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Harnessing the innate immune system and local
immunological microenvironment to treat colorectal cancer
Jakob Nikolas Kather1,2,3 and Niels Halama1,4,5,6

Significant progress in the development of new immunotherapies has led to successful clinical trials for malignant melanoma and
non-small cell lung cancer; however, for the majority of solid tumours of the gastrointestinal tract, little or no progress has been
seen. The efficacy of immunotherapies is limited by the complexities of a diverse set of immune cells, and interactions between the
tumour cells and all other cells in the local microenvironment of solid tumours. A large fraction of immune cells present in and
around solid tumours derive from the innate arm of the immune system and using these cells against tumours offers an alternative
immunotherapeutic option, especially as current strategies largely harness the adaptive arm of the immune system. This option is
currently being investigated and attempts at using the innate immune system for gastrointestinal cancers are showing initial
results. Several important factors, including cytokines, chemotherapeutics and the microbiome, influence the plasticity and
functionality of innate (myeloid) cells in the microenvironment, and this complexity of regulation has limited translation into
successful trials so far. In this review, current concepts of the immunobiology of the innate arm in the tumour microenvironment
are presented in the context of clinical translation.
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INTRODUCTION
The local microenvironment of solid tumours is a complex system
comprising cells of the immune system, fibroblasts, endothelial
cells and many other cell types.1–3 Immune cells have different
roles in the microenvironment, including pro-tumorigenic4 and
anti-tumorigenic5 functions. Conceptually, the immune system
can be divided into two major parts: the innate arm, which
consists of an older evolutionary defence strategy, and the
adaptive/acquired arm, which creates adaptive immunological
memory. Although both arms of the immune system can be
distinguished conceptually, they are functionally interlocking and
thus heavily influence each other.6

One of the hallmarks of cancer is chronic inflammation,7 which
fuels and sustains disease progression and neoplastic transforma-
tion;8 for colorectal cancer (CRC), this is most obviously evidenced
for inflammatory bowel disease (IBD), which carries a significant
risk of malignant transformation.9 Different sources of this
inflammatory process have been identified, including persistent
infections and sterile inflammation; for both of these sources, cells
of the innate immune system can be the primary effector type.
Although the extent of the individual contribution of these various
innate cells to the primary inflammatory response is not precisely
known, it is clear that dynamic changes in the microenvironment
follow a specific pathway that is exploited by the tumour. The
tumour-promoting pathway begins with continuous inflammatory
signals provided by the tumour itself or via the host’s own
immune system to eradicate the tumour cells. Inflammatory
signals can consist of apoptotic cells, damage-associated

molecular patterns, free DNA molecules, heat shock proteins
and Toll-like receptors (TLRs)/ligands or cytokines, which may lead
to the futile activation of immune cells.8,10–12 Subsequent
chemokine production leads to an influx of more immune cells
that can drive further activation or inactivation of immunological
processes and can end up fuelling tumour growth and
dissemination.
The main components of the innate immune system are

physical epithelial barriers, phagocytic leukocytes (such as
granulocytes and macrophages), dendritic cells, natural killer
(NK)/innate lymphoid cells and circulating plasma proteins. This
arm of the immune system is present in all tissues; however, its
role in immunotherapy is poorly understood.7,13 Our under-
standing of the innate arm of the immune system and its
complexities has been limited by the inherent fundamental
functional differences between the immune system in animal
models and in humans.14–17 Another factor contributing to our
limited understanding concerns difficulties in identifying innate
cell subsets in the local microenvironment through unambiguous
surface markers reflecting functional states of cells; e.g., NK cells
were long thought to be an influential factor in CRC and breast
cancer, but analyses showed an unexpected absence of these cells
from these tumours,18–21 despite the presence of chemokines and
adhesion molecules. The different origins of myeloid cells22 and
specific differentiation programmes for myeloid subtypes23 add
another layer of complexity in regulation.
Looking into the composition of immune cells in solid tumours,

myeloid cells can form a significant proportion of cells in the
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microenvironment, outnumbering lymphocytes and occasionally
even the tumour cells themselves.24 Furthermore, fibroblasts and
other mesenchymal cell types form an important component of
the microenvironment,25 influencing hypoxia, migration of

immune cells and the metastatic behaviour of tumour cells.26

This heterogeneity of the immune cell phenotypes present in the
microenvironment across different cancer entities and metastatic
sites (Fig. 1)27 is just one hurdle to overcome for successful
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immunotherapy; specific cellular distribution patterns (e.g., the
exclusion or the dense infiltration of T cells in immune-excluded
tumours), functional plasticity and organ-specific functions form a
complex set-up that is further complicated by the influence of the
tumour cells, all of which pose a challenge to therapeutic
approaches. The complex interplay between the innate and
adaptive arms of the immune system is, of course, also of
relevance for therapeutic effects.
In contrast to the belief that the local immunological micro-

environment of solid tumours is a chaotic and dysregulated site,
we propose that it is a site with a specific pro-tumoural regulation.
This review will discuss the immunobiology of the innate arm of
the immune system in the microenvironment of CRC and the
therapeutic potential of innate immune cells (with the exception
of dendritic cells, see refs. 28–30) for immunotherapy.

THE LOCAL MICROENVIRONMENT IN CRC
Many publications have reported on the frequencies of immune
cell subpopulations in different solid tumours and an association
between immune cell density and clinical course has been shown
by different groups for CRC.7,31–36 For many solid tumours, a high
density of infiltrating T-effector cells is associated with a good
prognosis and conversely a high density of myeloid cells is
associated with a poor prognosis. Interestingly, the subpopula-
tions relevant to tumour response and progression can vary
between different cancers.37 Fridman38 proposed the concept of
an ‘immune contexture’, which suggests that different composi-
tions of immune cells and signalling molecules have specific roles
in each cancer entity.
In CRC, the adaptive arm specifically has been shown not only

to learn to recognise tumour cells but also to contribute greatly to
the course of the disease. The presence of effector T cells in the
local microenvironment is typically regarded as a sign of
inflammation, whereas the presence of regulatory T cells is
regarded as a sign of immunosuppression. High effector T-cell
density is associated with a clear prognostic advantage across
several different cancers; in CRC, the presence of effector T cells is
linked to a good prognosis for both the primary tumour and in
metastatic settings.39–44 The role of FOXP3+ regulatory T cells,
however, is debated.45 Normally, regulatory T cells are regarded as
immunosuppressive, abrogating an effective immune response
against the tumour; however, in CRC, higher densities of these
regulatory T cells are associated with a better prognosis, opposing
the negative association of FOXP3– T lymphocytes in other cancer
types. In metastatic liver lesions of CRC, the composition of the
local microenvironment is mainly driven by chemokine gradients
and cytokines, with only low numbers of NK cells or regulatory
FOXP3+ T cells present.46 A small subgroup of patients with CRC
have microsatellite-instable (MSI) tumours and show a massively
increased presence of infiltrating adaptive immune cells (i.e.,
lymphocytes), with numbers more than twice as high as the
average density in microsatellite-stable (MSS) CRC.47,48 In patients
with MSI tumours, faulty DNA repair proteins give rise to more
immunologically relevant mutations and produce a better control
of the tumour through the immune system, which correlates with
a better prognosis in these patients. Whereas MSI tumours
respond well to immunotherapy, MSS CRC does not respond
positively.
The role for B cells in the microenvironment is highly

controversial in CRC, with data from quantification and
localisation studies showing no clear significant association
with clinical course in multivariable analysis.49 Future analyses
should address the interplay between B cells and other innate
immune cells in CRC.50 The presence of B cells and T cells
together, as occurs in tertiary lymphoid structures, has been
confirmed and analysed in CRC. In short, the presence of these
tertiary lymphoid structures indicates a more favourable

prognosis, owing to the increased infiltration of immune cells.
There is also data, however, that associates tertiary lymphoid
formation with BRAF mutation.51–54

CURRENT IMMUNOTHERAPEUTIC APPROACHES FOR CRC
Despite the multiple avenues that have been investigated to
achieve tumour control, immunotherapy for CRC has so far
largely failed to show clinically meaningful effects. Classic
vaccination strategies have not shown significant effects; it
remains to be seen whether more personalised approaches (e.g.,
mutanome vaccines based on sequencing efforts) will lead to
effective vaccinations.55–58 Chimeric antigen receptor T-cell
approaches have shown some positive effects; however, these
were limited by severe toxicity or by efficacy limited to a specific
mutation.59,60 A small subgroup of patients with mismatch-
repair deficient (MMRd)/MSI CRC have shown good responses to
checkpoint inhibition (e.g., via anti-PD-1, anti-PD-L1 or anti-
CTLA-4: all three targets are present in the microenvironment)61

and this has led to the approval of anti-PD-1 antibodies for MSI
CRC. This responsiveness to checkpoint inhibition most likely
stems from the strong presence of T cells within the
microenvironment in this subtype of CRC, as similar successes
have not yet been reported for MSS CRC using checkpoint
inhibition on its own.62–66 Systematic analyses of the mutational
burden in MSS CRC has identified a subgroup of patients with
high mutational burden but without MSI67,68; whether these
patients would benefit from a systemic therapy with checkpoint
inhibition remains unclear. Interestingly, a combined approach
using chemotherapy (FOLFOX plus bevacizumab, NCT01633970)
and anti-PD-L1 has shown some clinical effects in patients with
(MSS) CRC.69

Determining why checkpoint inhibition does not work in
patients with MSS CRC is a key question for immunotherapy.
Resistance mechanisms in solid tumours are currently being
systematically analysed; these mechanisms include induction of T-
cell anergy via metabolic deprivation, inhibition of effector T-cell
migration into the tumour tissue, T-cell inactivation via specific
receptor–ligand interactions and barrier functions of the stroma,
among others.70,71 Recent data suggest that some resistance
mechanisms might be mediated by macrophages.72 In a broader
approach, chemotherapy was combined with immunomodulation
in the GOLFIG trials, in which a combination of gemcitabine,
oxaliplatin, folinic acid, fluorouracil, interleukin (IL)-2 and
granulocyte-macrophage colony-stimulating factor (GM-CSF) was
administered.73,74 The initial data looked suggestive of enhanced
efficacy; however, this approach was not continued due to
recruitment problems and a modified protocol is being investi-
gated (FOLFOXIGIL trial, NCT03222089). Broader still, histone
deacetylase inhibitors have shown efficacy against lung cancer
and other cancer entities, by inducing the reversal of T-cell
exhaustion, among other means75; however, the effect of histone
deacetylase inhibitors on macrophages and other immune cells in
CRC is unclear.76

Other modulators of the immune microenvironment
Although the role of chronic inflammation as a driver for
tumorigenesis is widely accepted (as mentioned above, chronic
inflammation in IBD is associated with a higher risk of CRC), the
role of inflammation and the immune system in non-IBD-
mediated tumorigenesis is still unclear, especially as the role of
non-steroidal anti-inflammatory drugs such as aspirin is still
debated.77 Clinically, lower incidence rates of CRC and increased
survival are associated with continual aspirin intake,78–80 but the
molecular basis for this observation is not entirely clear81;
however, the mutational status of the PI3KCA gene in tumour
cells has been identified as one possible factor for the impact of
aspirin.82–84 From the immunological standpoint, it is also not so
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clear. Although associations between the composition of the
immunological microenvironment and aspirin intake have been
observed,85 aspirin’s precise immunological mode of action
remains unknown. More globally, we need to better understand
the mechanisms of early carcinogenesis and the influence of
adaptive and innate immunity at this stage, as well as the effect
of other modulators of the immune system. For example, the
level of vitamin D reportedly shows an association with the
occurrence of CRC86 and clearly influences the composition of
the local immunological tumour microenvironment87—higher
plasma levels of vitamin D are associated with fewer tumours
with higher T-cell infiltration. Precisely, how vitamin D influences
monocytic cells in vivo remains unclear but differential
modulation of the molecular response of monocytes, macro-
phages and dendritic cells to innate immune stimulation has
been observed.88

Along the same lines, fatty acids have a profound role in
modulating the local tumour microenvironment and the innate arm
of the immune system.89 The association of a high intake of fibre
with the suppression of inflammation is just one example of how
nutrition can alter the local microenvironment in CRC90,91 and brings
together the complexity of the areas of immunology and the
microbiome.92,93 The influence of the microbiome on the innate
immune system in CRC will be discussed below.

IMMUNOTHERAPY FOR CRC: TARGETING INNATE IMMUNE
CELLS
The composition and density of myeloid and non-myeloid
immune cells in the CRC tumour microenvironment is surpris-
ingly stable over time.94 Nevertheless, the plasticity of human
myeloid cells and their lack of high-precision markers make it
difficult to quantify, annotate and functionally characterise these

cells. Their localisation and density together form an intrinsic
network that reflects the activation and functionality of these
cell populations, and requires sophisticated detection and
quantification algorithms.95,96 Below we describe the key cells
involved in innate immunity and current strategies to target
them as a therapeutic approach to CRC.

Macrophages
Macrophages are among the most abundant cells within the CRC
microenvironment and, together with myeloid-derived suppressor
cells (MDSCs), they perform a diverse set of roles that includes
skewing and suppressing adaptive immunity, orchestration of
tissue repair and damage regulation, promotion of immunosup-
pression, modulation of the response to immunogenic cell death
(‘adjuvanticity’), effector functionality against tumour cells and the
mediation of abscopal effects.97 Macrophage plasticity is an
important feature and the ability of different interventions (e.g.,
chemotherapy, radiation, etc.) to induce a rapid change in their
function can be characterised, e.g., by changing from an
immunosuppressive type II (M2) macrophage to an anti-tumour
type I (M1) phenotype (Fig. 2). The net anti-tumoural effect can
vary greatly (Table 1), although nearly all forms of intervention
lead to modulation of macrophages in the tumour microenviron-
ment. The factors that mediate this plasticity are highly diverse:
cytokine and chemokine signals (IL-1, IL-4, IL-13, C–C motif
chemokine ligand 5 (CCL5), CCL2, GM-CSF, CXCL12, IL-10, etc.)
through to inflammation signals (e.g., prostaglandins, TLRs and
ligands, complement system components), drugs (e.g., bispho-
sphonates) to metabolic and endocrine signals (e.g., fatty acids,
lactate or vitamin D) and all forms of tissue stress (e.g., hypoxia,
radiation) can modulate and alter macrophage functionality and
consequently influence the neighbouring tumour.24,97–101 This
influence can be both positive and negative, in an effect that is
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typically referred to as the ‘Yin–Yang’ of myeloid cells, whereby
anti-tumoural effects as well as resistance to an intervention (e.g.,
chemotherapy with fluorouracil or bevacizumab) is mediated by
the same cell type.24,102–105 Not only for CRC but also for all other
cancer types, the functionality defining signals and signal
combinations for macrophage modulation are starting to emerge,
and with them the opportunity to design interventions.107

However, the precise role(s) of the presence of macrophages
with different phenotypes in CRC is still being investigated and so
far no clear-cut picture emerges,106 especially with respect to the
mutational status of the tumour.108–110

Different routes to target macrophages are being investigated
in clinical trials (Table 1), ranging from macrophage depletion to
macrophage repolarisation. As the name implies, depletion
involves the destruction of macrophages in the tumour micro-
environment, whereas the process of repolarisation tries to
modulate the functional activity of the macrophages towards an
anti-tumoural phenotype (i.e., cells that produce reactive oxygen
species and interferons, or that phagocytose tumour cells).
Strategies for abrogating macrophage recruitment to the specific
organ or tumour tissue include the inhibition of chemokines and
cytokines such as GM-CSF, vascular endothelial growth factor and
CSF1, and modulation of pleiotropic cytokines such as macro-
phage migration inhibitory factor. Complement factor 5a also
seems to have a role in the recruitment of myeloid populations
into the tissue and into the tumour microenvironment. CCL2 is an
example of a translational intervention aimed at modulating
macrophage recruitment and data from a pancreatic ductal
adenocarcinoma clinical trial combining CCL2 inhibition with
chemotherapy are promising.110 Furthermore, CSF1–CSF-1R sig-
nalling is an important axis for the recruitment and generation of
macrophage populations and extensive data from multiple groups
have identified this signalling cascade as a central regulator of
myeloid cell plasticity.24,111 Tumour responses were observed
during clinical trials of a fully human CSF-1R antibody in patients
with a rare diffuse-type giant-cell tumour;112 however, data from
clinical trials in patients with malignant solid tumours show clear
side effects and limited efficacy.111

Macrophage repolarisation therapy targeting the CCL5–CCR5
axis has been described in preclinical and clinical analyses for
metastatic CRC.46,114–116 The chemokine effects of CCL5 on the
migration of myeloid cells seems to have a minor role in this
efficacy; rather, macrophage polarisation, with immediate effects
on the production of interferon and reactive oxygen species,
mediates these anti-tumoural effects and combination trials with
checkpoint inhibitors are currently underway (NCT03631407 and
NCT03274804). IL-1 inhibition has also shown encouraging effects
in the clinic in patients with CRC. IL-1 inhibition has shown efficacy
as a monotherapy (Table 1) as well as in combination with
chemotherapy, and preclinical data suggest a myeloid-derived, IL-
1-dependent tumour-promoting mechanism.116

Another approach targeting CRC is the use of TLR agonist and
antagonist therapies. TLRs form a central regulatory unit in the
defence against infectious agents and shape the behaviour or
phenotype of CRC tumour cells.117 Two ongoing trials are
currently evaluating the role of TLR agonists alone or in
combination with chemotherapy. The role of vitamin D (or, more
specifically, the modified vitamin D-binding protein macrophage
activator EF-022) in macrophage activation is also being evaluated
in clinical trials, thus potentially extending the beneficial effects of
vitamin D beyond the adaptive arm of the immune system.118 In
addition, another new avenue in the modulation of innate
immune cells involves the combination therapy of atezolizumab
(anti-PD-L1) with cobimetinib (MEK inhibition); it is assumed that
synergistic myeloid cell modulation and parallel lymphocyte
activation are induced, the precise mechanism of action in
humans is not yet fully elucidated119 and clinical trial data has
shown no effects in larger cohorts (IMblaze370 study120).Ta
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In contrast to these newer developments, two types of drug
that have macrophage modulatory properties and a long history
in medicine are bisphosphonates and trabectedin. Bisphospho-
nates have cytotoxic and inhibitory effects on myeloid cells, and
clinical effects beyond the principal use for bone metastases have
highlighted their immunomodulatory properties.121 Trabectedin
was developed as an anti-proliferative agent but was subse-
quently found to induce significant monocytic cell depletion.122

Further research is needed to better understand the potential of
these approaches in cancer therapy.
The enormous heterogeneity and plasticity of macrophages and

the vast array of modulatory signals from the microenvironment
together make successful immunotherapy aimed at targeting
macrophages a complex and difficult approach to navigate. The
omnipresence of macrophages and their power to destroy tumour
cells, however, make attempts in this field of ‘myeloid-immu-
notherapy’ worthwhile.

Neutrophil granulocytes
Together with MDSCs123 and macrophages,124,125 neutrophil
granulocytes, which are especially enriched in CRC, form a
complex network of phagocytosing and immunomodulatory
immune cells.126,127 Similar to macrophages, difficulties in the
classification and functional characterisation of these cells make
directed interventions difficult; however, it is clear that multiple
interventions (including GM-CSF, VEGF and chemokine inhibition)
can modulate these cells and therefore alter the immunological
microenvironment of the tumour. The effect of these interventions
is also reflected by changes in the neutrophil-to-lymphocyte ratio,
which serves as a secondary biomarker for therapy success in
many clinical trials.128

Clinical trials (Table 1) that modulate this group of immune cells
are numerous; one such example for neutrophil and MDSC
targeting is the inhibition of arginase (produced by these cells),
which subsequently leads to T-cell activation.118,130–134 Interest-
ingly, higher densities of tumour-associated neutrophils were
associated with better prognosis in CRC134 and, even more
surprising, with a better response to fluoracil‐based chemother-
apy. Nevertheless, the robust quantification and localisation of
neutrophil granulocytes in tissues is still a challenge, again similar
to the situation for macrophages.135–137

NK cells
NK cells are a subtype of innate lymphoid cell; they are
therapeutically attractive owing to their capacity to kill tumour
cells without requiring further ‘education’ by other immune
cells. It has become clear that there are far more regulatory (and
inhibitory) mechanisms within the microenvironment of solid
tumours than expected, and studies of CRC and breast cancer
have identified that infiltrating NK cells can be selectively
suppressed.18,21 Activating and inhibiting receptors, such as
killer cell immunoglobulin-like receptors, together with their
ligands, form an intricate network that regulates NK cells138–141

and consequently offer potential for translational intervention.
Therefore, aside from the potential to modulate NK cell
activation or inactivation in the clinic (Table 1), approaches
involving cellular therapies have gained more attraction and
trials are underway to evaluate the potential for NK cells in CRC.
Of note, many checkpoint inhibitor therapies not only influence
effector T cells but also NK cells. The pathway and magnitude of
NK cell modulation (via, e.g., PD-1, 4-1BB, CD27, etc.) are poorly
understood and the parameters for further combinations and
selection of defined patient cohorts are therefore being
evaluated.142,143

Fibroblasts
Besides their structural role in tissues, fibroblasts also have a
fundamental immunological role, especially with respect to

modulation of the innate immune system.144,145 Their inflamma-
tory potential together with their orchestrating function (e.g., via
chemokines) make these cells an important immunologic inter-
face. Current clinical trials are either aimed at the destruction (e.g.,
by targeting fibroblast-activating protein α) or the modulation of
fibroblast function; the latter can be achieved by modulating key
signalling pathways, including those involving fibroblast growth
factor, platelet-derived growth factor, or stromal-derived factor
1α/CXCL12. Clinical trials in overlapping functional areas (e.g.,
inhibition of angiogenesis and stromal modulation) are common;
afatinib provides an example of this, as it targets the stromal
compartment and stroma formation. Furthermore, CXCL12 inhibi-
tion in cancer-associated fibroblasts showed effects in preclinical
models,146 with results indicating that modulation of this axis
would abrogate anti-migratory effects, leading to an influx of
T cells and tumour cell attack.

THE MICROBIOME AND MODULATION OF INNATE IMMUNITY
IN CRC
Survival of the human body depends on tight control of the
microbiota, particularly in the gut, and the prevention of
unwanted infections. Intestinal epithelial cells are equipped with
a vast array of innate immune receptors, highlighting the intimate
interplay between the gut content and the immune system.147

Furthermore, signalling by TLRs—among other molecules—is an
important pathway in regulating innate immune activation and
involves proteins such as MyD88, TNF-associated factor 6 and
nuclear factor-κB.148,149 Dysregulation of this pathway can lead to
autoimmunity (e.g., colitis or chronic IBD) or neoplastic
transformation.9,150,151

Alterations in the composition and localisation of distinct
bacterial species within the gut can disturb the equilibrium with
the innate immune system. Certain bacteria (e.g., Helicobacter
hepaticus) can promote carcinogenesis directly by producing
reactive oxygen species, whereas others (e.g., Fusobacterium
nucleatum) induce complex immunomodulation that supports
the tumour.152–154 Furthermore, it was recently shown that the
microbiome can shape the response to immunotherapy.155–157

The effects of the microbiome on the adaptive arm of the immune
system have been described extensively, but very little is known
about the bacterial species, effector molecules and molecular
regulation through which the microbiome modulates the innate
arm of the immune system.158 As described above, there has so far
been limited success in immunotherapy for CRC and our
understanding of the microbiome and its therapeutic potential
in altering the innate immune system is still in its infancy.
However, one approach includes the application of probiotics to
modify the composition of the bacterial species that are present in
the gut of cancer patients and thereby not only ‘correct’ the
microbiome but also induce favourable clinical effects for
immunotherapies or the course of the disease altogether. This
attempt is extremely complex due not only to the lack of a
definition of a ‘beneficial’ microbiome for an individual patient,
but also due to technical issues of (prolonged) ‘implantation’ of a
new microbiome into a patient.159 This approach has therefore
only reached entry level for clinical use.160–162 It remains to be
seen how these observations can be exploited for CRC.

OPTIMISATION OF IMMUNOTHERAPY: INNATE AND ADAPTIVE
IMMUNITY TOGETHER
Careful analyses of the immunological parameters of the local
microenvironment have revealed the presence of multiple
complex regulatory systems at the tissue level.46,163–166 The local
microenvironment in different organ sites, particularly in meta-
static disease, needs to be targeted specifically to enable
immunotherapy to be successful. Furthermore, data from clinical
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trials and limited preclinical models underscore the interdepen-
dency between the innate immune system and the adaptive
immune response. We need to ‘reprogramme’ the innate immune
system, in order to allow long-lasting effector-lymphocyte tumour
cell killing; to reach this stage, a greater understanding is required
of the tissue-level complexities for the underlying immunological
mechanisms, including migration, differentiation, plasticity, adju-
vanticity and anti-tumoural functionality. These interdependent
systems within the tissue require careful analysis and an
improvement in our understanding of the dynamics behind the
situations we observe in the clinic.
The role of interventions in the preventive setting also need to

be better understood, with data from the systematic use of aspirin
and other medications, suggesting a preventive role for certain
medications in inhibiting tumour growth and initiation via
modulation of immunological parameters.167,168 Yet, given the
abundance of clinical evidence, the use of aspirin and its
modulatory role in established CRC are not reflected in the
current trial landscape, which is an obvious paradox. To escape
this shortcoming, a better understanding of the complexities of
the immunobiology of (metastatic) CRC with implications for
therapeutic combinations and decision making is paramount.
Metastatic CRC is not a disease of one system; rather, it comprises
multiple diseased systems within a patient and better tools—
including multiplex imaging, proteomics, computer modelling169

and others—are needed to fully understand the underlying
networks.170,171 The development of parallel links between early-
phase clinical trials and biopsy tissue samples is an emerging
aspect; given the differences between the biology of the innate
immune system in humans and in animals, analysis of human
material from clinical trials will be fundamental in ensuring
successful therapeutic developments.

CONCLUSION
The adaptive and innate arms of the immune system are
interlocking systems, tightly regulated to protect the human
body and maintain integrity, and influencing all possible aspects
of cellular regulation; immunological pathways are only one
aspect of this regulation. In metastatic disease particularly, we
observe a highly specialised network of exploitation, with
selective pressure leading to this new cellular composition at
the metastatic site. Far from supporting the patient, this
microenvironment is optimised for survival of the tumour cells
and any interventions will need to overcome the specific
regulatory networks responsible. Our existing understanding
of the innate arm of the immune system needs to be improved
rapidly to devise synergistic and effective clinical strategies. For
immunotherapy in solid (metastatic) tumours, synergies
between the adaptive and innate arms of the immune system
can clearly be harnessed to enhance the anti-tumoural response.
In this setting, the precise regulation and timing that govern the
activation of the innate immune system are still poorly under-
stood. Data from animal models and clinical trials have indicated
an obvious need to better understand the intricate networks of
the innate immune system in different affected organs and at
different time points during the disease (e.g., localised disease
vs. progressive metastatic disease). New models might help to
understand the intricacies of the different cellular phenotypes of
innate immune system components; understanding the local
composition of these cells is key for the application of strategies
that target the innate arm as successful immunotherapies in the
clinic.
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