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Abstract

We used a computational fluid dynamics (CFD) model to study the inspiratory airflow profiles of patients with anterior nasal
cavity stenosis who underwent curative surgery, by comparing pre- and postoperative airflow characteristics. Twenty patients
with severe anterior nasal cavity stenosis, including one case of bilateral stenosis, underwent computed tomography (CT) scans
for CFD modelling. The pre- and postoperative airflow characteristics of the nasal cavity were simulated and analyzed. The
narrowest area of the nasal cavity in all 20 patients was located within the nasal valve area, and the mean cross-sectional area
increased from 0.39 cm2 preoperative to 0.78 cm2 postoperative (Po0.01). Meanwhile, the mean airflow velocity in the nasal
valve area decreased from 6.19 m/s to 2.88 m/s (Po0.01). Surgical restoration of the nasal symmetry in the bilateral nasal
cavity reduced nasal resistance in the narrow sides from 0.24 Pa.s/mL to 0.11 Pa.s/mL (Po0.01). Numerical simulation of the
nasal cavity in patients with anterior nasal cavity stenosis revealed structural changes and the resultant patterns of nasal airflow.
Surgery achieved balanced bilateral nasal ventilation and decreased nasal resistance in the narrow region of the nasal cavity.
The correction of nasal valve stenosis is not only indispensable for reducing nasal resistance, but also the key to obtain
satisfactory curative effect.
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Introduction

The nasal cavity, an important passage of the upper
respiratory tract, has various functions including cleaning,
humidifying and warming the inhaled air. Anterior nasal
cavity stenosis, which occurs in the anterior nostril, nasal
valve area or around nasal vestibule, can lead to nasal
ventilation dysfunction and structural deformities. Stenosis
can also occur in the nasal vestibule and postnaris after
trauma, infection, or surgery. Ulceration secondary to infec-
tion, burns, tumor resection, nasal intubation or radio-
therapy may also lead to rhinostenosis. Scar stenosis is
frequently seen in the nasal valve area due to the weak-
ness of the cartilaginous supporting structures. Hence,
surgical treatment methods should be chosen according to
the location of stenosis and the thickness of local tissue.
The main surgical procedures include: a) scar resection,
b) intranasal Z-plasty, and c) nasal stenting (silicone tube) in
the anterior nasal cavity to prevent recurrent stenosis.

Much research has examined outcomes of various
surgical techniques used to correct anterior nasal cavity
stenosis. However, the airflow profiles of anterior nasal

cavity stenosis and their correlation with clinical symptoms
have not been well investigated due to the anatomical
complexity of the nasal cavity. In recent years, with the
development of computational fluid dynamics (CFD) and
biological numerical simulation methods, many research-
ers have employed these methods to study nasal physio-
logical function and the influence of nasal structure change on
the airflow distribution (1) and nasal heating function (2–4).

Most studies to date have shown that CFD can simu-
late the basic features of nasal physiological function with
a given geometry. CFD studies on nasal anomalies have
also been useful for diagnosis, evaluating degree of dys-
function, and treatment prediction including surgical plan-
ning and evaluating outcomes of surgical intervention (5,6).

Our previous studies focusing on numerical simula-
tion analysis of the pre- and postoperative nasal cavity
in Crouzon syndrome have verified the reliability and
accuracy of CFD for analyzing nasal airflow features (7).
Here, we created CFDmodels for the nasal cavity of patients
with anterior nasal cavity stenosis and assessed the
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aerodynamics of the nasal cavity during the inspiratory
phase. Additionally, we compared pre- and postoperative
airflow patterns of the nasal cavity and evaluated the
impact of nasal ventilation function after surgery.

Subjects and Methods

Subjects
This study included 20 patients (15 males and 5 females)

with anterior nasal cavity stenosis (1 female had bilateral
stenosis) who were diagnosed between January 2014
and May 2015. The age range was 29 to 46 years. The
causes of stenosis were trauma related to car accidents in
16 patients, injury due to nasal intubation in 2 patients

Figure 1. Pre- and postoperative anterior nasal
cavity stenosis. A, sagittal and B, coronal com-
puted tomography of the nasal cavity. C, Nasal
base view.

Figure 2. Transversal section of the nasal cavity. Circled area
represents the minimum/total cross-section of the nasal valve
area. The arrows show the air flow direction.
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Table 1. Comparison of the cross-section area (in cm2) of the nasal valve in 20 patients.

No. of patients Preoperative Postoperative

Narrow side Non-narrow side Narrow side Non-narrow side

1 0.62 0.80 0.72 0.80
2 0.33 0.61 0.75 0.61
3 0.54 0.63 0.89 0.64

4 0.54 0.92 0.62 0.91
5 0.64 1.02 0.80 1.02
6 0.46 1.27 0.70 1.26

7 0.66 0.97 0.95 0.97
8 0.25 1.00 0.81 0.99
9 0.36 0.81 1.00 0.81
10 0.69 0.71 1.32 0.72

11 0.39 1.29 0.66 1.29
12 0.38 0.80 0.85 0.80
13 0.27 0.85 0.81 0.85

14 0.34 0.78 0.72 0.78
15 0.22 0.53 0.64 0.52
16 0.22 0.64 0.62 0.66

17 0.25 1.00 0.55 0.99
18 0.36 0.81 1.00 0.80
19 0.36 0.80 0.71 0.82

20 0.21 – 0.51 –
0.19 – 0.75 –

Mean ± SD 0.39 ± 0.16*& 0.85 ± 0.2 0.78 ± 0.18 0.85 ± 0.2

Patient 20 had bilateral anterior nasal cavity stenosis. * Po0.01 for narrow side vs non-narrow side before
operation. & Po0.01 for preoperative vs postoperative on narrow side (paired t-test).

Figure 3. Pre- and postoperative airflow pressure distribution of the nasal cavity in one patient with anterior nasal cavity stenosis.
Comparison of pre- and postoperative pressure distribution revealed that the pressure gradually decreased from the anterior nostril to
the nasopharynx. Red color indicates higher pressure.
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and nasal vestibule infection in 2 patients. None of the
subjects was suffering from any nasal inflammation, polyp-
osis or previous nasal surgery. All subjects had undergone
surgery including nasal vestibule scar excision, local skin
flap transplantation and the use of postoperative intranasal
stenting (silicone tube).

Ethical considerations
The study protocol was approved by the Ethics Com-

mittees of Shanghai Ninth People’s Hospital (approval
#201478). All participants provided written informed consent.

Research method
A 64-slice spiral computed tomograph (CT; LightSpeed

Ultra from GE Healthcare, USA) was used for scanning.
The patients’ nasal cavity was cleaned prior to CT scan.
The patients remained quiet in a supine position at
constant room temperature. The scan parameters were
120 mA, 120 kV, thread pitch of 1.375 mm, and velocity of
27.5 mm/s, while the parameters of three-dimensional
reconstruction were set to a resolution of 512� 512 pixels,
slice thickness of 0.75 mm, window width of 2000
Hounsfield units (Hu), and window level of 200 Hu.

Establishment of the three-dimensional CFD model
of the nasal cavity

Three-dimensional CFD model of the nasal airway
was reconstructed from 100 axial images of each patient’s
nasal cavity obtained by thin-layer CT scanning. The image

segmentation was performed using the medical imaging
software, MIMICS (Mimics Research 17.0 for X64 Plat-
form 17.0.0.435: Materialise N.V., Technologielaan 15,
BE-3001, Belgium), and the airway was identified in each
of the axial images based on a predefined threshold set
between –1024 and –200 HU. The three-dimensional raw
model was then exported into a remeshing software,
3-matic Research 9.0 (Materialise N.V.) to demarcate the
individual surfaces of the airway and optimize the surface
mesh quality for successful CFD modeling.

CFD analysis
Due to the complex geometry of the nasal cavity,

a computational software for fluid dynamics, FLUENT
6.3.26 (ANSYS Inc., USA) was used to perform numerical
simulations that enable the prediction of flow field within
the model. The boundary conditions for the simulations
were input as follows: assuming the entire nasal mucosa
to be a solid wall, the fluid was the air (r=1.225 kg/m3,
dynamic viscosity coefficient m=1.7894� 10-5 kg �m-1 � s-1),
which was set as the steady flow of an incompressible
fluid. During numerical simulation, the influence of temper-
ature and humidity changes was neglected. A no-slip
boundary was applied at the nasal wall and the computa-
tional region extended from the anterior nostril to the
nasopharynx. Standard atmospheric pressure was set
at 0 Pa. The pressure inlet and velocity outlet boundary
conditions were set at the anterior nostril entrance and
nasopharynx, respectively. Constant flow was set at

Figure 4. Pre- and postoperative airflow velocity distributions of the nasal cavity in one patient with anterior nasal cavity stenosis.
Comparison of pre- and postoperative velocity distribution revealed that the largest velocity appeared in the nasal valve area. Red color
indicates higher velocity.
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400 mL/s. The Navier-Stokes equation (continuity equa-
tion for an incompressible fluid) and laminar flow model
were applied to compute the airway flow characteristics
(8,9). Numerical simulations provided detailed airflow
parameters, including pressure distribution chart, velocity
vector chart and airflow diagram. Nasal resistance was
expressed as Rn=Pn/Vn (10), where Rn is the nasal
resistance, Pn is the pressure difference of the entire
nasal cavity, and Vn is the airflow rate.

Statistical analyses
After the numerical simulation, statistical analyses

of the airflow field data, including pressure and velocity,
were performed using a specialized statistical software
(SAS release 8.01 TS Level 01M0). The comparisons of
pressure and velocity in the appointed pre- and post-
operative cross-sections were analyzed by paired t-tests,
while comparisons of pressure and velocity on the narrow
and non-narrow sides of the nasal cavity were made using
independent samples t-tests. Po0.05 were considered
to be statistically significant. The relationship between uni-
lateral nasal resistance and velocity and cross-sectional
area at the nasal valve on the narrow side was analyzed
by Curve Estimation.

Results

Anterior nasal cavity stenosis features
The nasal cavity CFD models indicated that the

anterior nasal cavity stenoses of the 20 patients were all
located in the nasal valve area with a mean cross-
sectional area of 0.39±0.16 cm2 (compared to 0.85±
0.2 cm2 in the nasal valve area on the non-narrow side).
Postoperatively, the normal anatomy of nasal valve was
restored (Figure 1). The minimum/total cross-section of
the nasal valve area ratio (Figure 2) was identified
perpendicular to the airflow direction by visual inspec-
tion; the minimum cross-sectional area of the narrow side
was increased postoperatively (mean=0.78±0.18 cm2;
Po0.0001; Table 1).

Preoperative pressure and velocity in the inspiratory
phase

Figures 3 and 4 show the distributions of pressure and
velocity during steady-state inspiratory airflow, respec-
tively. The maximum pressure appears in the nasal valve
area preoperatively (Figure 3). Most airway resistance
was located from the anterior part of the nasal cavity,
namely the anterior naris, to the anterior portion of inferior

Table 2. Percentage pressure contribution of the front plane of the inferior turbinate to the entire nasal
cavity pressure in 20 patients.

No. of patients Preoperative Postoperative

Narrow side Non-narrow side Narrow side Non-narrow side

1 45.1% 32.3% 28.5% 35.8%
2 32.1% 42.0% 26.7% 41.0%
3 70.1% 41.5% 22.3% 45.5%

4 59.3% 21.0% 39.8% 25.4%
5 55.8% 17.9% 35.2% 21.7%
6 37.0% 11.7% 15.4% 10.7%

7 49.5% 22.0% 21.0% 25.2%
8 91.6% 13.3% 20.4% 11.6%
9 76.1% 20.3% 12.8% 18.5%
10 87.5% 36.6% 45.7% 39.1%

11 83.7% 45.9% 76.0% 41.0%
12 58.0% 20.1% 20.5% 20.1%
13 62.4% 20.3% 19.4% 22.0%

14 83.1% 11.4% 37.5% 12.8%
15 82.4% 23.1% 24.4% 21.2%
16 82.1% 20.0% 22.4% 21.9%

17 91.6% 13.3% 18.6% 12.7%
18 66.9% 19.3% 11.9% 18.4%
19 74.8% 11.4% 35.7% 16.6%
20 73.2% – 32.0% –

77.5% – 27.1% –
Mean ± SD 68.6 ± 18.3%*& 23.3 ± 10.9% 28.3 ± 14.2% 24.3 ± 10.9%

Patient 20 had bilateral anterior nasal cavity stenosis. * Po0.01 for narrow side vs non-narrow side before
operation. & Po0.01 for preoperative vs postoperative on narrow side (paired t-test).
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turbinate, where the pressure dropped dramatically. In the
narrow side of the nasal cavity, the pressure on the front-
end plane of the inferior turbinate accounted for 32–91%
of the total pressure in the nasal cavity (mean value=
8.6±18.3%). Meanwhile, in the non-narrow side of nasal
cavity, the preoperative pressure accounted for only 23.3±
10.9% of the total pressure in the nasal cavity (Table 2). In
the 21 narrow sides of the nasal cavity models, stenosis
were also found within the nasal valve area. Mean pres-
sure on the cross-section of the nasal valve area was
–37.3±23.2 Pa in the narrow side of nasal cavity vs
–8.1±3.4 Pa in the non-narrow side of nasal cavity
(Po0.01; Table 3).

The velocity distribution charts in Figure 4 show that
the maximum velocities were also found in the nasal valve
area. The mean maximum velocity was 6.19 ± 2.3 m/s in
the 21 narrow sides and 2.57±0.6 m/s in the 19 non-
narrow sides (Po0.01; Table 4).

Postoperative pressure and velocity in the inspiratory
phase

In the inspiratory phase, differential pressure (Dpsid)
between the anterior nostril inlet and the nasopharynx
outlet significantly decreased postoperatively (Po0.01).

There was no significant difference in Dpsid postopera-
tive between narrow and non-narrow sides of the nasal
cavity (P=0.11640.05; Table 5). The percentage pressure
contribution of the front plane of the inferior turbinate to the
entire nasal cavity pressure decreased significantly. The
mean value decreased from 68.6±18.3% to 28.3±14.2%,
postoperative (Po0.01; Table 2). Pressure on the nasal
valve area was –37.3 ± 23.2 Pa preoperative vs –9.5±
4.9 Pa postoperative (Po0.01; Table 3). The preoperative
mean velocity of the nasal valve area (6.19±2.30 m/s)
was significantly higher than the postoperative mean
velocity (2.88±0.87 m/s; Po0.01; Table 4).

Pressure and velocity gradient in the inspiratory
phase

To facilitate analysis, bilateral coronal cross-sections
were created perpendicular to the nasal floor. Starting at
the front end of every nasal vestibule, the cross-section
intersected at every 1 cm and measured as 1, 2, or 3 cm
(Figure 5). This was followed by an analysis on the repre-
sentative sections of a list of parameters which consisted
of cross-sectional area, pressure, velocity, and others.
With increasing distance from the nostril, the pressure and
velocity in the nasal cavity decreased gradually. Pressure

Table 3. Pressure on the cross-section of the nasal valve area in 20 patients (in Pa).

No. of patients Preoperative Postoperative

Narrow side Non-narrow side Narrow side Non-narrow side

1 –12.0 –6.1 –5.2 –6.3
2 –26.7 –12.7 –16.9 –12.2
3 –19.9 –10.8 –7.0 –10.6
4 –12.9 –6.5 –11.0 –6.5
5 –10.5 –4.2 –5.2 –4.6
6 –31.5 –4.4 –22.8 –4.9
7 –10.6 –5.6 –3.5 –5.0
8 –48.9 –6.8 –7.4 –6.6
9 –26.3 –7.5 –6.8 –7.5
10 –13.2 –7.7 –4.5 –7.4
11 –23.1 –4.7 –10.1 –4.3
12 –26.3 –6.8 –6.6 –6.7
13 –39.1 –6.5 –6.9 –6.6
14 –57.9 –8.9 –8.9 –8.9
15 –66.3 –15.5 –15.6 –15.2
16 –62.5 –15.7 –15.0 –15.6
17 –48.9 –6.8 –12.6 –6.7
18 –27.3 –7.5 –6.8 –7.8
19 –55.9 –9.6 –8.9 –9.8
20 –86.2 – –13.3 –

–77.8 – –5.0 –
Mean ± SD –37.3 ± 23.2*& –8.1 ± 3.4 –9.5 ± 4.9 –8.1 ± 3.4

Patient 20 had bilateral anterior nasal cavity stenosis. * Po0.01 for narrow side vs non-narrow side before
operation. & Po0.01 for preoperative vs postoperative on narrow side (paired t-test).
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on the front region of the inferior turbinate accounted for
68.6±18.3% of the entire nasal cavity in the narrow side,
and 23.3±10.9% in the non-narrow side. Meanwhile, the
mean velocity of the different cross-sections showed that
the velocity at the nasal valve area was relatively higher
and tended to decrease with increasing space.

Discussion

The influence of the nasal cavity structure on nasal
function has been widely studied recently. CFD is a
very sophisticated technique for studying and analyzing
the airflow features of nasal cavity. Lu et al. (11) reported
that the numerical simulation model provides an accu-
rate reflection of nasal airflow, and results obtained by
numerical simulation were consistent with clinical meas-
urements. Abouali and coworkers (12) previously used
the CFD method to study the airflow of nasal cavity and
evaluate the effect of functional endoscopic sinus surgery
on nasal cavity airflow. Garcia et al. (13) and Lee et al.
(14) also used CFD to study the airflow features of the
nasal cavity with pathological structures (inferior turbi-
nate hypertrophy and atrophic rhinitis) and investigate the
effect of postoperative structural change on its airflow.

The CFD analysis and numerical simulation model
demonstrated good correlation. In our study, the major
structure of the nasal cavity model was not simplified. To
improve the precision of numerical simulation, the data
used in this experiment were obtained by spiral 64-slice
CTs with a higher-density resolution for better imaging of
the nasal cavity structure. The model was set to rigid body
dynamics to omit the effect of respiratory-related soft-
tissue deformation which often involves fluid flow and
structural solid coupling. Previous reports have shown that
the model which was affected by fluid-solid coupling, was
generally simplified (9). Zang H et al. (3) claimed that the
normal nasal cavity has a certain heating and humidifying
effect. However, through the inspection of the Grashof
number, Prandtl number, as well as the analysis of heat
transfer, the authors concluded that temperature and
humidity had no significant effect on the internal nasal
airflow under normal breathing conditions. As such, the
temperature change in the nasal cavity was not taken into
account in this study.

In the current study, we set the internal airflow of the
nasal airway to a steady state. In the literature (15), a
study on the nasal cavity airflow under quiet respiration
(7.5–12 L/min), was conducted in a laminar flow where

Table 4. Velocity in the cross-section of the nasal valve area in 20 patients (in m/s).

No. of patients Preoperative Postoperative

Narrow side Non-narrow side Narrow side Non-narrow side

1 3.21 2.63 2.50 2.53

2 5.60 3.73 4.21 3.53
3 3.83 3.41 2.34 3.41
4 3.79 2.26 3.44 2.39

5 3.57 2.00 2.41 2.10
6 5.31 1.79 5.19 1.99
7 3.39 2.26 1.71 2.29

8 7.93 2.04 2.49 2.10
9 5.56 2.49 2.03 2.56
10 3.61 2.99 1.75 2.98
11 5.59 1.79 3.44 1.96

12 5.43 2.45 2.38 2.50
13 7.21 2.36 2.45 2.38
14 6.74 2.48 2.94 2.59

15 8.94 3.78 3.29 3.69
16 9.22 3.21 3.36 3.07
17 7.93 2.04 3.29 2.12

18 5.66 2.49 2.03 2.52
19 6.64 2.58 2.82 2.57
20 10.61 – 4.02 –

10.30 – 2.41 –
Mean ± SD 6.19 ± 2.30*& 2.57 ± 0.60 2.88 ± 0.87 2.59 ± 0.52

Patient 20 had bilateral anterior nasal cavity stenosis. * Po0.01 for narrow side vs non-narrow side before
operation. & Po0.01 for preoperative vs postoperative on narrow side (paired t-test).
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little turbulence was present. Some researchers (16)
concluded that air flowed smoothly in the nasal cavity
under normal breathing. The Strouhal number (oL /UE
0.18) also indicated that the equation, which indicated that
internal nasal airflow was quasi-steady, is reasonable
and feasible. The results of this study showed that the
distribution of pressure and velocity in the nasal cavity
were consistent with the conclusions of several relevant
reports (17–19).

Preoperative structure and airflow of anterior nasal
cavity stenosis

All patients in this study had anterior nasal cavity
stenosis within the nasal valve area. An abnormal stenosis
at the front of the nasal cavity may cause a subjective
ventilation disorder. When numerical simulation was per-
formed at a constant flow rate (400 mL/s) in both sides of
the nasal cavity to ensure constant airflow through the nasal
stenosis area, there was an increase in the pressure dif-
ference at both ends of the nasal stenosis area. A greater
regional pressure difference indicated a higher local nasal
resistance. From clinical viewpoints, we deduced that an
increase in nasal resistance is mainly attributed by nasal
obstructions caused by the narrowest area of the nasal

cavity. From the pressure distribution diagram, it can
be inferred that the pressure drop is mainly confined to
the anterior segment of the nasal cavity, especially within
the nasal valve area. From our data, it is likely that the area
in front of the inferior turbinate is the narrowest area of the
nasal cavity to confer nasal resistance. Results revealed
that the nasal valve area had maximum velocity, and the
velocity on the narrow side of the nasal cavity was higher
than that on the non-narrow side. It can be inferred that the
velocity is inversely proportional to the cross-sectional area
(correlation coefficient R2=0.925; Figure 6).

Effect of nasal cavity structural change on airflow
Our study included a patient with bilateral anterior

nasal cavity stenosis, who underwent bilateral surgery and
was used only for the analysis of pre- and postoperative
conditions, with no contralateral comparison. Our results
of the CFD numerical simulation after CT scanning
showed that the nasal valve area increased greatly.

The cross-sectional areas of the nasal valve increased
at varying degrees among these patients. A signifi-
cant postoperative improvement of nasal ventilation was
observed in all patients. Notably, surgery corrected the
nasal valve stenosis and achieved balanced ventilation

Table 5. Nasal resistance of 20 patients (in Pa.s/mL).

No. of patients Preoperative Postoperative

Narrow side Non-narrow side Narrow side Non-narrow side

1 0.107 0.049 0.089 0.050
2 0.419 0.118 0.279 0.118
3 0.083 0.077 0.032 0.076

4 0.097 0.032 0.082 0.034
5 0.083 0.083 0.060 0.084
6 0.355 0.106 0.316 0.093

7 0.057 0.040 0.030 0.042
8 0.246 0.050 0.061 0.048
9 0.109 0.061 0.050 0.059
10 0.074 0.066 0.032 0.066

11 0.264 0.033 0.073 0.032
12 0.221 0.153 0.144 0.148
13 0.263 0.143 0.157 0.144

14 0.301 0.083 0.122 0.082
15 0.292 0.150 0.092 0.149
16 0.400 0.109 0.148 0.108

17 0.246 0.050 0.067 0.049
18 0.124 0.059 0.049 0.059
19 0.281 0.083 0.127 0.082

20 0.522 – 0.149 –
0.523 – 0.180 –

Mean ± SD 0.241 ± 0.14*& 0.081 ± 0.04 0.111 ± 0.07 0.08 ± 0.038

Patient 20 had bilateral anterior nasal cavity stenosis. * Po0.01 for preoperative narrow side vs non-narrow
side (paired t-test). & Po0.01 for preoperative vs postoperative on narrow side (paired t-test).
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in the bilateral nasal cavities. All factors contributing to
nasal asymmetry can affect pressure, velocity, and air-
flow distributions within the nasal cavity (8). Our results
indicated that the mean resistance in the narrow side of
the nasal cavity was 0.241±0.14 Pa.s/mL preoperatively,
which was significantly higher than that of postoperatively
(0.111±0.07 Pa.s/mL; Po0.01; Table 5). Data confirmed
that surgery reduced nasal resistance and thus improved
nasal breathing. Recent research (20) showed that CFD

could evaluate airflow features after nasal cavity ventila-
tion expansion techniques. In that study, for preoperative
obstructive sleep apnea hypopnea syndrome patients
whose narrowest site was located in the nasal cavity, the
nasal cavity expansion technique reduced the total nasal
resistance. Although only three cases were reported in
the study, their results were consistent with our current
findings. As shown in Figure 7, we found that unilateral

Figure 5. Representative lateral view cross-section
showing the pressure and velocity gradient distribu-
tion from nostril to nasopharynx.

Figure 6. Pre- and postoperative unilateral velocity vs cross-
sectional area at the nasal valve on the narrow side of nasal
cavity.

Figure 7. Pre- and postoperative unilateral nasal resistance vs.
cross-sectional area at the nasal valve on the narrow side of
nasal cavity.
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nasal resistance was correlated with the cross-sectional
area at the nasal valve (correlation coefficient R2=0.609).
Clearly, any increase in the cross sectional area would
reduce nasal resistance.

Postoperatively, the pressure in the narrow side of the
nasal cavity decreased and was comparable to the non-
narrow side (Figure 8). This result shows that surgery can
not only improve local nasal structure and resistance, but
also provide bilateral airflow pressure uniformity.

Our study has confirmed that numerical simulation can
provide a direct and objective basis for the assessment
of pre- and postoperative anterior nasal cavity stenosis

airflow, and also allows for a detailed description of
the biophysics of nasal airflow. The anterior portion of the
inferior turbinate, particularly the nasal valve area, has
the most significant impact on the airflow gradient distri-
bution. For anterior nasal cavity stenosis, CFD can be
used to analyze postoperative nasal airflow features.
Clearly, removal of the stenosis is essential for restoring
nasal ventilation and obtain balanced nasal functions. The
number of patients involved in the present study was
quite small and the data might not be representative of
larger populations. Future studies with larger samples are
needed to prospectively validate our results.
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