
542 Germain DP, et al. J Med Genet 2020;57:542–551. doi:10.1136/jmedgenet-2019-106467

Original research

Use of a rare disease registry for establishing 
phenotypic classification of previously unassigned 
GLA variants: a consensus classification system by a 
multispecialty Fabry disease genotype–phenotype 
workgroup
Dominique P Germain ﻿﻿‍ ‍ ,1 João Paulo Oliveira,2,3 Daniel G Bichet,4,5 Han-Wook Yoo,6 
Robert J Hopkin,7,8 Roberta Lemay,9 Juan Politei,10 Christoph Wanner,11 
William R Wilcox,12 David G Warnock13

Genotype-phenotype correlations

To cite: Germain DP, 
Oliveira JP, Bichet DG, et al. 
J Med Genet 
2020;57:542–551.

►► Additional material is 
published online only. To view 
please visit the journal online 
(http://​dx.​doi.​org/​10.​1136/​
jmedgenet-​2019-​106467).

For numbered affiliations see 
end of article.

Correspondence to
Professor Dominique P Germain, 
French Referral Centre for Fabry 
disease, Division of Medical 
Genetics, University of Versailles, 
Paris-Saclay University, 
Montigny, France;  
​dominique.​germain@​uvsq.​fr

Received 2 August 2019
Revised 13 December 2019
Accepted 3 January 2020
Published Online First 11 March 
2020

© Author(s) (or their 
employer(s)) 2020. Re-use 
permitted under CC BY-NC. No 
commercial re-use. See rights 
and permissions. Published 
by BMJ.

Abstract
Background  Fabry disease (α-galactosidase deficiency) 
is an X-linked genetic disease caused by a variety of 
pathogenic GLA variants. The phenotypic heterogeneity 
is considerable, with two major forms, classic and later-
onset disease, but adjudication of clinical phenotype 
is currently lacking for many variants. We aimed to 
determine consensus phenotypic classification for 
previously unclassified GLA variants from the GLA-
specific ​fabry-​database.​org database.
Methods  A Fabry disease genotype–phenotype 
workgroup developed a five-stage iterative system based 
on expert clinical assessment, published literature and 
clinical evidence of pathogenicity using a 2-point scoring 
system based on clinical hallmarks of classic disease. 
Kaplan–Meier (KM) analysis of severe clinical event-
free survival was used as final validation. Results were 
compared with those from web-based disease databases 
and in silico pathogenicity prediction programmes.
Results  Final consensus on classifications of 
’pathogenic’ was achieved for 32 of 33 GLA variants 
(26 ’classic’ phenotype, 171 males; 6 ’later-onset’ 
phenotype, 57 males). One variant remained of uncertain 
significance. KM curves were similar for the known ​fabry-​
database.​org database phenotypes and when workgroup 
consensus classifications were added, and the curves 
retained the same separation between ’classic’ and 
’later-onset’ phenotypes.
Conclusion  The iterative system implemented by a 
Fabry disease genotype–phenotype workgroup achieved 
phenotypic classifications for variants that were 
previously unclassified. Clinical pathogenicity associated 
with a particular GLA variant defined in affected males 
appears to have predictive value and also generally 
correlates with risk for affected females. The newly 
established classifications can be of benefit to the clinical 
care of Fabry patients harbouring these variants.

Introduction
Fabry disease (OMIM #301500) is a rare, progres-
sive, X-linked inherited, multisystemic, lysosomal 
disorder. It is caused by genetic variations in GLA 
(HUGO Gene Nomenclature Committee ID: 4296; 

Gene Entrez: 2717; NCBI reference sequence: 
NM_000169.2), which encodes α-galactosidase 
(α-Gal, Enzyme Commission number: EC 3.2.1.22; 
UniProt ID: P06280).1 Molecular studies of GLA 
variants have identified a remarkable variety of 
variants underlying the phenotypic heterogeneity 
of this genetic disorder.2–18 At present, nearly 1000 
different GLA variants have been reported (table 1). 
Most of the variants are ‘private’ and confined to 
individual pedigrees with possible variability in 
phenotypic expression due to phenotype-modifying 
factors (eg, genetic background, epigenetics and 
environmental conditions).19 20

GLA variants can be disease-causing (pathogenic 
or likely pathogenic), of uncertain significance, 
likely benign, or benign.1 21–23 In hemizygous males 
with pathogenic GLA variants associated with 
the classic phenotype, clinical symptoms typically 
appear in childhood (eg, diffuse angiokeratomas, 
cornea verticillata, dysaesthesia in the extremi-
ties). α-Gal activity is severely deficient (<1%) or 
absent, and marked accumulation of globotriaosyl-
ceramide (GL-3, Gb3) and globotriaosylsphingosine 
(lyso-GL-3) generally leads to multiorgan failure 
and reduced life expectancy. In contrast, patients 
with pathogenic GLA variants associated with non-
classic, later-onset phenotypes have varying levels 
of residual α-Gal activity, variable age of symptom 
onset and fewer clinical manifestations of Fabry 
disease, often confined to the heart. Phenotypic 
presentations are even more variable in heterozy-
gous female patients due to both the nature and 
type of the GLA variant and the X-chromosome 
inactivation profiles in the various organs.24

Consensus recommendations for the interpreta-
tion of variant pathogenicity have been published 
by the American College of Medical Genetics and 
Genomics (ACMG) and the Association for Molec-
ular Pathology (AMP) and are based on criteria using 
a process incorporating several lines of evidence (eg, 
scientific and medical literature, disease databases, 
in silico prediction programmes, functional data).23 
In parallel, due to the broad heterogeneity in the 
natural history of Fabry patients, there has been 
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Table 1  Types of GLA variants reported in the Human Gene Mutation Database

GLA variant types Number % of total

Missense (pathogenic with classic or later-onset phenotypes, or benign with no or unspecific, Fabry disease-unrelated phenotype) 605 61.0

Nonsense (pathogenic with classic phenotype) 84 8.5

Splicing substitutions (pathogenic with classic or later-onset phenotypes) 49 4.9

Frameshift (pathogenic with classic phenotype)* 253 25.5

 � Small deletions† 140 14.1

 � Gross deletions 39 3.9

 � Small insertions/duplications 43 4.3

 � Gross insertions/duplications 8 0.8

 � Small indels 16 1.6

 � Complex rearrangements (including inversions) 7 0.7

Total 991 100.0

*Small and gross are arbitrarily defined as 20 or less and more than 20 nucleotides, respectively.
†Some small deletions occur in-frame and do not necessarily lead to premature termination of mRNA translation.

increasing interest among experts in the Fabry disease scientific 
community for establishing potential associations between GLA 
genotypes and phenotypic presentations (eg, International Fabry 
Disease Genotype-Phenotype Database (dbFGP, http://​dbfgp.​
org/​dbFgp/​fabry/), ​fabry-​database.​org GLA variant database25) 
in order to optimise clinical management. However, many GLA 
variants remain absent from or unclassified in those gene-specific 
databases.

With over 6500 patients (44% males) enrolled, the Fabry 
Registry has the potential to have several individuals with the 
same genotype, offering a unique opportunity for assessment 
of their phenotypic characteristics. Based on the presence or 
absence of clinical characteristics associated with the classic 
versus the later-onset Fabry phenotype, the multispecialty Fabry 
disease genotype–phenotype workgroup developed a novel 
Fabry phenotype consensus classification system (which we 
present in this paper) to facilitate the classification of GLA vari-
ants reported to the Fabry Registry. This approach was used to 
assign phenotype classifications to variants that had remained 
unassigned in the ​fabry-​database.​org database, provided that the 
required Fabry Registry data were available for at least four male 
patients harbouring a specific GLA variant.

Methods
Fabry disease genotype–phenotype workgroup
The international genotype–phenotype workgroup was 
composed of nine established experts in Fabry disease with 
extensive experience in patients’ clinical care and knowledge 
of GLA variants, including personally observed clinical expres-
sions (all authors of the present paper). They were all Fabry 
Registry Advisory Board members representing four subspecial-
ties (genetics (n=4), nephrology (n=3), neurology (n=1) and 
paediatrics (n=1)) from major referral centres in seven different 
countries. The workgroup met during Registry Advisory Board 
meetings and had telephone conference meetings, with further 
exchange of information via email.

Fabry Registry
Deidentified patient natural history data from the Fabry Registry 
(NCT00196742, sponsor: Sanofi Genzyme) were used in the 
analyses. The Fabry Registry is a multicentre, international, 
longitudinal, observational programme that was initiated in 
2001 and designed to track the natural history and treatment 
outcomes of patients with Fabry disease. Patient and investigator 
participation is voluntary. Recommended schedules of clinical 

assessments are available but treating physicians determine the 
actual frequency of assessments according to a patient’s individ-
ualised need for medical care and routine follow-up.

Consensus procedures
A five-stage iterative system was implemented to reach a final 
consensus on the criteria to classify the phenotypes associated with 
GLA variants that were not classified in the ​fabry-​database.​org 
database.25 This database for clinicians and researchers contains 
published GLA variants in patients with Fabry disease and assess-
ment of the variants’ phenotypes, as reported in the literature, and 
had been operational for several years prior to initiation of the 
current research project (the dbFGP became operational in 2018). 
It was constructed and is maintained by an independent research 
group led by Dr H Sakuraba (Department of Clinical Genetics, Meiji 
Pharmaceutical University, Tokyo, Japan). Standardised Human 
Genome Variation Society nomenclature was used to describe the 
GLA variants26 and, as recommended, standard terminology was 
used for variant classification, that is, ‘pathogenic’ (clinically differ-
entiated as ‘classic’ or ‘later-onset’ phenotype), ‘likely pathogenic’ 
(‘classic’ or ‘later-onset’ phenotype), ‘uncertain significance’, ‘likely 
benign’ and ‘benign’.23 The process was limited to phenotypes in 
male patients, given the multifactorial phenotypic variability in 
female patients with a specific pathogenic GLA variant.

The five stages of the workgroup’s classification system are 
outlined in figure 1 together with an overview of GLA variant 
inclusion and exclusion. In Stage 1, individual workgroup 
members gave preliminary expert clinical assessment of pheno-
type classification for GLA variants that are unclassified in the ​
fabry-­​database.​org database and occurred in ≥5 Fabry patients 
(males and females) enrolled in the Fabry Registry. The prelim-
inary assessment was based on personal clinical observations, 
valuation of published literature and review of the variant’s 
potential deleterious impact on GLA and/or α-Gal function in 
light of established molecular mechanisms. Variants qualified 
for inclusion in Stage 2 if ≥4 male patients having a particular 
variant had Fabry Registry 2-point scoring data available for 
assessment of clinical evidence of pathogenicity (see below). 
Variants categorised as ‘likely benign’ or ‘benign’ not warranting 
in-depth investigation were excluded. In Stage 2, preliminary 
Stage 1 phenotype classifications were confirmed or reassessed 
based on updated ​fabry-​database.​org classifications (May 2016) 
and GLA variant 2-point scores. Unclassified variants, which 
were identified using a reconciled Fabry Registry data download 
(July 2016), were added to the process in Stage 2 if they met the 
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Figure 1  The five stages of the workgroup’s classification system and an overview of GLA variants inclusion and exclusion.

Figure 2  GLA variant 2-point scoring validation and results. aGenetic variant of unknown significance (experts’ opinion in favour of a likely benign GLA 
variant; further research required). *Translation termination codon. Numbers in brackets indicate the number of males who had usable 2-point scoring 
responses (angiokeratomas or cornea verticillata) recorded in the Fabry Registry per variant.

data availability criterion. Some null variants that were present 
in ≥4 male patients, with <4 patients having 2-­point scoring 
data available, were included in the process as the deleterious 
impact of these variants dominated the expert’s clinical pheno-
type overall assessment as ‘classic’.

The assessment of clinical evidence of pathogenicity used a 
GLA variant 2-point scoring system based on absence/presence 
of hallmark symptoms of the classic phenotype of Fabry disease 
(ie, diffuse angiokeratomas and cornea verticillata) as recorded in 
the Fabry Registry (figure 2 and online supplementary methods). 

GLA variant 2-point scores were calculated as follows: the total 
number of positive responses for angiokeratomas or cornea 
verticillata for males having the GLA variant divided by the total 
number of responses for angiokeratomas or cornea verticillata 
status for that variant as a percentage (see online supplementary 
methods for an example of calculation). Two-point scores could 
range from 0% (indicative of probability of lower level of patho-
genicity, that is, ‘later-onset’ variant or non-pathogenicity) to 
100% (highest level of probability of pathogenicity and ‘classic’ 
phenotype). The 2-point scoring system was successfully tested 
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for its precision in distinguishing classic from later-onset Fabry 
phenotypes. Variants known as being associated with the classic 
phenotype (n=5) or a later-onset phenotype (n=4) and (rela-
tively) frequently occurring in male patients enrolled in the Fabry 
Registry (total of 129 and 125 males with usable 2-point scoring 
responses, respectively) were included in the method validation 
process and were appropriately separated (figure 2). In Stage 3, 
the workgroup members performed a detailed review of GLA 
variants that had not reached a consensus phenotype classifica-
tion during Stage 2, and Stage 4 encompassed a final review of 
all assigned phenotype classifications. In Stage 5, Kaplan–Meier 
(KM) analysis of severe clinical event-free survival was performed 
using natural history clinical data from adult male patients 
enrolled in the Fabry Registry and, for further validation, of data 
from female patients (see also ‘Statistical considerations’).

As recommended in the ACMG/AMP guidelines for interpre-
tation of variant pathogenicity,23 our final phenotype classifi-
cations were compared with results obtained from established 
web-based Fabry disease-specific (ie, dbFGP) and broader genetic 
variants databases (ClinVar database and Leiden Open Variation 
Database (LOVD)), and from in silico programmes commonly 
used for prediction of pathogenicity of missense variants (ie, 
Polymorphism Phenotyping V.2 (PolyPhen-2), Scale-Invariant 
Feature Transform (SIFT) and MutationTaster). The Exome 
Aggregation Consortium (ExAC) database was used to retrieve 
the frequencies of variants in the general population, if available.

Statistical considerations
In the KM analysis of severe clinical event-free survival (time to 
median (50%) event-free survival), data were analysed by ​fabry-​
database.​org pathogenicity available for GLA variants (with 
‘classic’ or ‘later-onset’ phenotype) or unclassified variants, and 
by combining phenotype classifications from this database with 
the newly established workgroup consensus classifications. A 
severe clinical event was defined as a composite event including 
renal (kidney transplant, chronic dialysis), cardiac (significant 
cardiac procedures, arrhythmia, angina pectoris, congestive 
heart failure) and cerebrovascular events (stroke) and death. 
Statistical analyses were performed using SAS statistical software 
V.9.2 (SAS Institute, Cary, North Carolina, USA). The log-rank 
test was used to compare the survival distributions for variants 
with ‘classic’ and ‘later-onset’ phenotypes. An alpha level of 0.05 
was used as the criterion for statistical significance.

Results
Stage 1: Preliminary phenotype classification of 55 GLA 
variants
A provisional consensus of ‘pathogenic’ was achieved for 11 
of 55 (20%) variants (10 with the ‘classic’ phenotype and 1 
(p.Arg363His) with a ‘later-onset’ phenotype) (online supple-
mentary table 1). Three variants remained unclassified at this 
stage. Forty-one variants were excluded from further evalua-
tion (see Methods section).

Stage 2: (Re)classification of phenotypes, including new GLA 
variants
Thirty-three GLA variants, including 19 variants added to the 
process using a reconciled Fabry Registry data download, qual-
ified for assessment in Stage 2 (table  2, figure  1). These vari-
ants were found at a mean frequency of 7.6 males per variant 
and were from a total of 252 adult male patients with Fabry 
disease. Preliminary consensus of ‘pathogenic’ was achieved for 
30 of 33 GLA variants, including 25 variants with the ‘classic’ 

phenotype (2-point scores ranging from 60% to 100%) and five 
with a ‘later-onset’ phenotype (2-point scores ranging from 25% 
to 43%) (table 2). The p.Ser238Asn (11 males) missense variant, 
initially classified as ‘pathogenic’ with the ‘classic’ phenotype 
during Stage 1, was reclassified as ‘pathogenic’ with a ‘later-
onset’ phenotype, taking the 2-point score of 36% into account. 
The reclassification of this variant merits caution in clinical 
application of the classification.

Stage 3: Review of GLA variants without consensus 
phenotype classification
During Stage 2, preliminary phenotype consensus was not 
reached for three variants (p.Asp322Glu, c.999+2T>C and 
p.Ala143Thr) (table 2). A further review of the data by the work-
group resulted in consensus for two of these three variants.

The p.Asp322Glu variant was originally reported in the liter-
ature as a pathogenic variant with a classic phenotype, with no 
clinical information provided.27 Using an artificial substrate, 
residual enzyme activity of 1.5% of mean values in normal 
subjects has recently been reported,28 but the low 2-point score 
of 27% (6 males) led to a workgroup classification as ‘patho-
genic’ variant with a ‘later-onset’ phenotype.

The c.999+2T>C splice site variant is an intronic variant at a 
consensus site of splicing,29 which are known to invariably cause 
aberrant splicing.18 Despite having a 2-point score of 40% (4 
males), workgroup consensus was that the classification was a 
‘pathogenic’ variant with the ‘classic’ phenotype, as described 
originally (no clinical information was provided in that report).18

For p.Ala143Thr (2-point score of 27%, 13 males), the classi-
fication could not be established in the present analysis; although 
experts’ opinion was in favour of a ‘likely benign’ variant, addi-
tional research is required (see also Discussion section).

Stage 4: Final review of assigned phenotype classifications
Final review of the 32 of 33 (97%) GLA variants that achieved 
a consensus classification of ‘pathogenic’ (‘classic’ phenotype: 
n=26, 171 males; ‘later-onset’ phenotype: n=6, 57 males) did 
not lead to adjustments (table  2). The p.Ala143Thr missense 
variant remained of uncertain significance (GVUS).

Stage 5: Kaplan–Meier analysis of severe clinical event-free 
survival
For males, the KM analysis included 2266 adult Fabry patients. 
Using the workgroup’s 32 consensus male classifications, 
the GLA variants of 228 of 1305 males (17.5%) in the Fabry 
Registry, previously unclassified in ​fabry-​database.​org (middle 
curve in figure  3A), could be classified as ‘pathogenic’ with 
the ‘classic’ phenotype (n=171) or the ‘later-onset’ phenotype 
(n=57) (figure 3C). Males with pathogenic GLA variants with 
a ‘classic’ phenotype reported first severe events at a younger 
age than those with variants associated with ‘later-onset’ pheno-
types. Median age at first severe event (preinclusion (figure 3A) 
and postinclusion (figure 3E) of consensus classifications, respec-
tively) was 46.8 (n=769) and 46.6 years (n=940) for males with 
variants associated with ‘classic’ phenotypes, 64.6 (n=192) and 
64.6 years (n=249) for males with variants with ‘later-onset’ 
phenotypes and 51.5 (n=1305) and 51.7 years (n=1077) for 
males with unclassified variants.

For females, KM analysis included 2795 patients. Using the 
male consensus classifications, the GLA variants of 244 of 1466 
females (16.6%) in the Fabry Registry, previously unclassified 
(middle curve in figure 3B), could be classified as ‘pathogenic’ 
with ‘classic’ (n=210) or ‘later-onset’ phenotypes (n=34) 
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Table 2  Workgroup GLA variant phenotype classification consensus results; Stages 1–4

Fabry Registry
GLA variants
(n=33) Variant type

No. of males with 
genotype

No. of males with 
genotype and usable 
clinical data*

GLA variant 
2-point score (%)

GLA variant phenotype consensus†

Provisional Final

Stage 1 Stage 2 Stages 3 and 4

p.Trp44Cys Missense 7 5 100 Classic Classic Classic

p.Met284Thr Missense 6 6 100 – Classic‡ Classic

c.777del Frameshift 6 5 100 – Classic‡ Classic

c.1042dup Frameshift 5 3§ 100 – Classic‡ Classic

p.Ser65_Tyr123del Large deletion 4 4 100 – Classic‡ Classic

c.1212_1214del Small deletion 7 1§ 100 – Classic‡ Classic

p.Ser345Pro Missense 11 10 87 Unclassified Classic Classic

c.370-2A>G Splice site 5 5 86 – Classic‡ Classic

c.802–3_802-2del Splice site 5 4 83 – Classic‡ Classic

c.57_82del Frameshift 4 4 83 – Classic‡ Classic

p.Gln283* Nonsense 4 3§ 80 Classic Classic Classic

p.Ala156Thr Missense 5 4 80 Classic Classic Classic

p.Thr194Ile Missense 5 5 80 Classic Classic Classic

c.548–1G>A Splice site 4 4 80 – Classic‡ Classic

c.365_371del Frameshift 6 5 80 – Classic‡ Classic

p.Glu358del Small deletion 13 9 77 Classic Classic Classic

c.1188_1189insT Frameshift 5 4 75 Classic Classic Classic

p.Ala15Glu Missense 6 4 71 – Classic‡ Classic

p.Trp162* Nonsense 7 6 70 Classic Classic Classic

p.Pro259Arg Missense 28 21 69 Classic Classic Classic

p.Trp340Arg Missense 4 4 67 – Classic‡ Classic

p.Thr410Ile Missense 5 5 63 Classic Classic Classic

c.568del Frameshift 4 3§ 60 – Classic‡ Classic

c.639+4A>T Intronic 6 4 60 – Classic‡ Classic

c.1000–10G>A Intronic 4 4 60 – Classic‡ Classic

p.Ile198Thr Missense 8 4 43 – Later-onset‡ Later-onset

c.999+2T>C Splice site 5 4 40 – Unclassified‡ Classic

p.Ser238Asn Missense 11 8 36 Classic Later-onset Later-onset

c.639+919G>A Intronic 13 10 31 – Later-onset‡ Later-onset

p.Arg363His Missense 12 5 29 Later-onset Later-onset Later-onset

p.Asp322Glu Missense 7 6 27 Unclassified Unclassified Later-onset

p.Ala143Thr Missense 24 13 27 Unclassified Unclassified GVUS¶

p.Ile117Ser Missense 6 6 25 – Later-onset‡ Later-onset

*Usable data on angiokeratomas or cornea verticillata status available in the Fabry Registry.
†Phenotypes associated with ‘pathogenic’ GLA variants include ‘classic’ and ‘later-onset’ phenotypes.
‡Novel GLA variants (n=19) resulting from using a more recent Fabry Registry reconciled data download (July 2016) added during Stage 2 of the process (hence the 'dash' in the 
Stage one column).
§Null variant present in ≥4 male patients with <4 patients having 2-point scoring data available. Included in the process as the deleterious impact of the variant dominated the 
expert’s overall clinical phenotype assessment as ‘classic’.
¶Genetic variant of unknown significance; experts’ opinion in favour of a likely benign GLA variant.

(figure  3D). The difference between ages at first report of 
severe events for females with variants with ‘classic’ or ‘later-
onset’ phenotypes was less pronounced as compared with males. 
Median age at first severe event (preinclusion (figure 3B) and 
postinclusion (figure  3F) of consensus classifications, respec-
tively) was 63.4 (n=1073) and 64.0 years (n=1283) for females 
with ‘pathogenic’ variants with ‘classic’ phenotypes, whereas the 
survival function did not reach 50% in both analyses (median 
time could not be computed) for those with variants with ‘later-
onset’ phenotypes (n=256 and n=290, respectively). Median age 
at first severe event (preinclusion and postinclusion of consensus 
classifications) was 66.7 (n=1466) and 66.8 years (n=1222), 
respectively, for females with unclassified variants.

For both males and females, adding the workgroup phenotype 
classifications to the analysis resulted in similar separation for 
patients within the ‘classic’ and ‘later-onset’ phenotype categories 

(figure 3E,F, respectively) as compared with the analysis based 
only on ​fabry-​database.​org classifications (figure 3A,B, respec-
tively) (log-rank test p values<0.0001). This observation further 
validated our classification method.

Comparison of final classifications with other types of variant 
evidence of pathogenicity
The workgroup phenotype classifications were compared with 
results obtained from disease databases and results retrieved 
from in silico programmes. The latter were restricted to missense 
variants (n=15), as null variants (nonsense, frameshift, splice site 
and deletions) are considered very strong evidence of pathoge-
nicity.23 All null variants included in the research had indeed all 
been classified as ‘pathogenic’ with the ‘classic’ phenotype by 
the workgroup. The results of the comparison are shown in the 
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Figure 3  Kaplan–Meier estimates of median age at first reported natural history severe clinical event: male Fabry patients by (A) fabry-database.org 
phenotype classification, (C) workgroup classification and (E) fabry-database.org and workgroup classifications; female Fabry patients by  
(B) fabry-database.org phenotype classification, (D) workgroup classification and (F) fabry-database.org and workgroup classifications. Patients with the 
p.Ala143Thr variant were excluded from the analysis.



548 Germain DP, et al. J Med Genet 2020;57:542–551. doi:10.1136/jmedgenet-2019-106467

Genotype-phenotype correlations

online supplementary table 2. Notable observations, taking the 
aggregate data into account, included the following.

Of the missense variants classified as ‘pathogenic’ with a 
‘later-onset’ phenotype, two of five had a discrepant ‘classic’ 
phenotype classification in the dbFGP database (p.Asp322Glu 
and p.Ile117Ser). These discordant classifications were 
primarily based on results of published in vitro expression 
studies.30 In ClinVar, results of assessments of pathogenicity 
were available for only 7 of 15 missense variants and most were 
based on reports from clinical testing labs without supporting 
information. The p.Trp44Cys variant was listed as being of 
‘uncertain significance’ and the p.Trp340Arg and p.Thr410Ile 
variants as ‘likely pathogenic’, whereas the workgroup classifi-
cations were ‘pathogenic’ with the ‘classic’ phenotype (dbFGP 
database: ‘classic’). In silico predictions supported pathoge-
nicity. In LOVD, 11 missense variants were listed, but classifi-
cations were not available. The in silico programmes predicted 
non-pathogenicity for the p.Arg363His variant, whereas the 
workgroup and dbFGP classified this variant as ‘pathogenic’ 
with a ‘later-onset’ phenotype. A discrepant MutationTaster 
prediction of ‘polymorphism’ was found for the p.Ala15Glu 
missense variant. The p.Ala143Thr variant remained of 
‘uncertain significance’ since the workgroup opinion was in 
favour of a ‘likely benign’ variant and the results from disease 
databases and in silico programmes were inconclusive.

Discussion
A novel, five-stage iterative system for consensus phenotype clas-
sification of GLA variants that had been reported to the Fabry 
Registry but had remained unclassified in the ​fabry-​database.​org 
database was developed. The system is based on expert clinical 
assessment of the Fabry disease genotype–phenotype workgroup 
members, evaluation of published literature, clinical evidence of 
variant pathogenicity in the Fabry Registry (2-point scoring system), 
and severe clinical event-free survival analyses. Final workgroup 
consensus classification of ‘pathogenic’ was achieved for 32 of 33 
GLA variants, including 26 classifications as ‘pathogenic’ with a 
‘classic’ phenotype and 6 with the ‘later-onset’ phenotype. The 
p.Ala143Thr missense variant remained of uncertain significance.

Ascertaining genotype–phenotype associations in Fabry disease 
is complicated by the rarity of the disease, the striking allelic 
heterogeneity with nearly 1000 known GLA variants, the variation 
in clinical expressivity and the lack of published clinical data that 
could support adjudications. Consequently, phenotype classifica-
tion is currently lacking for many GLA variants. Although progress 
has been made in elucidating the natural history of Fabry disease, 
a better understanding of genotype–phenotype relationships is 
needed to predict disease progression, improve the definition 
of interventional studies, set expectations regarding therapeutic 
outcomes and assist in the selection of modality for various current 
and future treatments for Fabry disease.31 32 Published therapeutic 
recommendations highlight the importance of an individualised 
approach to the care of Fabry patients reflecting, among other 
things, genotype, phenotype and gender.22 Therefore, accurate 
phenotype classification of GLA variants, including precise clinical 
differentiation between the ‘classic’ and ‘later-onset’ pathogenic 
phenotypes, and reclassification once new supporting data become 
available, can be of benefit to the clinical care of patients suffering 
from this rare disorder. For example, we found that for 171 male 
patients enrolled in the Fabry Registry, their previously unclassified 
GLA variants could be classified as ‘pathogenic’ with the ‘classic’ 
phenotype. With this knowledge, caregivers could tailor their clin-
ical management strategy to the needs of the patients with this 

severe, progressive phenotype. Available enzyme replacement ther-
apies (ERTs) include agalsidase beta (1 mg/kg body weight every 2 
weeks (EOW)) and agalsidase alfa (0.2 mg/kg EOW). Chaperone 
therapy is restricted to patients with amenable variants, for which 
pathogenicity should have been documented.22

Currently, there is a lack of reference studies in which patients 
with pathogenic variants with ‘classic’ and ‘later-onset’ pheno-
types are analysed separately. This is important, as the disease 
generally progresses at different rates, and some organ involve-
ment may be delayed or absent in ‘later-onset’ phenotypes of 
Fabry disease. A recent study stratified ERT-treated male and 
female patients with ‘pathogenic’ variants by ‘classic’ and ‘later-
onset’ phenotypes based on presence/absence of characteristic 
Fabry disease symptoms and, in males, residual enzyme activity. 
Not surprisingly, that study found that phenotype (ie, ‘classic’ or 
‘later-onset’) is among the strong predictors of the risk to develop 
clinically important events and of decline in renal function.21

There remains doubt as to whether the p.Ala143Thr 
missense variant should be considered pathogenic or not, 
with many lines of evidence in favour of a ‘likely benign’ 
variant.33 34 Much of the debate concerning this ‘likely benign’ 
variant has arisen as a result of screening programmes which 
have identified p.Ala143Thr at a relatively high frequency 
(allele frequencies, ExAC: European population, 0.001271; 
overall population, 0.0007748; that is, at frequencies higher 
than frequencies of 0.0007502 and 0.0004331, respectively, 
reported for the p.Ser126Gly variant which was classified as 
‘likely benign’ in the dbFGP database), with conclusions of 
pathogenicity based on unspecific clinical symptoms in indi-
viduals rather than tissue biopsies.33 34 A retrospective study 
has shown that most males with the p.Ala143Thr variant 
present with significantly high residual α-Gal activity, normal 
lyso-GL-3 levels and absence of renal and cardiac involvement, 
leading those authors to conclude that it is a ‘likely benign’ 
variant,33 whereas another study showed cardiac symptoms 
in 6 of 10 patients with this variant but in association with 
normal α-Gal activity levels.35 It has been hypothesised that, in 
the pedigree of the patient originally described by Anderson,36 
a second yet undiscovered variant of GLA may actually lead to 
manifestations of Fabry disease rather than p.Ala143Thr itself. 
Contributing to the diagnostic dilemma of this genotype, there 
is some evidence that unspecific signs and symptoms described 
are unrelated to Fabry disease based on biopsies in individuals 
with the p.Ala143Thr variant.37 Therefore, further research 
needs to detail the medical history, clinical examination, 
biological workup and biomarkers of Fabry disease (ie, lyso-
GL-3) as well as tissue biopsy data when possible, obtained in 
individuals with this variant who develop unspecific symptoms 
before claiming these are Fabry disease-related.38

Given the X-linked inheritance of Fabry disease, we suggest 
assessing GLA variant pathogenicity in male patients if sufficient 
numbers of patients with the relevant clinical data exist, because of 
the multifactorial phenotypic variability in females with the GLA 
variant. Heterozygous females harbouring a pathogenic variant 
are at risk of developing the same form of phenotype as observed 
in males who have the variant; however, many will develop only 
incomplete phenotypes and some may remain asymptomatic. 
Comparison of severe clinical event-free survival for patients 
enrolled in the Fabry Registry based on existing phenotype classi-
fications with the survival of patients with the previously unclas-
sified GLA variants added to the analysis showed similar survival 
distributions for ‘pathogenic’ variants with ‘classic’ or ‘later-onset’ 
phenotypes for each of the sexes. This may suggest that the propor-
tions of patients with ‘classic’ and ‘later-onset’ phenotypes in the 
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cohorts with unclassified phenotypes approximate the proportions 
in the overall male and female cohorts with established phenotypes. 
Thus, this method based on severe clinical events observed in male 
and female patients provided further validation of the workgroup’s 
phenotype classification efforts.

We also observed that females with variants associated with 
‘later-onset’ phenotypes may not have enough severe events to 
randomise them into clinical trials, whereas in male patients with 
these variants, more severe events were documented.

As recommended by the ACMG/AMP,23 our final classifica-
tions were compared with other lines of evidence of pathoge-
nicity of the studied GLA variants. In silico programmes have 
not been clinically validated for prediction of GLA variant 
pathogenicity, are not able to discriminate between subclasses 
of predictions of ‘pathogenic’ (ie, ‘classic’ vs ‘later-onset’ pheno-
types), can only be used for prediction of pathogenicity of 
missense or splice-site variants and tend to have low specificity. 
We found only one discrepancy (p.Arg363His missense variant) 
between the combined prediction from three programmes and 
phenotype classification from the workgroup and the dbFGP 
database. There were two discrepancies between our classi-
fication of ‘pathogenic’ with a ‘later-onset’ phenotype and 
classifications available in the dbFGP database. However, the 
dbFGP classification of those two variants relied only on results 
from in vitro expression studies,30 39 in the absence of clinical 
reports. Although such studies supportive of a damaging effect 
are recognised as strong evidence of pathogenicity,23 the results 
should be interpreted with caution, as expression studies may 
not reflect the complexities of the in vivo environment. One of 
the variants that was classified differently is the p.Asp322Glu 
variant. Based on diffuse angiokeratoma and cornea verticil-
lata data, workgroup consensus reached at the end of 2016 was 
that this ‘pathogenic’ variant is associated with a ‘later-onset’ 
phenotype. This is strengthened by a recent paper indicating the 
absence of significant renal involvement in this variant.28 GLA 
variant information available in the disease databases ClinVar 
and LOVD was generally limited, and supporting information 
was particularly lacking in the LOVD. To expand the body of 
evidence, researchers, geneticists and clinicians are encouraged 
to share information on GLA variants by submitting complete 
clinical data to existing major databases and publishing their 
molecular findings together with precise clinical descriptions.

We recognise several limitations to our GLA variant pheno-
type classification system. There may have been patient selec-
tion bias towards enrolment of more severely affected patients 
in the Fabry Registry, and 2-point scoring data (angiokeratomas, 
cornea verticillata) were not available for all enrolled patients, 
indicating incomplete recording of clinical assessments. Diffuse 
or widespread angiokeratomas are considered a hallmark of 
classic Fabry disease but the presence of a more limited number 
of ‘red spots’ on the skin is not pathognomonic and may have 
accounted for increased scoring for ‘later-onset’ variants or the 
p.Ala143Thr variant. Similarly, the differential diagnosis of 
Fabry disease cornea verticillata includes a phenocopy that may 
be drug-induced and the result of amiodarone intake in a subset 
of patients with Fabry disease with cardiac arrhythmia.1 The GLA 
variant sample size used for testing the precision of the 2-point 
scoring system was small, and the age of the patients (although 
all were adult males) is not accounted for in the 2-point scoring 
process. Furthermore, the ​fabry-​database.​org database relies 
on curation and quality of the published literature.25 Last, the 
analysis did not include biochemical parameters performed by 
a single central reference lab (enzyme activity, lyso-GL-3) and 
no in vitro GLA variant expression studies could be performed.

In conclusion, our validated approach for clinical pheno-
typing based on clinical data from Fabry patients enrolled in 
the Fabry Registry was able to predict the phenotypic manifes-
tations for GLA variants that had no prior phenotype classifi-
cation documented in the ​fabry-​database.​org database. Clinical 
pathogenicity associated with a particular GLA variant defined 
in affected males appears to have predictive value and generally 
correlates with risk for affected females. The newly established 
phenotype classifications can be of benefit to the clinical care of 
Fabry patients harbouring these GLA variants.
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