

www.bioinformation.net Volume 17(1)

Research Article

Molecular modeling of cornulin (CRNN) for docking with phytocompounds from *Justicia adhatoda* L.

Jayaraman Selvaraj^{1*}, Shazia Fathima JH², Venkatacalam Sivabalan³, Umapathy Vidhya Rekha⁴, Rajagopal Ponnulakshmi⁵, Veeraraghavan Vishnupriya¹, Malathi Kullappan⁶, Radhika Nalinakumari Sreekandan⁷, Surapaneni Krishna Mohan⁸, Periyasamy Vijayalakshmi¹

¹Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600 077, India; ²Department of Oral and Maxillofacial Pathology, Ragas Dental College and Hospitals, Chennai, India ³Department of Biochemistry, KSR Institute of Dental Sciences and Research, Thiruchengodu-637215, India; ⁴Department of Public Health Dentistry, Sree Balaji Dental College and Hospital, Pallikaranai, Chennai-600 100, India; ⁵Central Research Laboratory, Meenakshi Academy of Higher Education and Research (Deemed to be University), Chennai-600 078, India; ⁶Department of Research, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai - 600 123, India; ⁷Department of Clinical Skills & Simulation, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai of Research, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai of Research, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai of Research, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai of Research, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai of Research, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai of Research, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai - 600 123; *Corresponding Author: Dr. Jayaraman Selvaraj of E-mail: jselvaendo@gmail.com

Author contacts:

Selvaraj Jayaraman - jselvaendo@gmail.com; Shazia Fathima JH- shaziafathimarizwan@gmail.com; Venkatacalam Sivabalan - biosivabalan@gmail.com; Umapathy Vidhya Rekha- drvidhyarekha@gmail.com; Rajagopal Ponnulakshmi-ramgslaks@gmail.com; Veeraraghavan Vishnupriya-drvishnupriyav@gmail.com; Malathi Kullappan-malak.hari@gmail.com; Radhika Nalinakumari Sreekandanniharakrishna21@gmail.com; Surapaneni Krishna Mohan -krishnamohan.surapaneni@gmail.com;

Received December 29, 2020; Revised December 31, 2020; Accepted January 26, 2021, Published January 31, 2021

DOI: 10.6026/97320630017200

Declaration on Publication Ethics:

The author's state that they adhere with COPE guidelines on publishing ethics as described elsewhere at https://publicationethics.org/. The authors also undertake that they are not associated with any other third party (governmental or non-governmental agencies) linking with any form of unethical issues connecting to this publication. The authors also declare that they are not withholding any information that is misleading to the publisher in regard to this article.

Author responsibility:

The authors are responsible for the content of this article. The editorial and the publisher have taken reasonable steps to check the content of the article in accordance to publishing ethics with adequate peer reviews deposited at PUBLONS.

Declaration on official E-mail:

The corresponding author declares that official e-mail from their institution is not available for all authors

Bioinformation 17(1): 200-205 (2021)

Abstract:

Cornulin (CRNN) is linked with tumour progression. Therefore, it is of interest to document data on the molecular modeling of cornulin (CRNN) for docking with phytocompounds (Pyrazinamide, Anisotine, Vasicinone, Vasicoline) from Justicia adhatoda L. Thus, we document the optimal binding features of these compounds with the cornulin model for further consideration.

Key words: Oral Squamous Cell Carcinoma, cornulin, molecular modeling, and molecular docking.

Background:

Cornulin (CRNN) is linked with tumour progression **[1-7]**. Therefore, it is of interest to document data on the molecular modeling of cornulin (CRNN) for docking with phytocompounds (Pyrazinamide, Anisotine, Vasicinone, Vasicoline) from Justicia adhatoda L.

Materials and Methods:

Sequence retrieval and 3D model building:

The full amino acid (495aa) sequence of CRNN is downloaded from the Uniprot Knowledgebase database in FASTA format with accession number Q9UBG3. The NCBI Simple Local Alignment Search Tool (Psi-BLAST) **[8]** was used to search the Protein Databank (PDB) for templates. The template with PDB ID: 4PCW was chosen having a 41.76 percent identity score. The Swiss model server was used for creating the protein model.

Model evaluation:

ProCheck [9] was used for model validataion.

Prominent binding site prediction:

The Cavity Plus server [10] was used to identify the binding pockets.

Ligand retrieval:

The structure data for 12 compounds from *Justicia adhatoda L* was downloaded from PubChem database. All the compounds were downloaded in SDF format and converted to the PDB format using Pymol.

Molecular docking and interaction analysis:

Molecular docking and visualization were done using a standard procedure using PyRx, AutoDock 4 and Pymol **[11-13]**.

Figure 1: Structure of cornulin model.

Table 1: List of Selected compounds from Justicia adhatoda L

S.No	Compound Name
1	A

1	Amrinone	
2	Anicotino	

- 3 Sulforaphane
- 4 methyl_ether
- 5 Pyrazinamide
- 6 Squalene
- 7 Stigmasterol
- 8 Vasicinone
- 9 Vasicoline
- 10 Hexadecanoic acid
- 11 Adhatodine
- 12 Ethambutol

Table 2: Molecular	Docking Results of	phytocompound	s with Cornulir

		0		
S.No	Compound	Binding	Hydrogen	Distance Å
	Name	Energy	Bond	
		Kcal/mol	Interaction	
1	Pyrazinamide	-6.8	PRO-2	1.9
			GLY-10	2.5
2	Anisotine	6.6	GLN-83	2
3	Vasicinone	-6.2	LYS-80	2.8
4	Vasicoline	-6	LYS-80	2.7

Figure 2: Ramachandran plot analysis of cornulin model.

Results and discussion:

The SWISS-MODEL homology \cornulin was created (Figure 1) using a known structure (PDB ID 4PCW) with 41.7% sequence identity as a template evaluated using Ramachandran plot analysis (Figure 2). Cavity Plus was used to predict binding pockets (Figure 3). The binding pockets are made of PRO: 2, GLN: 3 LEU:4, LEU:5: GLN:6: ILE:8: ASN:9: GLY:10: ILE:11, ILE:12, GLU:13, ALA:14, ARG:16, LEU:37, GLU:38, GLN:39, GLU:40, PHE:41, ALA:42, ASP:43, VAL:44, ILE:45, LEU:77, LYS:80, VAL:81, ALA:82, ALA:84, CYS:85, PHE:86, LYS:87, THR:88 and LEU:89... Molecular docking of the protein model with the compounds shows that PRO-2, GLY-10, GLN-83, LYS-80, LYS-80 residues show strong binding interactions with the phytochemicals (Figure 4) for further consideration in the development of optimal drugs against oral cancer.

Figure 3: Predicted active site region (Pink color represent the predicted binding site region).

Figure 4: Molecular interaction of cornulin with (a) Pyrazinamide; (b) Anisotine; (c) Vasicinone and (d) Vasicoline.

Conclusion:

We document the optimal binding features of phytocompounds (Pyrazinamide, Anisotine, Vasicinone, Vasicoline) from *Justicia adhatoda* L with Cornulin in the context of cancer for further consideration.

Conflict of interest: Nil

Reference:

- [1] Siegel RL et al. CA Cancer J Clin. 2018 68:7. [PMID: 2931394]
- [2] Xu Z et al. Genomics. 2000 69:322. [PMID: 11056050]
- [3] Contzler R et al. J Invest Dermatol. 2005 124:990. [PMID: 15854041]
- [4] Arnouk H et al. Proteomics Clin Appl. 2009 3:516. [PMID: 19834583]

- [5] Imai FL et al. Int J Biochem Cell Biol 2005 37:1641. [PMID: 15896671]
- [6] Chen K et al. PLoS One. 2013 8:e68838. [PMID: 23894350].
- [7] Schaaij-Visser TB et al. Clin Cancer Res. 2009 15:7666.[PMID: 19996216].
- [8] Altschul SF et al. J Mol Biol. 1990 215:403. [PMID: 2231712].
- [9] Wlodawer A *Methods Mol Biol.* 2017 1607:595-610[PMID: 28573590].
- [10] Xu Y et al. Nucleic Acids Res. 2018 46:W374. [PMID: 29750256].
- [11] Lim SV et al. BMC Bioinformatics. 2011 12:S24. [PMID: 22373153].
- [12] Dallakyan S et al. Mol Biol. 2015 1263:243. [PMID: 25618350.]
- [13] Lill MA et al. J Comput Aided Mol Des. 2011 25:13. [PMID: 21053052].

Edited by P Kangueane

Citation: Selvaraj *et al.* Bioinformation 17(1): 200-205 (2021)

License statement: This is an Open Access article which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. This is distributed under the terms of the Creative Commons Attribution License

Articles published in BIOINFORMATION are open for relevant post publication comments and criticisms, which will be published immediately linking to the original article for FREE of cost without open access charges. Comments should be concise, coherent and critical in less than 1000 words.

