down-to-up or down-to-down type, as witnessed by the green and purple

coloring.

Case II: Zþ < �Z < Z0. Since we enter the bistable region of S0, we can switch on the forcing

near two starting points, on the lower and upper branch, respectively. If one starts from the

lower branch, the same considerations as in Case I are valid, and we have a continuous down-

to-up route (see green branch in Fig 6c). Starting from the upper branch, low amplitude forc-

ing generate state hovering near the upper branch (solution a in Fig 6c)). When the forcing

amplitude increases the orbit grows a canard segment from the upper fold F+ (solution b).

However, due to the proximity between �Z and F+, the branch can only grow canards up to the

solution labelled c, and folds back onto itself while displaying solutions d–f. Therefore in Case

II there is a continuous down-to-up transition (and no up-to-down) transition to bursting.

Case III: Z0 < �Z < Z� . This scenario is the mirror image of Case II. The network possesses

continuous down-to-up transition to bursting, but no down-to-up transition, which is inter-

rupted (Fig 6c). The continuous transition is explained in case IV below.

Case IV: �Z > Z� . When the forcing is small, the solution can only stay near the upper

branch of S0 (solution 1 in Fig 6e). We can still transition continuously from this non-bursting

solution to a bursting solution (solution 4) via canards that start near F+. This case mirrors

Case I, but involves canards of up-to-up and up-to-down type.

3 Extension to general QIF networks

3.1 Networks with heterogeneous currents

Let us now consider generalisations of the MPR network (1) and mean-field limit (2), for

which the excitability scenario described above still holds. We will discuss the generalisations

only at the level of the mean field, and refer to existing literature for descriptions of the corre-

sponding microscopic networks.

The starting point is the following generalisation of the MPR mean field (2)

r0 ¼ D=pþ 2rvþ ðG=p � gÞs

v0 ¼ v2 � p2r2 þ ðJ þ g ln aÞsþ �Z þ IðtÞ

tss0 ¼ ð� sþ rÞ

ð9Þ

where: I(t) = A sin(εt) is a slow zero-mean periodic forcing as before; Δ, J, �Z and τs are parame-

ters as before; Γ, g, and a are additional parameters. This generalisation encompasses a variety

of exact mean-field limits of QIF networks including:
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1. The MPR network with heterogeneous background currents ηi sampled using a Cauchy dis-

tribution with peak at �Z and half-width at half-maximum (HWHM) Δ. To recover this

model from (9) [13, 22] one sets Γ = 0, g = 0, τs = 0.

2. The MPR network with heterogenous (all-to-all) synaptic coupling [13], obtained for Γ 6¼
0, g = 0, τs = 0.

3. The MPR network with first-order fast or slow synapses [14, 21] characteristic time τs,
which corresponds to Γ = 0, g = 0, τs 6¼ 0. Note that the analysis done above on (1) assumed

0< τs� 1 (fast synapse), however it is still valid for τs = O(1) (slow synapse), because the

folded-saddle structure only requires the existence of a slow periodic forcing (3). This

dynamics also persists with second-order synapses.

4. The modified QIF network from [24] with electrical coupling, which corresponds to Γ = 0,

g 6¼ 0, a = 1, τs = 0.

5. The modified QIF network studied in [38] with electrical coupling and asymmetric spikes,

which differs from the previous case only by a 6¼ 1.

Before further extending the networks analysable with the proposed formalism, let us

rewrite (9) using the generalised coefficients ~GðG; gÞ ¼ G=p � g, ~JðJ; g; aÞ ¼ J þ g ln a, yield-

ing

r0 ¼ D=pþ 2rvþ ~Gs≔rðr; v; sÞ

v0 ¼ v2 � p2r2 þ �Z þ ~J sþ IðtÞ≔ nðr; vÞ þ ~Jsþ IðtÞ

s0 ¼ ð� sþ rÞ=ts≔ sðr; sÞ:

ð10Þ

It is apparent that one can analyse the slow-fast structure of this system in the exact same way

as we have done for system (4), with a cubic-shaped critical manifold given by

S0 ¼ fs ¼ r ¼ � D=ðpð2vþ ~GÞÞ; 0 ¼ K þ cðvÞg;

where ψ is as in (5) with ~J instead of J. It is apparent that the same folded-saddle dynamics

organise the excitable structure of the corresponding mean-field model and can be observed in

associated large-enough generalised QIF networks.

Instead of pursuing this analysis, we introduce first a further generalisation, namely we con-

sider the exact mean-field limit of p synaptically coupled populations of QIF networks, where

we suppose, for simplicity, that only one population (the k-th one) receives a slow external

periodic forcing. The coupled equations read

ε _ri ¼ riðri; vi; siÞ;

ε _vi ¼ niðri; viÞ þ
Xp

j¼1

~J ijsj þ Kdik;

ε_si ¼ siðsi; riÞ;

_K ¼ Q;

_Q ¼ � ðK � �ZkÞ;

ð11Þ

for i = 1, � � �, p, where δ is the Kronecker symbol, and ρi, νi, σi are the functions defined in sys-

tem (10) for population-specific choices of parameters ~G i, Δi, �Z i, and (τs)i. The critical manifold
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of system (11) is defined by the algebraic constraints

Ciðv1; � � � ; vpÞ ≔ ni �
Di=p

2vi þ
~G i

; vi

 !

�
Xp

j¼1

~J ij
Dj

pð2vj þ
~G jÞ
¼ 0: ð12Þ

where

ri ¼ si ¼ �
Di=p

2vi þ
~Gi

for i = 1, . . ., p. Hence, the critical manifold S0 can be compactly written as

S0 ¼ fðv1; � � � ; vp;K;QÞ 2 R
pþ2 :

0 ¼ Ciðv1; � � � ; vpÞ þ Kdik; i ¼ 1; . . . ; pg: ð13Þ

The expression for S0 contains p independent algebraic conditions inRpþ2
, therefore the criti-

cal manifold is indeed a surface, which is consistent with the fact that system (11) has two slow

variables. As a consequence, one can write the reduced system associated with (11) in the form

0 ¼ Ciðv1; � � � ; vpÞ þ Kdik; i ¼ 1; . . . ; p

_K ¼ Q

_Q ¼ � ðK � �ZkÞ

ð14Þ

The system above mirrors the constrained system (6) in the single-population MPR network.

Proceeding like in the single-population case, we differentiate the algebraic constraints with

respect to time and project the resulting limiting system onto the (vk, Q)-plane to obtain

� @vk
Ckðv1; � � � ; vpÞ _vk ¼ Q;

_Q ¼ �Zk þCkðv1; � � � ; vpÞ;

ð15Þ

where v1, � � �, vp satisfy the algebraic constraints defining the critical manifold, that is, the first

p equations in (14). We recognise in system (15) the same form as (7) for the one-population

mean-field limit. We note that the starting system has p + 2 equations, but the reduced system

(15) has only 2 equations, and it is singular at the fold set of the kth population system, given

by the condition @vk
Ckðv1; � � � ; vk�; � � � ; vpÞ ¼ 0.

The 2-dimensional system (15) is singular along that fold, and it can be desingularised as in

the one-population problem. The folded-saddle and folded-centre classification carries

through in this case. Hence we can conclude that the same canard-induced excitability sce-

nario appears in the generic p-population case described above.

4 Canard transitions across scales in sparse networks

The slow-fast scenarios uncovered in the previous section are valid in a large variety of (all-to-

all coupled) QIF networks with exact mean-field limits. We now present evidence that the phe-

nomenon persists in sparse networks, for which no exact mean field limit has been derived to

date.

We present this extension for two main reasons: on one hand, we show that the mechanism

discussed in the previous section extends further, to sparse networks; on the other, we want to

emphasise that the availability of a mean-field description is not strictly necessary for the

canard phenomenon, which is supported by generic network systems of QIFs with finite size.
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In Section (1.3) we studied networks with exact mean fields: since an ODE description was

available for the case N!1, we used these ODEs to predict the region in parameter space

where canard dynamics occur, and to classify the folded singularities organising the transition

from non bursting to bursting patterns. However, networks with finite size also support

canard-mediated transitions, as evidenced in Figs 2 and 4, where the orbits are computed for a

very small (N = 1) and a very large (N = 105) network, respectively.

Having a mean field description at our disposal is useful to pinpoint regions of parameter

space where canards will occur, through the study of S0 and its folded lines; also, large net-

works of neurons possess canard solutions that are almost indistinguishable from their mean

field ones. However, canard mediated transitions are present (and can be documented) in

finite-size networks, even when the mean field is inexact, or unavailable in closed form.

To substantiate this claim, we study a sparse network of N synaptically-coupled QIF neu-

rons. For a similar network, a heuristic mean field description has been proposed, based on

sparsity scaling arguments [22, 39]. The heuristic mean field is in the form (10) and hence

canards of folded saddle type are supported by this set of ODEs. However, this mean field is

not the exact limit of a network of QIF neurons, and the extent to which the mean field

approximates the finite-size network is also immaterial to find canards: as we shall see, both

the heuristic mean field and the finite-size network have canard-mediated routes to bursting,

even if the two models do not agree well in certain regions of parameter space.

We consider N synaptically-coupled QIF neurons of the following form

V 0i ¼ V2
i þ Zi þ IðtÞ þ

J
N

ffiffiffiffiffi
M
p

XN

j¼1

Wijsj;

tss0i ¼ � si;

ð16Þ

for 1 ⩽ i ⩽ N, where M is an integer controlling the expected number of connections of a neu-

ron. More precisely, the connectivity matrix W, with entries Wij, is a binary sparse matrix: the

ith neuron receives input from γi randomly selected neurons; the degree γi is also random,

given by

gi ¼ bkicw½0;2M�ðkiÞ; ki�
i:i:d Dg

ffiffiffiffiffi
M
p

ðk � MÞ2 þ D2

g
M
;

where χ is the indicator function. In practice, the connectivity matrix is established as follows:

a candidate degree ki is extracted from a Cauchy distribution with center M and HWHM

Dg

ffiffiffiffiffi
M
p

and, if it lies in the interval [0, 2M], is rounded to the nearest lower integer to give γi;
the ith row of the matrix W has γi randomly selected entries equal to 1, and the remaining N −
γi entries equal to 0.

In this model, the synaptic input scales as 1=
ffiffiffiffiffi
M
p

, the external forcing is given by

IðtÞ ¼ A
ffiffiffiffiffi
M
p

sinðεtÞ, and the background currents ηi are i.i.d, Cauchy distributed with peak at

�Z
ffiffiffiffiffi
M
p

and HWHM D
ffiffiffiffiffi
M
p

. In passing, we note that Δγ 6¼ Δ. Finally, the variables vi and si are

reset as in the other network examples presented above.

With these scalings for the variable M a heuristic, approximate mean-field description was

proposed recently [22, 39], for a system of inhibitory neurons with no forcing (I(t)�0), homo-

geneous currents (ηi� η) and similar connectivity pattern. Reasoning in a similar fashion, we
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arrive at the following candidate approximate mean field given by

ε _r ¼ D=pþ 2rvþ JDgs=p

ε _v ¼ v2 þ
ffiffiffiffiffi
M
p
ðK þ JsÞ � ðprÞ2

ε_s ¼ ð� sþ rÞ=ts

_K ¼ Q

_Q ¼ � ðK � �ZÞ:

ð17Þ

Differently from [22, 39], the model above has heterogeneous currents, in addition to

sparse, heterogeneous connectivity. Also we consider an excitatory neuronal population, as

opposed to a inhibitory one. The inhibitory population considered in [22, 39], with J = 1 and a

term −Js in the v-equation, is not suitable for studying excitability and transition to bursting,

as the critical manifold is not folded. In passing we note that inhibition prevents canard behav-

iour in this particular model, but not in others: the generalisations of the MPR network given

in 3 is valid for coupled populations of excitatory and inhibitory networks, which generically

support canard behaviour.

A bursting orbit for a network with N = 104 neurons is visible in Fig 7a, in the (v, K, r)-
space. This simulation is done for a network with sharply peaked current distribution (Δ� 1),

which generates a particular bursting pattern, as we will now discuss.

Assuming that the heuristic mean-field description approximates the network simulation,

one can reason as in a standard MPR network: the burst is due to a family of foci on the upper

branch of an cubic-like critical manifold (visible in grey in the figure). The figure shows that

the manifold S0 of the candidate mean field captures well the geometry of the bursting orbit,

and in particular it displays a canard segment along the repelling branch of S0.

A further inspection of S0 reveals that, because Δ is small, both folds F± of S0 occur at van-

ishingly small values of r. We observe down-to-down and down-to-up orbits in the network as

well as in the heuristic mean field (see Fig 7b), and this suggests the possibility of a continuous

down-to-up route to bursting.

It is important to note that the presence of nearby down-down and down-up solutions, on

its own, suffices to get a hint of the presence of canards; in this case, we also have an approxi-

mating heuristic mean-field description with a computable manifold S0, which clearly helps us

finding values of parameters where the nearby down-down and down-up solution exist; the

considerations that follow, however, hold for the finite-size network, even if we obliterate S0

from Fig 7a and 7b, and from the discussion above.

To uncover a continuous route to bursting in the network, we compute several orbits of the

system when A varies between A ¼ 15:8113883008419=
ffiffiffiffiffi
M
p

and

A ¼ 16:0094535932746=
ffiffiffiffiffi
M
p

; while A changes, we keep the connectivity matrix W constant,

that is, we extract it once and reuse it thereafter. The results are given in Fig 7c–7f. In Fig 7d

we show the voltage profiles. As anticipated, the canard structure of this network is peculiar,

because the currents are almost homogeneously distributed: the canard segment in these orbits

stretches along v = 0; during this transition, however, the rate increases sharply, as seen in the

raster plot Fig 7e and in the histograms in Fig 7f. This means that the excitability threshold for

this network occurs for states at constant voltage and progressively large rate, unlike in the

cases presented before. This is induced by the fact that the critical manifold S0 is different

between system (17) and system (4). The former is a perturbation of the latter by a term
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proportional to s, which gives rise to a very sharp fold followed by a middle branch along

which v remains almost constant. This effect is visible on Fig 7a.

In Fig 7c we compare the routes to bursting for the network and the candidate mean field.

We find a good agreement in the subthreshold regime, as well as the presence of canard transi-

tions in both systems, marked by quasi-vertical branch segments.

We also notice two types of discrepancies. Firstly, the value of A at the quasi-vertical seg-

ment differs slightly in the N = 104 and in the mean field; this is to be expected, given that the

mean field is only heuristic. Solution types along the canard explosion, however, are very simi-

lar in the two systems. Secondly, we notice a discrepancy in the maximum voltage v, which is

the solution measure chosen for the network, especially in the bursting regime. This type of

Fig 7. Dynamics of the sparse network (16) with randomly-distributed currents and randomly-distributed connectivity. Panel (a) shows a network

bursting solution plotted in the 3D phase space (K, v, r) together with the critical manifold S0 of the heuristic mean-field system (17). A down-up canard

segment is visible in the greyed out region. (b): A zoomed view of panel (a); in addition to S0 and the bursting solution of panel (a) in purple

(A ¼ 16:009453593274596=
ffiffiffiffiffi
M
p

), we show an orbit with down-down canard segment obtained for slightly perturbed values of A, in green

(A ¼ 16:009453593274599
ffiffiffiffiffi
M
p

); we also superimpose solutions of the heuristic mean-field system, whose curves do not have fluctuations, unlike the

network ones. Panels (a,b) constitute numerical evidence that a down-to-up canard-mediated transition to bursting exists in this network, as further

shown in panels (c–f). (c): Down-to-up route to bursting in the network (blue) and heuristic mean field (green); besides some discrepancies discussed

in the main text, both branches contain a quasi-vertical segment typical of canard dynamics, bridging between the non-bursting regime and the

bursting one. (d) Representative network solutions along the vertical branch in panel (d), between A ¼ 15:8113883008419=
ffiffiffiffiffi
M
p

and

A ¼ 16:0094535932746=
ffiffiffiffiffi
M
p

, displayed in the time series for the voltage v; this solutions reveal a clear down-to-up transition, from non bursting

(green) to bursting (purple) orbits possessing canard segments (near v = 0); the peculiarity of these sparse-network canard solutions is that the

associated rate increases rapidly in the canard regime while the mean voltage remains approximately constant, as evidenced in panels (e,f). (e): raster

diagram of selected down-to-down (green) and down-to-up (purple) network solutions from (d); the canard segments manifests themselves in the

raster plots: their onset coincides with the onset of spiking, and their termination with the jump to the quiescent phase (green) or the start of the tonic

phase (purple); along the segment, the network builds up rate (as shown in (f)). (f): histograms of firing events between t and t + Δt, with Δt = 0.15;

along the canard segments the solution increases the firing rate (the longer the segment, the higher the maximum rate in the green histograms); the

purple diagram is at a different scale with respect to the green ones, and it represents a bursting solution. Parameters: N = 104, M = 103, J = 1, τs = 0.015,

Δγ = 0.3, ε = 0.1, �Z ¼ � 0:5, Δ = 10−4, vt = −vr = 100.

https://doi.org/10.1371/journal.pcbi.1010569.g007
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discrepancy is not unexpected: in the finite-size network, each neuron has a voltage at most

equal to the reset value, hence the maximum mean voltage is capped in the network; the heu-

ristic mean field, on the other hand, supports solutions with a very large maximum voltage.

As anticipated, the discrepancy in Fig 7c is relevant if one wants to assess the accuracy of

the mean field in the bursting regime, but is immaterial for the canard-mediated route to

bursting: the blue route in Fig 7c, and the data in Fig 7d–7f show such route independently of

the existence of S0, or of the accuracy of the heuristic mean field.

5 Conclusions

The geometry of excitability and transition to bursting behavior in single neurons and allied

systems is governed by canard solutions, which act as thresholds and determine the response

of the system to slow parametric changes. We have shown that this structure carries over in

the mean-field limit of large populations of excitable cells, as well as in large finite systems.

In these cases, the average voltage of the population plays the same role as the voltage in the

single cell, and a well defined rate emerges as a new macroscopic variable. If a separation of

time scales exists between external input and voltage at the level of a single cell, such separation

persists at network level, between the input and the coupled mean voltage and rate.

Two main results have been discovered at network level: (i) a large class of networks of QIF

neurons subject to an external stimulus with Cauchy-distributed background currents under-

goes a continuous transition to bursting (either up-to-down, or down-to-up) upon increasing

the forcing amplitude; to the best of our knowledge, this statement holds for any QIF network

amenable to the Ott-Antonsen reduction currently derived in the literature, that is, expressible

as system (9). (ii) The canard-mediated route to bursting is present also in sparse networks, for

which there is no exact limit; obtaining an approximate mean-field limit is convenient to com-

pare network trajectories to low-dimensional manifolds, but it is not strictly necessary, and in

fact continuous routes to bursting are present in small networks too.

Since QIF neurons are general representatives of type-I neurons, we expect that similar

properties will survive in networks of more realistic cells, up to their mean field-limit, which

need not be an ODE. Introduction of inhibitory networks could provide a connection between

this work and the concept of balanced networks where, depending on the details of the con-

nection strengths, the firing is either driven by the mean input (analogous to our tonic behav-

ior) or by the fluctuations (analogous to the excitable case). Another open interesting research

direction is to investigate heterogeneous networks whose distributions are asymmetric,

thereby violating the assumption required for the Ott-Antonsen exact mean-field derivation:

without a mean field, we could still be able to observe a contraction of the dynamics to a low-

dimensional manifold, and a canard-mediated excitability threshold. There is currently no

available theory for such cases, except for continuous coarse-grained networks [36, 40], but a

numerical exploration of the averaged voltages and synaptic variables may reveal an underly-

ing low-dimensional structure, similarly to what has been found in spatially-extended neural

field models.
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