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Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic neuropeptide that decreases 
gonadotropin synthesis and release by directly acting on the gonadotrope or by 
decreasing the activity of gonadotropin-releasing hormone (GnRH) neurons. GnIH is also 
called RFamide-related peptide in mammals or LPXRFamide peptide in fishes due to 
its characteristic C-terminal structure. The primary receptor for GnIH is GPR147 that 
inhibits cAMP production in target cells. Although most of the studies in mammals, birds, 
and fish have shown the inhibitory action of GnIH in the hypothalamic–pituitary–gonadal 
(HPG) axis, several in vivo studies in mammals and many in vivo and in vitro studies in 
fish have shown its stimulatory action. In mouse, although the firing rate of the majority of 
GnRH neurons is decreased, a small population of GnRH neurons is stimulated by GnIH. 
In hamsters, GnIH inhibits luteinizing hormone (LH) release in the breeding season when 
their endogenous LH level is high but stimulates LH release in non-breeding season when 
their LH level is basal. Besides different effects of GnIH on the HPG axis depending on the 
reproductive stages in fish, higher concentration or longer duration of GnIH administration 
can stimulate their HPG axis. These results suggest that GnIH action in the HPG axis is 
modulated by sex-steroid concentration, the action of neuroestrogen synthesized by the 
activity of aromatase stimulated by GnIH, estrogen membrane receptor, heteromerization 
and internalization of GnIH, GnRH, and estrogen membrane receptors. The inhibitory 
and stimulatory action of GnIH in the HPG axis may have a physiological role to maintain 
reproductive homeostasis according to developmental and reproductive stages.

Keywords: gonadotropin-releasing hormone, GPr147, aromatase, neuroestrogen, GPr30, receptor 
heteromerization, receptor internalization, sex steroids

iNtrODUctiON

Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic neuropeptide that was initially iso-
lated from the brain of Japanese quail, which decreases luteinizing hormone (LH) concentration in 
the culture medium of the anterior pituitary gland (1). In vivo administration of quail GnIH also 
decreases gonadotropin synthesis as well as gonadal development and maintenance in quail (2). 
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The C-terminal of GnIH peptides has an LPXRFamide (LPXRFa, 
X = L or Q) motif. Therefore, peptides orthologous to GnIH are 
also called RFamide-related peptide (RFRP) in mammals and 
LPXRFa peptides in non-mammalian and non-avian vertebrates 
(3). Most of the studies in mammals, birds, and fish have shown 
inhibitory effects of GnIH on the hypothalamic–pituitary–
gonadal (HPG) axis; however, several in vivo and in vitro studies 
in mammals and fish show its stimulatory effects (3, 4). Here, we 
highlight studies that show stimulatory effects of GnIH on the 
HPG axis and investigate their physiological or pharmacological 
mechanisms.

eNDOGeNOUs MAtUre GniH PePtiDes

Human RFRP-1 and -3 (5), macaque RFRP-3 (6), Siberian ham-
ster RFRP-1 and -3 (7), rat RFRP-3 (8), bovine RFRP-1 (9) and 
-3 (10), European starling GnIH (11), zebra finch GnIH (12), 
chicken GnIH (13), quail GnIH (1), quail GnIH-related peptide 
(RP) 2 (14), red-eared slider LPXRFamide-1, 2, 3 (15), frog growth  
hormone-releasing hormone (fGRP), fGRP-RP-1, fGRP-RP-2, 
and fGRP-RP-3 (16, 17), Japanese red-bellied newt LPXRFa-1, 
-2, -3, -4 (18), and goldfish LPXRFa-3 (19) are identified as 
endogenous mature LPXRFa peptides by cDNA sequencing, 
immunoaffinity chromatography, and mass spectrometry in 
gnathostomes (3). Lamprey is a jawless fish that is one of the 
most primitive among vertebrates. Lamprey LPXRFamide 
peptide precursor gene encompasses C-terminal QPQRFamide 
(LPXRFa-1a, 1b) and RPQRFamide peptides (LPXRFa-2) that 
have been identified by mass spectrometry (20). LPXRFamide 
peptide precursor gene is also found in amphioxus, one of the 
most primitive chordates (protochordates), which encompasses 
three mature C-terminal RPQRFamide peptides (PQRFa-1, 
PQRFa-2, and PQRFa-3) (21). Identified and putative amino-
acid sequences of GnIH peptides are summarized in Table  1. 
Although the C-terminal LPXRFa structure is key for binding 
of GnIH to its receptor (22), the N-terminal structure may 
modify the action of GnIH. Studies are needed to investigate 
the function of the N-terminal of GnIH and the differential 
effect of orthologous LPXRFa peptides encoded in the precursor 
polypeptide (Table 1).

GniH recePtOr

Yin et al. characterized the binding activity of quail GnIH and 
GnIH-RPs to a G-protein-coupled receptor (GPCR) GPR147. 
The membrane fraction of COS-7 cells transfected with quail 
GPR147 cDNA specifically bound GnIH and GnIH-RPs that 
have a C-terminal LPXRFa motif with similar affinities (22). 
Hinuma et  al. identified a specific receptor for GnIH (RFRP) 
in mammals, which was identical to GPR147 and named it 
OT7T022 (28). In the same year, Bonini et  al. reported two 
GPCRs for neuropeptide FF (NPFF), a neuropeptide that has 
a PQRFamide (PQRFa) motif at its C-terminal that modulates 
pain, and designated as NPFF1 (identical to GPR147) and NPFF2 
(identical to GPR74) (29). LPXRFa peptide precursor gene and 
PQRFa peptide precursor gene are thought to have diverged 

from a common ancestral gene through gene duplication (20, 
21). GPR147 and GPR74 genes are also paralogous (30). The 
binding affinities of RFRPs to GPR147 and GPR74 and their sig-
nal transduction pathways show their higher affinity to GPR147 
than NPFF that has a potent agonistic activity on GPR74 (10, 29, 
31), suggesting that GPR147 (NPFF1, OT7T022) is the primary 
receptor for GnIH (3). However, this may not apply to teleost 
fishes as they generally have several subtypes of GPR147 and/
or GPR74 (32).

iNtrAceLLULAr siGNALiNG OF GniH 
recePtOr

Gonadotropin-inhibitory hormone peptides suppress the pro-
duction of cAMP by binding to GPR147 on the cells, suggesting 
that GPR147 couples to Gαi protein that inhibits adenylate cyclase 
(AC) (28, 33). Son et al. investigated the precise mechanism of 
GnIH cell-signaling pathway in a mouse gonadotrope cell line, 
LβT2 (34). Mouse RFRPs (mRFRPs) suppress GnRH-induced 
cAMP signaling. mRFRPs also inhibit GnRH-stimulated extra-
cellular signal-regulated kinase (ERK) phosphorylation and gon-
adotropin subunit gene transcription by inhibiting the protein 
kinase A (PKA) pathway. Therefore, mRFRPs function as GnIH 
to inhibit GnRH-induced gonadotropin subunit gene transcrip-
tion by inhibiting AC/cAMP/PKA-dependent ERK activation in 
gonadotropes (34) (Table 2).

Son et  al. further investigated the signal transduction 
pathway that conveys the inhibitory action of GnIH in GnRH 
neurons by using a mouse GnRH neuronal cell line, GT1–7 
(46). Although GnIH significantly suppressed the stimulatory 
effect of kisspeptin on GnRH release in hypothalamic culture, 
GnIH had no inhibitory effect on the protein kinase C (PKC) 
pathway stimulated by kisspeptin in GnRH neurons. On the 
other hand, GnIH eliminated the stimulatory effect of vasoac-
tive intestinal polypeptide (VIP) on AC activity, p38 and ERK 
phosphorylation, and c-Fos mRNA expression in GT1–7. This 
shows the specific inhibitory mechanism of GnIH action on AC/
cAMP/PKA pathway, and demonstrates a common mechanism 
of GnIH action in gonadotropes and GnRH neurons (34, 46) 
(Table 2).

eXisteNce OF GniH AND GniH 
recePtOr iN tHe HPG AXis

Gonadotropin-inhibitory hormone precursor mRNA is 
expressed in the hypothalamus of all vertebrates investigated 
(3). GnIH neuronal axons terminate on GnRH1 neurons 
in the preoptic area (POA) that terminate at the median 
eminence and stimulate gonadotropin secretion from the 
anterior pituitary gland in birds (11, 12, 52–55) (Figure 1). In 
situ hybridization of GPR147 mRNA combined with GnRH 
immunocytochemistry shows expression of GPR147 mRNA 
in GnRH1 neurons in birds (11). GnIH (RFRP) axons also 
terminate on the hypophysiotropic type of GnRH neurons 
in humans (5), monkey (6), sheep (56), hamsters (7, 45), rats 
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tAbLe 1 | Amino-acid sequences of RFRPs, GnIHs, and LPXRFa peptides in chordates.

Animal Name sequence reference

Mammals Human RFRP-1 MPHSFANLPLRFa (5)
RFRP-3 VPNLPQRFa (5)

Macaque RFRP-1a MPHSVTNLPLRFa (6)
RFRP-3 SGRNMEVSLVRQVLNLPQRFa (6)

Bovine RFRP-1 SLTFEEVKDWAPKIKMNKPVVNKMPPSAANLPLRFa (9)
RFRP-3 AMAHLPLRLGKNREDSLSRWVPNLPQRFa (10)

Horse RFRP-3a IPNLPQRFa (23)
Rat RFRP-1a SVTFQELKDWGAKKDIKMSPAPANKVPHSAANLPLRFa (8)

RFRP-3 ANMEAGTMSHFPSLPQRFa (8)
Siberian hamster RFRP-1 SPAPANKVPHSAANLPLRFa (7)

RFRP-3 TLSRVPSLPQRFa (7)
Syrian hamster RFRP-1a VPHSAANLPLRFa (45)

RFRP-3a VPSLPQRFa (45)

Birds Quail GnIH SIKPSAYLPLRFa (1)
GnIH-RP-1a SLNFEEMKDWGSKNFMKVNTPTVNKVPNSVANLPLRFa (14)
GnIH-RP-2 SSIQSLLNLPQRFa (14)

Chicken GnIH SIRPSAYLPLRFa (13)
GnIH-RP-1a SLNFEEMKDWGSKNFLKVNTPTVNKVPNSVANLPLRFa (24)
GnIH-RP-2a SSIQSLLNLPQRFa (24)

White-crowned sparrow GnIHa SIKPFSNLPLRFa (62)
GnIH-RP-1a SLNFEEMEDWGSKDIIKMNPFTASKMPNSVANLPLRFa (62)
GnIH-RP-2a SPLVKGSSQSLLNLPQRFa (62)

European starling GnIH SIKPFANLPLRFa (11)
GnIH-RP-1a SLNFDEMEDWGSKDIIKMNPFTVSKMPNSVANLPLRFa (11)
GnIH-RP-2a GSSQSLLNLPQRFa (11)

Zebra finch GnIH SIKPFSNLPLRFa (12)
GnIH-RP-1a SLNFEEMEDWRSKDIIKMNPFAASKMPNSVANLPLRFa (12)
GnIH-RP-2a SPLVKGSSQSLLNLPQRFa (12)

Reptiles Anole lizard GnIHa SIKPAANLPLRFa ENSACAG00000013069
GnIH-RP-1a SMDLESMNDWELNKIIRRTTPEMKKMAHAAVNLPLRFa ENSACAG00000013069
GnIH-RP-2a APDVQSLSRSLANLPQRFa ENSACAG00000013069

Red-eared slider turtle GnIH SIKPVANLPLRFa 15
GnIH-RP-1 STPTVNKMPNSLANLPLRFa 15
GnIH-RP-2 SSIQSLANLPQRFa 15

Chinese softshell turtle GnIHa IIKPVANLPLRFa ENSPSIG00000017952
GnIH-RP-1a SLNFEELKDWGSKNIIKMSTPTVNKMPNSVANLPLRFa ENSPSIG00000017952
GnIH-RP-2a TPFVKTSSQLFPNLPQRFa ENSPSIG00000017952

Amphibians Bullfrog fGRP/R-RFa SLKPAANLPLRFa (16, 26)
fGRP-RP-1 SIPNLPQRFa (17)
fGRP-RP-2 YLSGKTKVQSMANLPQRFa (17)
fGRP-RP-3 AQYTNHFVHSLDTLPLRFa (17)

Red-bellied newt nLPXRFa-1 SVPNLPQRFa (18)
nLPXRFa-2 MPHASANLPLRFa (18)
nLPXRFa-3 SIQPLANLPQRFa (18)
nLPXRFa-4 APSAGQFIQTLANLPQRFa (18)

Teleost fish Goldfish gfLPXRFa-1a PTHLHANLPLRFa (19)
gfLPXRFa-2a AKSNINLPQRFa (19)
gfLPXRFa-3 SGTGLSATLPQRFa (19)

Medaka mdLPXRFa-1a PLHMHANMPLRFa XM_004073848
mdLPXRFa-2a VSNSSPNMPQRFa XM_004073848
mdLPXRFa-3a EAPSPVLPQRFa XM_004073848

Grass puffer LPXRFa-1a SLDMERINIQVSPTSGKVSLPTIVRLYPPTLQPHHQHVNMPMRFa (79)
LPXRFa-2a DGVQGGDHVPNLNPNMPQRFa (79)
RYaa SWKVIRLCEDCSKVQGVLKHQVRYa (79)

Tiger puffer LPXRFa-1a SLDMERINIQVSPTSGKVSLPTIVRLYPPTLQPRHQHVNMPMRFa (79)
LPXRFa-2a DGVQGGDHVPNLNPKMPQRFa (79)
RYaa SWKVIRLCEDCSKVQGVLKHQVRYa (79)

Agnathans Sea lamprey lLPXRFa-1a SGVGQGRSSKTLFQPQRFa (20)
lLPXRFa-1b AALRSGVGQGRSSKTLFQPQRFa (20)
lLPXRFa-2 SEPFWHRTRPQRFa (20)

Protochordates Amphioxus PQRFa-1 WDEAWRPQRFa (21)
PQRFa-2 GDHTKDGWRPQRFa (21)
PQRFa-3 GRDQGWRPQRFa (21)

Ensembl or Genbank accession numbers are cited for some reptile GnIHs or medaka LPXRFa peptides. C-terminal LPXRFa (X = L or Q) sequences are underlined.
aPutative peptides hypothesized from mRNA and deduced amino-acid sequences.
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tAbLe 2 | Effect of GnIH on the HPG axis of mammals.

In vivo (animal) or 
in vitro (pituitary or 
cell line)

concentration or 
dose of peptides

rout of 
administration, 
culture medium

Administration time, sample 
collection, measurement

effect reference

In vivo

Postmenopausal 
women

50-µg/kg/h human 
RFRP-3

iv Continuous administration 
for 3 h

LH secretion was decreased during RFRP-3 administration George et al. 
(35)

Estrous ewes 1-mg/h human 
RFRP-3

iv 2-h infusion LH secretion was decreased during and after RFRP-3 administration Clarke et al. 
(36)

Ovariectomized ewes 
treated with EB to 
induce LH surge

1-mg 
bolus + 0.5 mg/h 
human RFRP-3

iv 8-h infusion EB-induced LH surge was blocked by RFRP-3 Clarke et al. 
(36)

Hypothalamo-
pituitary disconnected 
ovariectomized ewes

50, 100, 200 ng GnRH 
during 400-µg/h 
human RFRP-3 

iv Blood was collected −5, 5, 
10, 15, 20, 30 min after GnRH 
administration

RFRP-3 decreased 100-ng GnRH-induced LH secretion Smith et al. 
(37)

Castrated male calves 90-µg bovine RFRP-3 iv 6 injections at 10-min intervals LH pulse frequency was decreased during 1-h injection period Kadokawa 
et al. (38)

Male rats 10, 100, 500 ng rat 
RFRP-3

icv Blood was collected 20 min 
after administration

LH concentration was decreased by administration of 10-, 100-, or 500-ng RFRP-3 Johnson et al. 
(39)

Male rats 0.1, 0.5, 1, 5 nmol rat 
RFRP-3

icv Blood was collected 15–120 
min after administration

Total LH secretion until 120 min after administration was decreased by 5-nmol RFRP-3. FSH 
concentration was decreased at 15 min by 5-nmol RFRP-3. Total FSH secretion until 120 
min after administration was decreased by 5-nmol RFRP-3

Pineda et al. 
(40)

Gonadectomized male 
rats

0.1, 0.5, 1, 5 nmol rat 
RFRP-3

icv Blood was collected 15–120 
min after administration

LH concentration was decreased at 15 min by 5-nmol RFRP-3. Total LH secretion until 120 
min after administration was decreased by 1- and 5-nmol RFRP-3. Total FSH secretion until 
120 min after administration was decreased by 5-nmol RFRP-3

Pineda et al. 
(40)

Gonadectomized male 
rats

10-nmol rat RFRP-3 iv Blood was collected 15–120 
min after administration

LH concentration was decreased at 60 min. Total LH secretion until 75 min after 
administration was decreased. FSH concentration was decreased at 60 and 75 min after 
administration

Pineda et al. 
(40)

Ovariectomized rats 1, 5 nmol rat RFRP-3 icv Blood was collected 15–120 
min after administration

LH concentration was decreased at 15 min by 1-nmol RFRP-3. Total LH secretion until 120 
min after administration was decreased by 5-nmol RFRP-3

Pineda et al. 
(40)

Ovariectomized rats 1-µg rat RFRP-3 iv Blood was collected 30, 60, 
120 min after administration

LH concentration was decreased 120 min after administration Murakami 
et al. (41)

Ovariectomized rats 
with E2 + P4 to induce 
LH surge

2.5, 25 ng/h rat 
RFRP-3

icv using osmotic 
pump

Brains were collected 2 days 
later at the surge peak 

25-ng/h 25-ng/h RFRP-3-reduced c-Fos expression in GnRH neurons and anteroventral 
periventricular region that provides stimulatory input to GnRH neurons

Anderson 
et al. (42)

Prepubertal female 
mice

100, 500, 1,000 ng 
RFRP-3

icv Hypothalamus and blood 
was collected 4 h after 
administration

GnRH mRNA, Kiss1 mRNA, and LH concentration was decreased by 500- and 1,000-ng 
RFRP-3

Xiang et al. 
(43)

Ovariectomized 
or E2-treated 
ovariectomized 
prepubertal or adult 
female mice

20-nmol RFRP-3 icv Blood was collected 4 h after 
administration

RFRP-3 decreased LH concentration in only E2-treated ovariectomized prepubertal female 
mice but both E2-treated or not treated ovariectomized adult female mice

Xiang et al. 
(43)

(Continued)
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In vivo (animal) or 
in vitro (pituitary or 
cell line)

concentration or 
dose of peptides

rout of 
administration, 
culture medium

Administration time, sample 
collection, measurement

effect reference

Male Syrian hamsters 150, 500, 1,500, 
5,000-ng Syrian 
hamster RFRP-3

icv Blood was collected 30 and 
120 min after administration

LH concentration was increased 30 min after administration of 500-, 15,00-ng RFRR-3. FSH 
concentration was increased 30 min after administration of 1,500-ng RFRR-3. Testosterone 
concentration was increased 120 min after administration of 1,500-ng RFRR-3

Ancel et al. 
(44)

Male Syrian hamsters 
acclimatized to SD

12-µg/day Syrian 
hamster RFRP-3

icv using osmotic 
pump

Blood was collected after 
5 weeks of continuous 
administration

Testosterone concentration and paired testicular weight were increased to LD levels Ancel et al. 
(44)

Ovariectomized Syrian 
hamsters

100, 300, 500 ng GnIH 
(icv), 600-ng GnIH (ip) 

icv, ip Blood was collected 5 (icv), 
30 (icv and ip) min after 
administration

LH concentration was decreased 5 and 30 min after icv administration of 500-ng GnIH, and 
30 min after ip administration of 600-ng GnIH.

Kriegsfeld 
et al. (45)

Male Siberian 
hamsters acclimatized 
to LD or SD

100- and 500-pmol 
Siberian hamster 
RFRP-1 or RFRP-3

icv Blood was collected 5 and 30 
min after administration

LH concentration was decreased 5 and 30 min after administration of 500-pmol RFRP-1, 
100- and 500-pmol RFRP-3, 30 min after administration of 100-pmol RFRP-1 in LD. LH 
concentration was increased 30 min after administration of 500-pmol RFRP-1 or 500-pmol 
RFRP-3 in SD

Ubuka et al. 
(7)

In vitro

Hypothalamic tissue of 
male mice

10−7, 10−6 M RFRP-3 
with 10−6 M kisspeptin 

Medium 199 After 1-h incubation medium 
was collected.

10−6 M RFRP-3 suppressed 10−6 M kisspeptin-induced GnRH release Son et al.  
(46)

Hypothalamic tissue of 
female mice

10−6 M RFRP-3 with 
10−6 M VIP 

Medium 199 After 1-h incubation medium 
was collected.

10−6 M RFRP-3 suppressed 10−6 M VIP-induced GnRH release Son et al.  
(46)

GFP labeled GnRH 
neurons of transgenic 
mice

0.01–1-µM GnIH or 
RFRP-3

aCSF 15-s application GnIH and RFRP-3 produced a non-desensitizing hyperpolarization [IC50: 34 nM (GnIH), 
37 nM (RFRP-3)] via a direct postsynaptic Ba2+-sensitive K+ current mechanism

Wu et al.  
(47)

GFP labeled GnRH 
neurons of transgenic 
mice

1-µM RFRP-3 aCSF 5-min application RFRP-3 exhibited rapid and repeatable inhibitory effects on the firing rate of 41% of GnRH 
neurons. RFRP-3 increased the firing rate of 12% of GnRH neurons

Ducret et al. 
(48)

Mouse GnRH neuronal 
cell line (GT1–7)

10−10, 10−9, 10−8, 10−7, 
10−6 M RFRP-1 and -3 
with 10−6 M VIP

DMEM 6 (CRE assay) or 1 (p38, ERK 
assay) h application

10−6 M VIP-induced CRE activity was suppressed by 10−8, 10−7, 10−6 M RFRP-1, 3. 10−6 M 
VIP-induced p38 and ERK phosphorylation was suppressed by 10−7, 10−6 M RFRP-3

Son et al.  
(46)

Mouse GnRH 
neuronal cell line 
(mHypoA-GnRH/GFP)

10-, 100-nM human 
RFRP-3

DMEM 1-, 2-, 4-h application GnRH mRNA expression was decreased by 100-nM RFRP-3 at 1-, 2-, 4-h application Gojska et al. 
(49)

Ewe dispersed 
pituitary cells

10−14, 10−12, 10−10, 
10−8 M human RFRP-3 
with 10−9 M GnRH

DMEM Medium was collected after 2-h 
incubation

GnRH-induced LH release was decreased by 10−12, 10−10, 10−8 M RFRP-3. GnRH-induced 
FSH release was decreased by 10−10, 10−8 M RFRP-3

Clarke et al. 
(50)

Gonadectomized ewe 
and ram dispersed 
pituitary cells

10−12, 10−9 M human 
RFRP-3 with 10−9 M 
GnRH

DMEM with 10% fetal 
calf serum

Medium was collected 8, 
16, 24 h during incubation 
and finally pituitary cells were 
collected

GnRH-induced LH release was decreased by 10−12, 10−9 M RFRP-3 at 8-, 16-, 24-h in ewe 
pituitary cells. GnRH-induced LH release was decreased by 10−12, 10−9 M RFRP-3 at 8-, 
16-h in ram pituitary cells. GnRH-induced FSH release was decreased by 10−12, 10−9 M 
RFRP-3 at 16-, 24-h in ewe pituitary cells. GnRH-induced FSH release was decreased 
by 10−12, 10−9 M RFRP-3 at 8-, 16-h in ram pituitary cells. GnRH-induced LHβ, FSHβ 
expression, ERK phosphorylation were decreased by 10−12, 10−9 M RFRP-3 in ewe and ram 
pituitary cells

Sari et al.  
(51)
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(39, 57), mice (58), frog (59), zebrafish (60), and lamprey (20). 
Double-immunohistochemistry using GPR147 and GnRH 
antibodies shows GPR147 on GnRH neurons in hamsters (7) 
(Figure 1).

Abundant GnIH-immunoreactive (ir) fibers exist in the 
median eminence of humans (5), monkey (6), sheep (50), quail 
(1, 25, 61), sparrow (52, 62), and turtle (15). It has been clearly 
shown that GPR147 mRNA is expressed in the gonadotropes of 
human pituitary (5). GPR147-ir cells are located in the cephalic 
and caudal lobes of the chicken pituitary gland and they are 
colocalized with LHβ or FSHβ mRNA-containing cells (63). 
Therefore, it is likely that GnIH can directly act on the pitui-
tary to inhibit gonadotropin synthesis and/or release from the 
pituitary in most birds and relatively large mammalian species 
(3) (Figure 1). On the other hand, GnIH may not act directly 
on the pituitary in some birds and rodents, as there are few or 
no GnIH-ir fibers in the median eminence of Rufous-winged 
sparrows (64), hamsters (7, 45), and rats (65). In teleost fishes, 
GnIH-ir fibers directly innervate the pituitary (4), which have 
been observed in goldfish (19), sockeye salmon (66), Indian 
major carp (67), sea bass (68), and tilapia (69). In the tilapia 
pituitary, LH cells were labeled by GnIH receptor antibody (69) 
(Figure 1).

stiMULAtOrY eFFects OF GniH ON tHe 
HPG AXis

An electrophysiological study has shown that RFRP-3 exhibits 
rapid and repeatable inhibitory effects on the firing of 41% of 
GnRH neurons in adult mice (48). However, stimulatory effect 
of RFRP-3 was observed in 12% of GnRH neurons (Table  2). 
No stimulatory effect of RFRP-3 on the firing of GnRH neurons 
was observed in diestrus mice but 18% of GnRH neurons were 
stimulated by RFRP-3 in proestrus female mice (48).

To understand the physiological roles of GnIH in mammalian 
reproduction, GnIH precursor cDNA and endogenous mature 
peptides have been identified in the Siberian hamster brain (7). 
GnIH mRNA expression and number of GnIH-ir perikarya, fib-
ers that innervate GnRH neurons are higher in long days (LD), 
breeding season, compared with short days (SD), non-breeding 
season. Intracerebroventricular (icv) administration of hamster 
RFRP-1 or RFRP-3 to male Siberian hamster inhibits plasma 
LH concentration 5 and 30 min after administration in LD but 
stimulates plasma LH concentration 30 min after administration 
in SD (7) (Table 2). It has been also shown that central chronic 
administration of RFRP-3 to male Syrian hamsters adapted to SD 
fully restores testicular weight and plasma testosterone concen-
tration (44, 70) (Table 2).

Moussavi et al. investigated the effect of intraperitoneal (ip) 
administration of goldfish LPXRFa-3 on LHβ and FSHβ subunit 
mRNA levels in the pituitary and serum LH concentration dur-
ing gonadal cycle in goldfish (71). Circulating 17β-estradiol (E2) 
level is very low at early gonadal recrudescence (gr), increasing 
at mid-gr, very high at mid-late gr, and decreasing at late gr 
stages. LPXRFa-3 increased LHβ and FSHβ mRNA levels at 
early to mid-late and late gr, respectively. However, serum LH tA
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FiGUre 1 | Schematic diagram of the mechanism of gonadotropin-inhibitory 
hormone (GnIH) action in the hypothalamic–pituitary–gonadal axis. GnIH 
neurons act on aromatase and gonadotropin-releasing hormone (GnRH) 
neurons in the hypothalamus and gonadotrope in the pituitary via GnIH 
receptor. Aromatase neurons synthesize estradiol-17β (E2) from testosterone 
(T) in the hypothalamus and E2 can act on GnRH neurons via membrane 
estrogen receptor (mER). GnIH stimulates K+ channel to hyperpolarize GnRH 
neurons and gonadotrope, and decrease GnRH and luteinizing hormone (LH) 
release, respectively. E2 stimulates Ca2+ channel to depolarize GnRH neurons 
and stimulates GnRH release. GnRH stimulates GnRH receptor and Ca2+ 
channel to depolarize gonadotrope and stimulates LH release. Low 
concentration of E2 inhibits Ca2+ channel on the gonadotrope and LH release 
stimulated by GnRH. LH stimulates synthesis and release of E2 and T from 
ovary and testis, respectively. GnIH and GnRH receptors and GPR30 (mER) 
belong to Class A G-protein coupled receptor family and may form 
heteromers to modulate ligand binding affinity and signal transduction. 
Binding of GnIH, GnRH, and E2 with their receptors can downregulate their 
cognate receptors by internalization. These complex stimulatory and 
inhibitory mechanisms may regulate reproductive homeostasis according to 
developmental and reproductive stages.
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level is decreased by LPXRFa-3 administration at early to mid 
gr (Table  3). Moussavi et  al. further examined the effect of ip 
administration of LPXRFa-3 with two native goldfish GnRHs, 
salmon GnRH (sGnRH) and chicken GnRH (cGnRH)-II (72). Ip 
administration of gfLPXRF-3 alone elevated pituitary LHβ and 
FSHβ mRNA levels at early and mid-gr, and only FSHβ mRNA 
at late gr. Coadministration of LPXRFa-3 attenuated the stimula-
tory effect of sGnRH on LHβ in early recrudescence, and LHβ 
and FSHβ mRNA levels in mid and late gr, as well as cGnRH-II-
elicited increase in LHβ mRNA expression at mid and late gr. Ip 
administration of gfLPXRF-3 reduced serum LH levels in early 
and mid gr (Table 3).

Ip administration of grouper GnIH-I, II, and III decreased 
GnRH1 mRNA level in the hypothalamus (77). However, GnRH3 
mRNA level in the hypothalamus was increased by ip administra-
tion of GnIH-III. On the other hand, LHβ mRNA level in the 
pituitary was decreased by GnIH-II (Table 3). Ip administration 
of lamprey LPXRFa-2 increased GnRH-I and III content in 
the brain, gonadotropin β mRNA level in the pituitary [(20), 
Table 3]. A study in European sea bass has shown that intramus-
cular administration of sea bass GnIH-2 increased GnRH2 and 
kiss1 receptor mRNA levels in the brain (27). On the other hand, 
GnIH-1, 2 decreased pituitary LHβ mRNA level and plasma LH 
level. Plasma FSH level was only decreased by GnIH-1 (Table 3).

In addition, 48-h incubation of grass puffer pituitary with 
LPXRFa-1 (10−7 M) increased LHβ and FSHβ mRNA levels [(79), 
Table 3]. Although LH and FSH release from Cichlasoma dimerus 
pituitary was decreased by 24-h incubation with LPQRFa-1 
(10−6  M), FSH release was increased by LPQRFa-2 (10−6  M) 
[(80), Table 3]. Also, 6-h incubation of Nile tilapia pituitary with 
pyroglutamic-LPXRFa-2 (10−7 and 10−6 M) increased LH release 
and pyroglutamic-LPXRFa-2 (only 10−6 M) increased FSH release 
[(81), Table 3].

Effect of goldfish LPXRFa-3 on gonadotropin synthesis and 
release was tested in dispersed goldfish pituitary cells collected 
at different gr stages (71). LHβ mRNA level was decreased by 
LPXRFa-3 (10−8 and 10−7 M) at early gr, but increased by LPXRFa-3 
(10−9 M) at mid-gr, and decreased by LPXRFa-3 (10−8 and 10−7 M) 
at late gr. FSHβ mRNA levels was decreased by LPXRFa-3 (10−8 
and 10−7 M) at early gr, by LPXRFa-3 (10−9, 10−8, 10−7 M) at mid-
gr, and by LPXRFa-3 (10−7 M) at late gr. On the other hand, LH 
concentration in the media was increased by LPXRFa-3 (10−8 M) 
at late gr (Table 3). In dispersed pituitary cells of male sockeye 
salmon, LH release was increased by goldfish LPXRFa-1, 2 (10−7 
and 10−5 M), and LPXRFa-3 (10−9 and 10−5 M). FSH release was 
increased by goldfish LPXRFa-1 (10−9 and 10−5  M), LPXRFa-2 
(10−7, 10−5 M), and LPXRFa-3 (10−7 M) (66, Table 3).

POssibLe MAcHNisM OF tHe 
stiMULAtOrY eFFects OF GniH ON tHe 
HPG AXis

The mechanism of GnIH (RFRP-3) effect on the electrophysi-
ological activity of GnRH neurons was studied in transgenic 
mice having vesicular glutamate transporter 2 (vGluT2)-GnRH 
neurons (47). GnIH and RFRP-3 produced a non-desensitizing 
hyperpolarization with IC50 values of 34 and 37 nM, respectively, 
in vGluT2-GnRH neurons via a direct postsynaptic Ba2+-sensitive 
K+ current mechanism (Figure 1, Table 2).

It is known that E2 secreted from the ovary negatively and 
positively act on the hypothalamus and pituitary to regulate the 
HPG axis in females. However, it is also known that E2 is synthe-
sized from androgen by aromatase neurons in the hypothalamus 
(82). Recent studies have shown that E2 synthesized in the brain 
(neuroestrogen) directly and rapidly act on GnRH neurons via 
membrane estrogen receptor (mER) to regulate GnRH release 
(83, 84). GPR30 (85, 86), ERβ (87, 88) or other membrane recep-
tors are thought to transduce the rapid effect of E2 on GnRH 
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http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


tAbLe 3 | Effect of GnIH on the HPG axis of amphioxus, lamprey, and teleost fishes.

In vitro 
(cell line or 
pituitary) 
or in vivo 
(animal)

concentration or 
dose of peptides

culture 
medium, rout of 
administration

Administration time, sample 
collection, measurement

effect reference

In vivo

European sea 
bass

1, 2, 4 µg sea bass 
GnIH-1, 2

icv 6 h after administration brain, 
pituitary, and blood were collected

GnRH1 mRNA level in the brain was decreased by 1, 2, 4 µg GnIH-1. GnRH2 mRNA level in the 
brain was decreased by 1, 2, 4 µg GnIH-2. Kiss1 mRNA level in the brain was decreased by 2-µg 
GnIH-2. Kiss2 mRNA level in the brain was decreased by 2, 4 µg GnIH-2. Kiss1 receptor mRNA level 
in the brain was decreased by 2-µg GnIH-2. GnIH mRNA level in the brain was decreased by 1, 2 µg 
GnIH-2. GnIH receptor mRNA level in the brain was decreased by 1, 2 µg GnIH-2. LHβ mRNA level 
in the pituitary was decreased by 1, 2, 4 µg GnIH-2. FSHβ mRNA level in the pituitary was decreased 
by 2, 4 µg GnIH-2. GnRH receptor II1a mRNA level in the pituitary was decreased by 2, 4 µg GnIH-
2. Plasma LH level was decreased by 4-µg GnIH-1 and 1-µg GnIH-2

Paullada-
Salmerón et al. 
(73)

Goldfish 2-µg goldfish 
LPXRFa-3

ip Injected twice with 12-h interval and 
pituitaries and blood were collected 
12 h after the second injection

LHβ mRNA level was increased at early to mid-late gr. FSHβ mRNA levels was increased at early to 
late gr. Serum LH concentration was decreased at early to mid-gr

Moussavi et al. 
(71)

Goldfish 2-µg goldfish 
LPXRFa-3

ip Injected twice with 12-h interval 
with or without 4-µg sGnRH or 
cGnRH-II and pituitaries and blood 
were collected 2 h after the second 
injection

LHβ level was increased by LPXRFa-3 at early to mid-gr. FSHβ mRNA levels was increased 
LPXRFa-3 at early to late gr. Serum LH concentration was decreased by LPXRFa-3 at early to mid-
gr. LHβ mRNA level increased by sGnRH was decreased by LPXRFa-3 at early to late gr. LHβ level 
increased by cGnRH-II was decreased by LPXRFa-3 at mid to late gr. FSHβ mRNA level increased 
by sGnRH was decreased by LPXRFa-3 at mid to late gr

Moussavi et al. 
(72)

Sexually 
mature female 
goldfish

1-µg/g bw zebrafish 
LPXRFa-3

ip Injected twice with 3-h interval and 
blood was collected 1 and 3 h after 
the second injection

Serum LH concentration was decreased by LPXRFa-3 either at 1 and 3 h after the second injection Zhang et al. 
(74)

Female 
goldfish at late 
vitellogenic 
stage

100-ng/g bw 
goldfish LPXRFa- 
2, 3

ip After 12-h administration 
hypothalamus and pituitary were 
collected

sGnRH mRNA level in the hypothalamus was decreased by LPXRFa-2, 3. LHβ mRNA level in 
the pituitary was decreased by LPXRFa-2. FSHβ mRNA level in the pituitary was decreased by 
LPXRFa-2, 3

Qi et al.  
(75)

Immature, 
mature male 
and female 
cinnamon 
clownfish 

100-ng/g bw 
goldfish LPXRFa-3

ip After 0, 6, 12, and 24-h 
administration with or without 100-
ng/g bw sbGnRH brain, pituitary 
and blood were collected

GnIH and GnIH receptor mRNA levels in the brain were increased at 6, 12 and 24 h.a GnIH and 
GnIH receptor mRNA levels in the brain decreased by sbGnRH were increased at 6, 12 and 24 h.a 
sbGnRH mRNA level in the brain, plasma GnRH, FSH, LH levels, pituitary GTHα, FSHβ, LHβ mRNA 
levels were decreased at 6, 12 and 24 h.a sbGnRH mRNA level in the brain, plasma GnRH, FSH, LH 
levels, pituitary GTHα, FSHβ, LHβ mRNA levels increased by sbGnRH were decreased at 6, 12 and 
24 ha

Choi et al.  
(76)

Female 
orange-spotted 
grouper

100-ng/g bw 
grouper GnIH-I, II, III

ip Injected twice with 6-h interval and 
hypothalamus and pituitary were 
collected 6 h after the second 
injection

GnRH1 mRNA level in the hypothalamus was decreased by grouper GnIH-I, II, III. GnRH3 mRNA 
level in the hypothalamus was increased by grouper GnIH-III. LHβ mRNA level in the pituitary was 
decreased by grouper GnIH-II

Wang et al. 
(77)

Lamprey 50, 100 µg/kg bw 
lamprey LPXRFa-
1a, 1b, 2

ip Injected twice with 24-h interval and 
brain and pituitary were collected 
48 h after the second injection

Lamprey GnRH-I, III content in the brain, gonadotropin β mRNA level in the pituitary were increased 
by 100-µg/kg bw LPXRFa-2

Osugi et al. 
(20)

(Continued)
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In vitro 
(cell line or 
pituitary) 
or in vivo 
(animal)

concentration or 
dose of peptides

culture 
medium, rout of 
administration

Administration time, sample 
collection, measurement

effect reference

European sea 
bass

1-µg sea bass 
GnIH-1, 2/g bw in 
coconut oil 

im Injected on day 17 from October to 
January and blood was collected 
on day 22 from October to January. 
Brain and pituitary were collected 
on day 17 of February (spermiation 
stage)

Plasma testosterone and 11-ketotestosterone levels were decreased by sbGnIH-1, 2 in November 
and December (early and mid-spermatogenesis). GnRH2, sbGnIH, sbGnIH receptor, kiss1 receptor 
mRNA levels in the brain were increased by sbGnIH-2. LHβ mRNA level in the pituitary was 
decreased by sbGnIH-1 and -2. Plasma FSH level was decreased by sbGnIH-1. Plasma LH level 
was decreased by sbGnIH-1 and -2

Paullada-
Salmerón et al. 
(27)

Flatfish 0.1, 1 µg/g bw 
flatfish GnIH-2, 3

im Injected twice with 12-h interval and 
brain and pituitary were collected 4 
and 8 h after the second injection

GnRH3 mRNA level in the brain was decreased by 1-µg/g bw GnIH-3 at 4 h after administration. 
LHβ mRNA level in the pituitary was decreased by 0.1, 1 µg/g bw GnIH-3 at 4 h after administration

Aliaga-
Guerrero et al. 
(78)

In vitro

Primary 
culture of 
male zebrafish 
pituitary

10−12, 10−11, 10−10, 
10−9 M zebrafish 
LPXRFa-3

Culture media After 18-h incubation pituitary was 
collected

Common α mRNA level was decreased by 10−12, 10−11, 10−10 M LPXRFa-3. LHβ mRNA level was 
decreased by 10−11, 10−10 M LPXRFa-3

Spicer et al. 
(60)

Primary culture 
of grass puffer 
pituitary

10−9, 10−7 M 
goldfish LPXRFa-1

RPMI medium After 48-h administration pituitaries 
were collected

LHβ, FSHβ mRNA levels were increased by 10−7 M LPXRFa-1 Shahjahan 
et al. (79)

Primary culture 
of Cichlasoma 
dimerus 
pituitary 

10−8, 10−6 M 
Cichlasoma dimerus 
LPQRFa-1, -2

Leibovitz L-15 
medium with 10% 
fetal bovine serum

After 24-h incubation medium was 
collected

LH and FSH concentration was decreased by 10−6 M LPQRFa-1. FSH concentration was increased 
by 10−6 M LPQRFa-2

Di Yorio et al.  
(80)

Primary culture 
of male Nile 
tilapia pituitary

10−9, 10−8, 
10−7, 10−6 M 
Pyroglutamic-tilapia 
LPXRFa-2

Culture medium After 6-h incubation medium was 
collected

LH concentration was increased by 10−7, 10−6 M pyroglutamic-LPXRFa-2. FSH concentration was 
increased by 10−6 M pyroglutamic-LPXRFa-2

Biran et al.  
(81)

Dispersed 
goldfish 
pituitary cells

10−9, 10−8, 10−7 M 
goldfish LPXRFa-3

Medium 199 with 
1% horse serum

After 12-h administration medium 
and cells were collected

LHβ mRNA level was decreased by 10−8 and 10−7 M LPXRFa-3 at early gr, increased by 10−9 M 
LPXRFa-3 at mid-gr, decreased by 10−8 and 10−7 M LPXRFa-3 at late gr. FSHβ mRNA levels was 
decreased by 10−8 and 10−7 M LPXRFa-3 at early gr, by 10−9, 10−8, 10−7 M LPXRFa-3 at mid-gr, by 
10−7 M LPXRFa-3 at late gr. LH concentration in the media was increased by 10−8 M LPXRFa-3 at 
late gr

Moussavi et al. 
(71)

Dispersed 
female goldfish 
pituitary cells 

10−7 M goldfish 
LPXRFa-2, 3

Medium 199 with 
10% fetal bovine 
serum

After 12-h administration with 
10−7 M LHRH-A cells were collected

FSHβ mRNA level increased by LHRH-A was decreased by 10−7 M LPXRFa-3. Qi et al.  
(75)

Dispersed 
male sockeye 
salmon pituitary 
cells

10−9, 10−7, 10−5 M 
goldfish LPXRFa-1, 
2, 3

MEM After 2-h administration medium 
was collected

LH concentration in the media was increased by 10−7 and 10−5 M LPXRFa-1, 2, and 10−9, 10−5 M 
LPXRFa-3. FSH concentration in the media was increased by 10−9 and 10−5 M LPXRFa-1, 10−7, 
10−5 M LPXRFa-2, and 10−7 M LPXRFa-3

Amano et al. 
(66)

(Continued)
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release (83, 89). E2 stimulates GnRH release by increasing 
intracellular Ca2+ concentration (90) and electrophysiological 
activity of GnRH neurons (91, 92). More recently, it has been 
shown that GnIH neurons terminal on aromatase neurons that 
express GnIH receptor and increase neuroestrogen concentration 
in the hypothalamus by stimulating aromatase activity in quail 
(93, 94). Therefore, it is possible that GnIH stimulates the electro-
physiological activity of some GnRH neurones (48) by increasing 
neuroestrogen concentration in the hypothalamus. GnIH may 
further stimulate LH release that was shown in hamsters (7) by 
stimulating the activity of aromatase neurons and increasing 
neuroestrogen concentration in the hypothalamus and stimulat-
ing the electrophysiological activity of GnRH neurons and GnRH 
release (Figure 1).

Binding of GnRH with GnRH receptor on gonadotropes 
results in the activation of intracellular Gαq/11 and phospholi-
pases and generation of the second messengers, inositol 1-, 4-, 
5-tris-phosphate, diacylglycerol, and arachidonic acid, which 
stimulate Ca2+ mobilization and PKC activity. Ca2+ mobilization 
initiates gonadotropin release (Figure 1). PKC activates mitogen-
activated protein kinases (MAPKs) such as ERK, jun-N-terminal 
kinase, and p38 MAPK, which initiate the transcriptional activity 
of gonadotropin subunit genes (95). GnRH receptor also couples 
with Gαs to stimulate AC/cAMP/PKA pathway, which was shown 
in LβT2 cells (96) and rat gonadotropes (97). Because GnIH sign-
aling pathway triggered by Gαi does not interfere with Gαq/11 trig-
gered pathway, GnIH may suppress gonadotropin subunit gene 
transcription by inhibiting AC/cAMP/PKA pathway stimulated 
by GnRH receptor and Gαs (34). GnIH may also suppress gonado-
tropin release by hyperpolarizing gonadotropes by activating K+ 
channel via GnIH receptor [(47), Figure 1].

However, recent studies of GPCR have shown that GPCR not 
only functions as a monomer or homodimer but also as a heter-
odimer with different GPCR resulting in modulation of ligand 
binding affinity, signal transduction, and internalization of the 
receptors (98, 99). It has been shown that Class A GPCRs form 
homo- and heteromers (100). As GnRH and GnIH receptors, and 
GPR30 all belong to Class A GPCR family (101), it is possible that 
they form heteromers in GnRH neurons and/or gonadotropes to 
modify the action of their ligands. Some of the stimulatory effect 
of GnIH on the HPG axis may be due to heteromerization of 
GnIH and GnRH receptor and GPR30 (Figure 1).

A recent study has shown that centrally administered GnIH 
can decrease plasma LH concentration in ovariectomized (OVX) 
prepubertal female mice that were treated with E2 but not in 
OVX mice that were not treated with E2 (43) (Table 2). E2 can 
abolish intracellular free Ca2+ concentration and LH release in 
ovine pituitary culture induced by GnRH (102). The inhibitory 
effect of low concentration of E2 on LH release was shown in 
bovine anterior pituitary mediated by GPR30 expressed on the 
gonadotrope (103, 104). These results suggest the modification of 
GnIH action by E2 in the hypothalamus and pituitary (Figure 1).

Finally, it is known for a long time that binding of GnRH with 
GnRH receptors is followed by aggregation, complex formation 
and internalization (105). Chronic administration of GnRH or 
antagonist administration can desensitize pituitary gonado-
tropes, downregulate GnRH receptor and suppress serum LH, 
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FSH and sex-steroid levels (106–108). It is therefore possible that 
chronic central administration of GnIH (RFRP-3) to male Syrian 
hamsters adapted to SD restores testicular weight and plasma tes-
tosterone concentration by downregulation of GnIH receptor in 
the hypothalamus and pituitary (44, 70) (Table 2). It is also pos-
sible that stimulatory effect of GnIH on the pituitary of fish is due 
to downregulation of GnIH receptor by chronic administration 
(79, 80), high concentration of GnIH (66, 80, 81) or antagonistic 
effect of LPXRFa peptides of different species (66, 79) (Table 3). 
Inhibitory effects of GnIH on the HPG axis are shown when 
GnIH peptides are tested with relatively low concentrations in a 
shorter time frame (73–76) (Tables 2 and 3; Figure 1).

Complex mechanism may be involved in in vivo studies that 
show stimulatory and inhibitory effects of GnIH on the HPG axis 
in addition to downregulation of receptors and changes in the 
number of receptors depending on reproductive and develop-
mental stages and endogenous sex-steroid levels (Tables 2 and 
3; Figure 1). It is also important to note that GnIH peptides are 
produced in gonads (3, 109) and it has been shown that they have 
direct effects on gonadal activates in mammals (110–114), birds 
(115–117) and fishes (118). Most of these studies showed inhibi-
tory effects of GnIH peptides on gonadal activities, but stimula-
tory activity of GnIH peptides was also shown in mouse ovary 
(114) and goldfish testis (118). Therefore, in  vivo studies that 
showed effects of GnIH peptides on gonadal activates (Tables 2 
and 3) may include direct effects of GnIH peptides on the gonads.

cONcLUsiON

Gonadotropin-inhibitory hormone orthologous peptides have a 
characteristic LPXRFamide C-terminal motif in most vertebrate 
species, which is critical for receptor binding. The primary 

receptor for GnIH is GPR147 that inhibits cAMP production in 
target cells. GnIH generally decreases gonadotropin synthesis and 
release by directly acting on the gonadotrope or by decreasing the 
activity of GnRH neurons. However, one study shows stimula-
tory effects of GnIH on the electrophysiological activity of some 
GnRH neurons in mice (48). Stimulatory effect of GnIH on GnRH 
neurons in the hypothalamus may be explained by the action of 
neuroestrogen synthesized in the hypothalamus by the stimula-
tory action of GnIH on aromatase neurons that terminate on 
GnRH neurons that express estrogen membrane receptor. GnIH 
may further stimulate LH release that was shown in hamsters by 
stimulating the electrophysiological activity of GnRH neurons 
and GnRH release (7, 44). Peripheral sex-steroid levels may also 
modify the action of GnIH (7, 44, 71, 72). Some of the stimulatory 
effects of GnIH on the HPG axis may be due to heteromerization 
of GnIH and GnRH receptors and GPR30 in GnRH neurons and/
or gonadotropes, which modifies ligand binding and signaling 
transduction mechanism. Stimulatory effect of GnIH on the HPG 
axis may also be due to internalization of GnIH receptor by high 
concentration or chronic administration of GnIH or antagonistic 
effect of the peptides administered (20, 66, 77, 79–81). Besides 
pharmacological effect of administered peptides, the general 
inhibitory action of GnIH by decreasing cAMP concentration 
and inducing hyperpolarization in target cells and the additional 
stimulatory action of GnIH by neuroestrogen synthesis, receptor 
heteromerization, and internalization may have a physiological 
role to maintain reproductive homeostasis according to develop-
mental and reproductive stages.
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