Peer

Genome-wide identification and expression analysis of the VQ gene family in soybean (*Glycine max*)

Yongbin Wang^{1,2,*}, Zhenfeng Jiang^{1,*}, Zhenxiang Li³, Yuanling Zhao², Weiwei Tan², Zhaojun Liu², Shaobin Cui⁴, Xiaoguang Yu⁴, Jun Ma⁴, Guangjin Wang⁵ and Wenbin Li¹

- ¹ Key Laboratory of Soybean Biology in Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
- ² Biotechnology Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
- ³ Harbin Normal University, Harbin, Heilongjiang, China
- ⁴ Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
- ⁵ Soybean Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
- These authors contributed equally to this work.

ABSTRACT

Background. VQ proteins, the plant-specific transcription factors, are involved in plant development and multiple stresses; however, only few articles systematic reported the VQ genes in soybean.

Methods. In total, we identified 75 GmVQ genes, which were classified into 7 groups (I-VII). Conserved domain analysis indicated that VQ gene family members all contain the VQ domains. VQ genes from the same evolutionary branches of soybean shared similar motifs and structures. Promoter analysis revealed that *cis*-elements related to stress responses, phytohormone responses and controlling physical as well as reproductive growth. Based on the RNA-seq and qRT-PCR analysis, GmVQ genes were showed expressing in nine tissues, suggesting their putative function in many aspects of plant growth and development as well as response to stress in *Glycine max*.

Results. This study aims to understand the roles of VQ genes in various development processes and their expression patterns in responses to stimuli. Our results provide basic information in identification and classification of GmVQ genes. Further experimental analysis will allows us to know the functions of GmVQs participation in plant growth and stress responses.

Subjects Agricultural Science, Bioinformatics, Genomics, Plant Science Keywords VQ gene family, Glycine max, Gene expression, Phylogenetic analysis, Bioinformatics

INTRODUCTION

VQ genes are plant specific genes, which involved in plant development and multiple stress responses (*Cheng et al., 2012*). A conserved amino acid region has been identified within them, which composed of approximately 50–60 amino acids with a highly conserved the FxxhVQxhTG motif (*Jing & Lin, 2015*). The VQ domain possesses multiple biological functions in VQ proteins, such as the mutant strain of AtVQ14 (changes from IVQQ to

Submitted 18 March 2019 Accepted 17 July 2019 Published 21 August 2019

Corresponding authors Guangjin Wang, gjw1962@yeah.net Wenbin Li, wenbinli@neau.edu.cn, wenbinli@yahoo.com

Academic editor Vladimir Uversky

Additional Information and Declarations can be found on page 23

DOI 10.7717/peerj.7509

Copyright 2019 Wang et al.

Distributed under Creative Commons CC-BY 4.0

OPEN ACCESS

EDLE) in the VQ domain result in producing small seeds, nevertheless the mutations in other locations does not have this characteristic (*Wang et al., 2010*). Furthermore, studies have reported that VQ genes are different in plants and do not have any intron in higher plants, whereas most VQ genes contain one or more introns in moss (*Li et al., 2014*; *Jiang, Sevugan & Ramachandran, 2018*; *Dong et al., 2018*).VQ proteins can interact with the WRKY proteins, for example, SIB1 and SIB2 are also VQ proteins, they were interacted with WRKY33 by recognizing the WRKY domain in C-terminal to activating the defense of plants (*Lai et al., 2011*).

VQ proteins were reported in dicotyledon such as Arabidopsis thaliana (Cheng et al., 2012), Vitis vinifera (Wang et al., 2015), Camellia sinensis (Guo et al., 2018), and monocotyledon such as Oryza sativa (Kim et al., 2013a; Kim et al., 2013b), Zea mays (Song et al., 2016). VQ proteins perform a variety of functions in plant development. For example, IKU1 (AT2G35230) is one of the VQ protein, it involved in regulating endosperm development and affect the seed formation during plant growth (Garcia & Berger, 2003). Under the far-red and low intensity of white light conditions, over expression of AtVQ29 can reduces the hypocotyl growth and it has higher expression in stem cells (Perruc et al., 1999). Furthermore, VQ genes regulate varying functions under abiotic and biotic stresses. AtCaMBP25 (also named AtVQ15) overexpression in transgenic plants had highly sensitive to osmotic stress in germination and early growth of seeds (Perruc et al., 1999). AtVQ9 alleviated the activity of WRKY8 under salt stress (Hu et al., 2013). The transcript levels of AtVQ23 and AtVQ16 are strongly induced by Botrytis cinerea infection and SA stress (Lai et al., 2011).

Glycine max is an important economic crop, widely cultivated in a number of countries. They are often subjected to abiotic stresses during the growth process, such as drought, high salinity, and other abiotic stresses were severely influenced on soybean production (*Liu & Li*, 2010). Therefore, identification of resistance genes has great significance for improving the yield and quality of soybean through molecular breeding. In this study, we identified 75 VQ genes of the soybean genome, and analyzed their phylogenetic, evolutionary motif, structure, promoter, and expression pattern. In addition, we analyzed the *GmVQs*'s expression level in different multiple abiotic stresses. Our results provide a basic information on identification and classification of *GmVQs* participate in plant growth and stress responses.

MATERIALS & METHODS

Identification of VQ genes

The Hidden Markov Model (HMM) profiles of the VQ motif PF05678 were downloaded from the Pfam database (*Punta et al., 2012*). HMM searched VQ motif (PF05678) from the *G. max* proteins database with the values (e-value) cut-off at 0.1 (*Punta et al., 2012*). The integrity of the VQ motif was determined using the online program SMART (http://smart.embl-heidelberg.de/) with an e-value < 0.1 (*Letunic, Doerks & Bork, 2012*). In addition, the three fields (length, molecular weight, and isoelectric point) of each VQ

protein were predicted by the online ExPasy program (http://www.expasy.org/tools/) (*Rueda et al., 2015*).

Phylogenetic analysis

To investigate the phylogenetic relationship of the VQ gene families among A. thaliana, O. sativa, and G. max, AtVQ and OsVQ proteins were downloaded from phytozomes (http://www.phytozome.org) based on the previous studies (*Cheng et al., 2012; Li et al., 2014; Goodstein et al., 2012)*. VQ proteins were aligned using the BioEdit program. A neighbor-joining (NJ) phylogenetic tree was constructed using these proteins through MEGA7.0 software (*Tamura et al., 2011*). Bootstrapping was performed with 1,000 replications. Genes were classified according to the distance homology with A. thaliana and O. sativa genes (*Cheng et al., 2012; Li et al., 2014*).

Sequence alignment, motif prediction and gene structure of *GmVQ* genes

Multiple alignments of the VQ full length proteins were conducted using Jalview software with default parameter settings. The online MEME analysis used to identify the unknown conserved motifs (http://meme.ebi.edu.au/meme/intro.html) using the following parameters: site distribution: zero or one occurrence (of a contributing motif site) per sequence, maximum number of motifs: 20, and optimum motif width \geq 6 and \leq 200 (*Bailey et al., 2015*). A gene structure displaying server program (http://gsds.cbi.pku.edu.cn/index.php) was used to show the structure of *Glycine max VQ* gene.

Gene duplication and collinearity analysis

The physical locations of the *GmVQ* genes on the soybean chromosomes were mapped by using MG2C website (http://mg2c.iask.in/mg2c_v2.0/). The analysis of synteny among the soybean genomes was conducted locally using a method similar to the one developed for the PGDD (http://chibba.agtec.uga.edu/duplication/) (*Krzywinski et al., 2009*). First, BLASTP, OrthoMCL software (http://orthomcl.org/orthomcl/about.do#release) and MCScanX software (*Wang et al., 2012*) were used to search for potential homologous gene pairs (E < 1 e⁻⁵, top five matches) across multiple genomes. Then, these homologous pairs were used as the input for the PGDD database (http://chibba.agtec.uga.edu/duplication/). Ideograms were created using Circos (*Krzywinski et al., 2009*).

Calculating Ka and Ks

The *Ka* and *Ks* were used to assess the selection history and divergence time of gene families (*Li, Gojobori & Nei, 1981*). The number of synonymous (*Ks*) and nonsynonymous (*Ka*) substitutions of duplicated *VQ* genes was computed by using the KaKs_Calculator 2.0 with the NG method (*Xu et al., 2018*). The divergence time (*T*) was calculated using the formula $T = Ks/(2 \times 6.1 \times 10^{-9}) \times 10^{-6}$ million years ago (MYA) (*Kim et al., 2013a; Kim et al., 2013b*).

VQ genes expression analysis of soybean

The expression data of VQ genes in different tissues, including seed, pod, SAM, stem, flower, leaf, root, root hair and nodule, is available in Phytozome V12.1 database (https://phytozome.jgi.doe.gov/pz/portal.html). The expression profile for VQ genes was utilized for generating the heatmap and k-means clustering using R 3.2.2 software (*Gentleman et al., 2004*).

Plant material and treatments

Glycine max (Williams 82) was used in this study. Seeds were planted in a 3:1 (w/w) mixture of soil and sand, germinated, and irrigated with half-strength Hoagland solution once every 2 days. The seedlings were grown in a night temperature of 20 °C and day temperature of 22 °C, relative humidity of 60 %, and a 16/8 h photoperiod (daytime: 05:00–21:00). After 4 weeks, the germinated seedlings were treated with 20% PEG6000 (drought), 250 mM NaCl solution (salt), 4 °C (cold), 100 μ M abscisic acid (ABA), 100 μ M salicylic acid (SA) solutions. Control and treated seedlings were harvested 1 h, 6 h, 12 h, and 24 h after treatment. All samples were frozen in liquid nitrogen and stored at -80 °C until use.

RNA extraction and Quantitative real-time PCR (qRT-PCR)

Total RNA was extracted from *G. max* using RNAiso Plus (TaKaRa, Tokyo, Japan) according to manufacturer's instructions. The cDNA synthesis was carried out with approximately 2 μ g RNA using PrimeScript RT reagent Kit with gDNA Eraser (TaKaRa, Tokyo, Japan). Quantitative Real-time PCR (qRT-PCR) was performed using SYBR *Premix Ex Taq* II (TaKaRa, Tokyo, Japan) on an ABI Prism 7000 sequence detection system (Applied Biosystems, USA) with the primers listed in Table S1. PCR amplification was performed in accordance with SYBR *Premix Ex Taq* (TaKaRa, Tokyo, Japan) response system. For each sample, three technical replicates were conducted to calculate the averaged Ct values. Relative expression was calculated by the $2^{-\Delta\Delta Ct}$ method (*Livak & Schmittgen, 2001*). The actin and GAPDH genes were used as internal control.

Gene Ontology Enrichment

Once the sequences were obtained ran a BLASTX search against the UNIPROT database at a 1e-30 significance level. The matches were extracted and compared to the GO annotation generated against UNIPROT hits located at EBI. The GO annotation of the GmVQ genes by using WEGO 2.0 website (http://wego.genomics.org.cn/).

Analyzed the cis-elements of GmVQ promoters

The *cis*-elements of *GmVQ* promoters were analyzed to further understand the *GmVQ* gene family. We examined the sequences within 1,500 base pairs (bp) upstream of initiation codons (ATG) for promoter analysis and searched for these sequences in the soybean genome. The *cis*-elements in promoters were subsequently searched using the PlantCARE database (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/).

Gene interaction network

Protein sequence of *GmWRKY* transcription factors were obtained from the genome database of soybean, also were mapped to the WRKY proteins of Arabidopsis by BLASTP

tool in the TAIR database. Subsequently, the interaction between *GmVQs* and *GmWRKYs* were forecasted based on the PAIR website (https://rc.webmail.pair.com/), and their network was drawn in Cytoscape 3.6.1.

RESULTS

Identification of GmVQs

Hidden Markov Model (HMM) of the VQ motif (PF05678) was used to search for putative VQs in soybean proteins database. A total of 75 VQs were identified and were named from GmVQ1 to GmVQ75 based on their physical locations on the chromosomes. This is different from the previous study, which 74 GmVQs were identified before the database updated (*Wang et al., 2014; Zhou et al., 2016*). ExPasy predicted that these 75 VQ proteins have different physical and chemical properties whose amino acid lengths ranged from 89 aa (GmVQ37) to 486 aa (GmVQ18), with an average of 223 aa and most of them were less than 300 aa. The molecular weights of these 75 VQ proteins ranged from 10.03 kDa (GmVQ37) to 52.79 kDa (GmVQ18) and their isoelectric points ranged from 4.29 (GmVQ69) to 10.74 (GmVQ51) (Table 1).

Phylogenetic analysis and multiple alignment of the VQ genes

To explore the phylogenetic relationships among the VQ genes of soybean, *A. thaliana* and *O. sativa*, a NJ phylogenetic tree was constructed (Fig. 1). We found that soybean and *A. thaliana* have a closer relationship than rice. Based on their relationship with AtVQs and OsVQs and the characteristics of GmVQs' core domain, they were divided into 7 groups, designated Group I-VII (Figs. 1 and 2). For the 75 GmVQ proteins, Group VI contains two VQ proteins; Group V has the biggest amount, with 17 VQ proteins. Groups I, II, III, IV, VII contain 7, 15, 8, 12, 14 members respectively. At the same time, we found 5 types of VQ specificity domain: FxxxVQxLTG (54/75), FxxxVQxFTG (16/75), FxxxVQxVTG (2/75), FxxxVQxLTR (1/75), FxxxVQxLTS (1/75), besides, there is also a GmVQ protein (GmVQ10) has partial domain deletion (Fig. 2). Different types of VQ domains indicate that they might have different biological functions.

Conserved motifs and gene structures of the VQ gene family

We predicted that the 75 GmVQs contained 20 conserved motifs, with the motif length ranged from 11 aa to 50 aa (Fig. S1). Every GmVQ member contains 1-7 conserved motifs (Fig. 3B). All of the proteins, excepted GmVQ22, show motif 1 which contains a specialty VQ domain. Additionally, an unrooted phylogenetic tree was constructed with VQ protein sequences, suggested that the motifs organization of VQ genes were consistent with the phylogenetic tree (Fig. 3A). Group V contains motif 4, Group IV contains motif 2. We found that most groups possess more than two motifs, suggested that every group might have special functions with a highly conserved amino acid residue. Through the VQ gene structures analysis, half of the group VI has introns; genes in group V have longer coding regions, while genes of group I have shorter coding regions than other groups (Fig. 3C). Interestingly, 78.67% (59/75) of GmVQ genes are intronless genes. It is speculated that a large number of introns might be lost in VQ genes during evolution. The phylogenetic

Table 1 List of all GmVQ genes identified in the Glycine max genome. Gene name Gene locus **Chromosome location** Length (aa) Molecular Family pI weight (Da) group GmVQ1 Glyma01G018700 chr1:1790049-1792039 318 10.66 34712.78 VII 10.24 VII GmVQ2 Glyma01G096800 chr1:31515839-31517715 289 31636.98 VII GmVQ3 Glyma01G195300 chr1:52952165-52953181 154 9.48 16878.08 GmVQ4 Glyma02G208800 chr2:39393500-39394691 212 9.96 23346.3 VII Glyma03G120700 VI GmVQ5 chr3:33242128-33243660 233 7.79 24442.59 GmVQ6 Glyma03G127800 chr3:34231323-34232268 167 4.79 18699.76 Ι GmVQ7 Glyma03G204900 chr3:41299415-41300202 9.84 Π 119 13358.41 GmVQ8 127 9.11 Ι Glyma03G249100 chr3:44529232-44529956 14693.84 GmVQ9 Glyma04G099600 chr4:9115245-9116947 287 10.12 31433.71 VII V GmVQ10 Glyma04G103200 chr4:9567274-9568529 205 9.14 22493.86 GmVQ11 Glyma04G103300 chr4:9570059-9571000 6.64 V 313 34199.48 I GmVQ12 Glyma04G134200 chr4:19214276-19215243 127 6.7 14519.25 GmVQ13 Glyma04G214700 chr4:48626650-48627708 212 5.9 22930.94 Π GmVQ14 Glyma04G239400 chr4:50786868-50788346 240 8.96 26255.85 Π VII GmVQ15 Glyma05G107500 186 chr5:28551166-28551996 8.48 20503.94 GmVQ16 Glyma05G133000 7.79 V chr5:32592583-32593521 211 23513.49 GmVQ17 Glyma05G140700 chr5:33359443-33360263 113 5.43 12313.85 III GmVQ18 Glyma05G179700 chr5:36744975-36747458 486 6.12 52793.72 V GmVQ19 Glyma05G190000 chr5:37570564-37571544 208 6.84 22399.46 Π 9.52 IV GmVQ20 Glyma05G198400 chr5:38262465-38265127 186 20618.64 GmVQ21 Glyma06G101400 chr6:8043143-8044571 295 10.28 32310.83 VII GmVQ22 341 6.06 V Glyma06G104400 chr6:8309457-8311289 37163.76 V GmVQ23 Glyma06G104500 316 chr6:8314638-8315685 6.48 34579.04 Glyma06G124400 Π GmVQ24 chr6:10128263-10129012 249 8.11 27136.69 GmVQ25 Glyma06G151400 chr6:12350255-12351217 222 5.97 24195.35 Π GmVQ26 Glyma06G240300 IV chr6:39620687-39622549 244 7.79 26839.89 IV GmVQ27 Glyma07G028700 chr7:2307932-2309158 193 9.98 20948.74 GmVQ28 Glyma07G092500 chr7:8632559-8633302 247 5.97 27087.07 Π GmVQ29 Glyma07G198000 chr7:36647302-36650373 310 8.42 33741.87 IV IV GmVQ30 Glyma08G005700 chr8:456890-461071 9.1 17419216.73 GmVQ31 Glyma08G041900 chr8:3320834-3322022 140 6.9 15589.54 Π V GmVQ32 Glyma08G087400 chr8:6616587-6617687 221 6.91 24350.54 GmVQ33 Glyma08G096000 chr8:7331414-7331749 111 6.26 12060.59 III GmVQ34 Glyma08G137300 chr8:10495440-10498069 472 6.33 51419.34 V 198 GmVQ35 Glyma08G147600 chr8:11258747-11259761 6.51 21201.12 Π GmVQ36 Glyma08G157900 chr8:12235183-12236400 141 5.63 15964.98 III GmVQ37 Glyma08G176500 chr8:14151104-14151373 89 7.89 10029.37 III IV GmVQ38 Glyma08G214100 194 9.69 21099.11 chr8:17287863-17288952 VII Glyma08G272000 292 10.39 GmVQ39 chr8:35627645-35629488 32000.2 GmVQ40 Glyma08G272100 chr8:35632723-35638206 361 9.8 39876.98 VII

(continued on next page)

PeerJ

Table 1 (continued)

Gene name	Gene locus	Chromosome location	Length (aa)	pI	Molecular weight (Da)	Family group
GmVQ41	Glyma08G272200	chr8:35665488-35667249	299	10.24	32844.1	VII
GmVQ42	Glyma08G308400	chr8:42711855-42712403	182	4.3	20461.87	VII
GmVQ43	Glyma09G051900	chr9:4508892-4509626	244	6.48	27252.83	V
GmVQ44	Glyma09G111800	chr9:22128197-22129301	203	7.11	22686.53	III
GmVQ45	Glyma09G183700	chr9:40881519-40882250	243	6.13	26618.56	II
GmVQ46	Glyma10G273300	chr10:49575568-49576678	191	7.83	20981.58	II
GmVQ47	Glyma11G046400	chr11:3468797-3469599	155	9.16	16952.31	VII
GmVQ48	Glyma11G239600	chr11:33399330-33401730	439	7.02	47710.64	V
GmVQ49	Glyma12G153600	chr12:23455875-23457485	248	7.02	27499.55	IV
GmVQ50	Glyma12G225200	chr12:38479959-38482769	246	7.17	27184.17	IV
GmVQ51	Glyma13G005100	chr13:1422443-1424046	224	10.74	23979.57	V
GmVQ52	Glyma13G039800	chr13:12310527-12311616	240	10.11	25791.06	II
GmVQ53	Glyma13G178500	chr13:29211898-29216138	281	9.8	30474.04	IV
GmVQ54	Glyma13G193800	chr13:30709903-30710253	116	5.14	13478	Ι
GmVQ55	Glyma13G218400	chr13:33181476-33181778	100	9.05	11045.26	III
GmVQ56	Glyma13G238100	chr13:34835450-34840141	260	9.54	27989.72	IV
GmVQ57	Glyma13G276100	chr13:37756820-37759545	249	7.91	27358.41	IV
GmVQ58	Glyma14G002800	chr14:293552-294736	161	9.68	17490.39	V
GmVQ59	Glyma14G124800	chr14:19432507-19433220	237	8.85	25366.52	II
GmVQ60	Glyma14G172200	chr14:42617341-42619795	429	6.59	46407.55	V
GmVQ61	Glyma15G075200	chr15:5769826-5772617	199	9.77	21595.31	IV
GmVQ62	Glyma15G158200	chr15:13251793-13252987	252	7.16	27774.66	V
GmVQ63	Glyma15G232200	chr15:43662201-43662912	122	6.65	14310.95	Ι
GmVQ64	Glyma15G249800	chr15:47637825-47638440	89	7.89	10074.51	III
GmVQ65	Glyma15G268300	chr15:50482677-50484349	158	7.74	17892.46	III
GmVQ66	Glyma17G159600	chr17:13790434-13791675	190	9.3	21149.77	VII
GmVQ67	Glyma17G182600	chr17:22616386-22616835	149	9.27	16873.05	V
GmVQ68	Glyma18G017800	chr18:1285879-1287658	454	6.45	48264.96	V
GmVQ69	Glyma18G108600	chr18:12426789-12427328	179	4.29	20004.4	VII
GmVQ70	Glyma19G125300	chr19:38346007-38347425	232	9.64	24435.6	VI
GmVQ71	Glyma19G130400	chr19:39031134-39032107	168	5.16	18878.02	Ι
GmVQ72	Glyma19G202300	chr19:45923283-45923992	124	9.7	13533.53	II
GmVQ73	Glyma19G246700	chr19:49331581-49332332	102	9.19	11775.23	Ι
GmVQ74	Glyma20G064500	chr20:21930212-21930913	233	10.51	25070.57	V
GmVQ75	Glyma20G116600	chr20:35927408-35928282	157	5.9	17333.32	II

Figure 1 Phylogenetic tree analysis of the VQ genes in *Glycine max, Arabidopsis thaliana* and *Oryza sativa*. The phylogenetic tree was constructed using MEGA 7.0 by the neighbor-joining method. The Bootstrap value was 1,000 replicates. The three plant-specific clusters were designated as group I-VII and indicated in a specific color.

tree shows that genes from same branches have similar gene structures, while those from different branches have different gene structures (Fig. 3A).

Chromosome location and gene duplication

We drew a chromosomal location map of GmVQ genes on each chromosome (Fig. 4). GmVQs are distributed on all soybean chromosomes, except chromosome 16, and were densely distributed on chromosome 8 and chromosome 13, containing 13 and 7 members, respectively (Fig. 4). Most of GmVQs are distributed on the two ends of chromosomes. Segmental or tandem duplicate in many gene families are the main expanding way in plants. To better study the evolution of GmVQ genes, we further explored gene duplication events using the MCScanX software. We found that 52 pairs of genes originated from segmental duplication, and 4 pairs of genes involved in tandem duplication events (Table S2).

Evolution and divergence of the *VQ* gene family in soybean and *Arabidopsis*

With the OrthoMCL software, we found 56 paralogous pairs in soybean, 37 orthologous pairs between soybean and Arabidopsis. Some *VQ* genes have never had any homology genes. All the paralogous and orthologous pairs are listed in Table 2. At the same time, we

found that two or more GmVQ genes match to one AtVQ gene, implying that they might promote the expansion of the VQ gene family during evolution. We calculated Ka/Ks ratios of 55 paralogous pairs in soybean (Table 3). Most Ka/Ks ratios are <1, however, the GmVQ54/GmVQ63 and GmVQ65/GmVQ36 pairs are <1. In addition, the genetic differentiation of the 55 gene pairs occurred between 5 and 30 MYA.

Expression analysis of GmVQ genes among various tissues

Sixty-seven GmVQ genes were investigated using available RNA-seq data from nine different tissues (seed, pod, SAM, stem, flower, leaf, root, nodule, and root hair) (Fig. 5). We found that the expression levels of the GmVQs varied significantly in different tissues.Most GmVQ genes were found expressed in more than one detected organ. As shown in Fig. 5, genes in group A are expressed in all analyzed tissues. The expression levels of group B in pod and stem tissues are higher. Genes in group C have specific expression in leaf and root.

Expression patterns of GmVQs under abiotic stress

We randomly selected 25 GmVQ genes from seven groups, and made sure their responses to the plant hormones-, cold-, salt-, and drought-stress (Figs. 6–10). Under ABA treatment, most genes were up-regulated whole treatment period and six genes (GmVQ6/8/31/33/59/71) were obviously down-regulated at some treatment time points (Fig. 6, Table S3). The expression levels of seven genes (GmVQ2/27/40/48/53/68/74) reached the peak at the 6 h treatment time point and four genes (GmVQ9/21/31/71) reached the lowest expression levels at the early treatment time points (0–1 h treatment). With SA treatment, the expression levels of most GmVQs were down-regulated throughout, while GmVQ7 was up-regulated at 1 h, 6 h and 12 h treatment time points (Fig. 7, Table S4). In addition, nine GmVQ genes (GmVQ5/6/8/23/31/68/70/71/74) were down-regulated under all abiotic stress.

With cold treatment, the expression levels of fourteen GmVQ genes (GmVQ2/7/9/28/29/31/33/40/46/48/53/59/68/74) were up-regulated throughout (Fig. 8, Table S5), while the expression levels of three genes (GmVQ27/64/65) were down-regulated and then up-regulated during treatment. Under salt stress, the results were similar to that with cold stress treatment, most genes were up-regulated, eight genes (GmVQ9/23/27/33/65/68/70/71) were down-regulated throughout (Fig. 9, Table S6).

Full-size 🖾 DOI: 10.7717/peerj.7509/fig-4

On the contrary, under drought (PEG) stress, most genes were down-regulated, only eight genes (GmVQ2/6/7/8/21/29/33/48) were up-regulated during the treatment (Fig. 10, Table S7).

Cis-elements in GmVQ promoters

We found many hormone- and stress- related promoter's *cis*-elements in GmVQ genes. Enhancer regions (CAAT-box) and core promoter element are around -30 bp of transcription start (TATA-box). *Cis*-acting regulatory element (A-box) are the common

Gm-Gm Gm-Q3/GmVQ47 GmVQ24/GmVQ59 GmVQ37/AtVQ1 GmVQ37/AtVQ1 GmVQ37/AtVQ1 GmVQ37/AtVQ1 GmVQ37/AtVQ1 GmVQ37/AtVQ1 GmVQ37/AtVQ1 GmVQ37/AtVQ1 GmVQ37/GmVQ47 GmVQ37/GmVQ45 GmVQ37/AtVQ1 GmVQ64/AtVQ3 GmVQ44/AtVQ3 GmVQ21/GmVQ45 GmVQ37/GmVQ41 GmVQ29/GmVQ56 GmVQ29/AtVQ3 GmVQ29/GmVQ56 GmVQ29/AtVQ5 GmVQ47/AtVQ5 GmVQ47/AtVQ10 GmVQ47/AtVQ11 GmVQ47/AtVQ	_		
GmVQ3/GmVQ47 GmVQ24/GmVQ59 GmVQ37/AtVQ1 GmVQ5/GmVQ70 GmVQ27/CmVQ38 GmVQ4/AtVQ1 GmVQ6/GmVQ71 GmVQ28/GmVQ33 GmVQ4/AtVQ3 GmVQ7/GmVQ72 GmVQ29/GmVQ53 GmVQ24/AtVQ3 GmVQ9/GmVQ73 GmVQ29/GmVQ66 GmVQ29/AtVQ3 GmVQ10/GmVQ21 GmVQ34/GmVQ68 GmVQ29/AtVQ5 GmVQ10/GmVQ22 GmVQ34/GmVQ68 GmVQ29/AtVQ5 GmVQ10/GmVQ23 GmVQ37/GmVQ64 GmVQ35/AtVQ5 GmVQ10/GmVQ23 GmVQ39/GmVQ48 GmVQ36/AtVQ5 GmVQ11/GmVQ23 GmVQ39/GmVQ41 GmVQ46/AtVQ8 GmVQ11/GmVQ25 GmVQ40/GmVQ2 GmVQ21/AtVQ9 GmVQ11/GmVQ25 GmVQ40/GmVQ2 GmVQ21/AtVQ9 GmVQ11/GmVQ25 GmVQ40/GmVQ2 GmVQ21/AtVQ10 GmVQ11/GmVQ25 GmVQ40/GmVQ2 GmVQ21/AtVQ10 GmVQ11/GmVQ25 GmVQ40/GmVQ2 GmVQ21/AtVQ10 GmVQ11/GmVQ59 GmVQ40/GmVQ75 GmVQ38/AtVQ10 GmVQ11/GmVQ46 GmVQ46/CmVQ75 GmVQ38/AtVQ10 GmVQ18/GmVQ68 GmVQ48/GmVQ26 GmVQ38/AtVQ11 GmVQ18/CmVQ33	Gm-Gm	Gm-Gm	Gm-At
GmVQ5/GmVQ70 GmVQ27/GmVQ38 GmVQ6/AtVQ1 GmVQ6/GmVQ71 GmVQ28/GmVQ45 GmVQ1/AtVQ3 GmVQ7/GmVQ72 GmVQ29/GmVQ53 GmVQ24/AtVQ3 GmVQ8/GmVQ73 GmVQ29/GmVQ56 GmVQ29/AtVQ3 GmVQ10/GmVQ11 GmVQ29/GmVQ56 GmVQ33/AtVQ5 GmVQ10/GmVQ22 GmVQ34/GmVQ48 GmVQ33/AtVQ5 GmVQ10/GmVQ23 GmVQ39/GmVQ40 GmVQ66/AtVQ5 GmVQ10/GmVQ23 GmVQ39/GmVQ40 GmVQ66/AtVQ5 GmVQ11/GmVQ23 GmVQ39/GmVQ40 GmVQ46/AtVQ5 GmVQ11/GmVQ23 GmVQ39/GmVQ2 GmVQ21/AtVQ9 GmVQ11/GmVQ23 GmVQ40/GmVQ41 GmVQ21/AtVQ9 GmVQ11/GmVQ55 GmVQ40/GmVQ2 GmVQ21/AtVQ9 GmVQ11/GmVQ52 GmVQ41/GmVQ2 GmVQ21/AtVQ9 GmVQ14/GmVQ52 GmVQ43/GmVQ69 GmVQ24/AtVQ10 GmVQ14/GmVQ52 GmVQ43/GmVQ57 GmVQ37/AtVQ10 GmVQ14/GmVQ52 GmVQ43/GmVQ57 GmVQ37/AtVQ11 GmVQ14/GmVQ53 GmVQ43/GmVQ57 GmVQ37/AtVQ10 GmVQ14/GmVQ53 GmVQ43/GmVQ57 GmVQ37/AtVQ11 GmVQ16/GmVQ33 <t< td=""><td>GmVQ3/GmVQ47</td><td>GmVQ24/GmVQ59</td><td>GmVQ37/AtVQ1</td></t<>	GmVQ3/GmVQ47	GmVQ24/GmVQ59	GmVQ37/AtVQ1
GmVQ6/GmVQ71 GmVQ28/GmVQ45 GmVQ1/4/tVQ3 GmVQ7/GmVQ72 GmVQ29/GmVQ53 GmVQ24/AtVQ3 GmVQ8/GmVQ73 GmVQ29/GmVQ56 GmVQ29/AtVQ3 GmVQ10/GmVQ11 GmVQ29/GmVQ56 GmVQ29/AtVQ5 GmVQ10/GmVQ22 GmVQ34/GmVQ48 GmVQ29/AtVQ5 GmVQ10/GmVQ23 GmVQ37/GmVQ64 GmVQ5/AtVQ5 GmVQ10/GmVQ67 GmVQ39/GmVQ40 GmVQ5/AtVQ5 GmVQ11/GmVQ67 GmVQ39/GmVQ40 GmVQ6/AtVQ8 GmVQ11/GmVQ23 GmVQ39/GmVQ41 GmVQ6/AtVQ8 GmVQ11/GmVQ23 GmVQ39/GmVQ21 GmVQ4/AtVQ9 GmVQ11/GmVQ25 GmVQ40/GmVQ22 GmVQ21/AtVQ8 GmVQ14/GmVQ25 GmVQ41/GmVQ22 GmVQ27/AtVQ10 GmVQ14/GmVQ52 GmVQ42/GmVQ69 GmVQ27/AtVQ10 GmVQ14/GmVQ52 GmVQ43/GmVQ69 GmVQ27/AtVQ11 GmVQ14/GmVQ53 GmVQ43/GmVQ69 GmVQ27/AtVQ10 GmVQ14/GmVQ52 GmVQ43/GmVQ69 GmVQ37/AtVQ10 GmVQ14/GmVQ53 GmVQ43/GmVQ66 GmVQ27/AtVQ11 GmVQ14/GmVQ54 GmVQ43/GmVQ66 GmVQ27/AtVQ11 GmVQ14/GmVQ35	GmVQ5/GmVQ70	GmVQ27/GmVQ38	GmVQ64/AtVQ1
GmVQ7/GmVQ72 GmVQ29/GmVQ53 GmVQ24/AtVQ3 GmVQ8/GmVQ73 GmVQ29/GmVQ51 GmVQ22/AtVQ3 GmVQ9/GmVQ21 GmVQ29/GmVQ56 GmVQ29/AtVQ3 GmVQ10/GmVQ11 GmVQ34/GmVQ68 GmVQ29/AtVQ3 GmVQ10/GmVQ22 GmVQ34/GmVQ68 GmVQ33/AtVQ5 GmVQ10/GmVQ23 GmVQ37/GmVQ44 GmVQ61/AtVQ5 GmVQ11/GmVQ23 GmVQ39/GmVQ40 GmVQ66/AtVQ5 GmVQ11/GmVQ23 GmVQ39/GmVQ41 GmVQ46/AtVQ8 GmVQ11/GmVQ23 GmVQ39/GmVQ21 GmVQ7/AtVQ9 GmVQ11/GmVQ23 GmVQ39/GmVQ41 GmVQ6/AtVQ9 GmVQ11/GmVQ25 GmVQ40/GmVQ21 GmVQ21/AtVQ9 GmVQ14/GmVQ25 GmVQ41/GmVQ22 GmVQ21/AtVQ9 GmVQ14/GmVQ24 GmVQ41/GmVQ26 GmVQ27/AtVQ10 GmVQ14/GmVQ59 GmVQ43/GmVQ69 GmVQ27/AtVQ11 GmVQ14/GmVQ59 GmVQ43/GmVQ62 GmVQ27/AtVQ11 GmVQ14/GmVQ52 GmVQ43/GmVQ66 GmVQ27/AtVQ11 GmVQ14/GmVQ34 GmVQ50/GmVQ57 GmVQ38/AtVQ11 GmVQ14/GmVQ35 GmVQ43/GmVQ66 GmVQ1/AtVQ14 GmVQ14/GmVQ35	GmVQ6/GmVQ71	GmVQ28/GmVQ45	GmVQ14/AtVQ3
GmVQ8/GmVQ73 GmVQ29/GmVQ61 GmVQ5/AtVQ3 GmVQ9/GmVQ21 GmVQ29/GmVQ56 GmVQ59/AtVQ3 GmVQ10/GmVQ21 GmVQ34/GmVQ68 GmVQ29/AtVQ5 GmVQ10/GmVQ22 GmVQ34/GmVQ64 GmVQ53/AtVQ5 GmVQ10/GmVQ23 GmVQ37/GmVQ64 GmVQ56/AtVQ5 GmVQ10/GmVQ23 GmVQ39/GmVQ40 GmVQ56/AtVQ5 GmVQ11/GmVQ22 GmVQ39/GmVQ41 GmVQ46/AtVQ8 GmVQ11/GmVQ23 GmVQ39/GmVQ2 GmVQ1/AtVQ9 GmVQ11/GmVQ25 GmVQ40/GmVQ2 GmVQ1/AtVQ9 GmVQ11/GmVQ25 GmVQ40/GmVQ2 GmVQ37/AtVQ10 GmVQ14/GmVQ25 GmVQ42/GmVQ69 GmVQ37/AtVQ10 GmVQ14/GmVQ25 GmVQ42/GmVQ69 GmVQ37/AtVQ11 GmVQ14/GmVQ32 GmVQ43/GmVQ69 GmVQ37/AtVQ11 GmVQ14/GmVQ34 GmVQ46/GmVQ57 GmVQ38/AtVQ11 GmVQ18/GmVQ34 GmVQ50/GmVQ57 GmVQ37/AtVQ15 GmVQ18/GmVQ34 GmVQ53/GmVQ66 GmVQ37/AtVQ15 GmVQ18/GmVQ36 GmVQ53/GmVQ57 GmVQ38/AtVQ11 GmVQ18/GmVQ68 GmVQ53/GmVQ56 GmVQ37/AtVQ15 GmVQ28/GmVQ30	GmVQ7/GmVQ72	GmVQ29/GmVQ53	GmVQ24/AtVQ3
GmVQ9/GmVQ21 GmVQ29/GmVQ56 GmVQ39/AtVQ3 GmVQ10/GmVQ11 GmVQ34/GmVQ68 GmVQ29/AtVQ5 GmVQ10/GmVQ22 GmVQ34/GmVQ48 GmVQ33/AtVQ5 GmVQ10/GmVQ23 GmVQ37/GmVQ64 GmVQ56/AtVQ5 GmVQ10/GmVQ23 GmVQ39/GmVQ40 GmVQ56/AtVQ5 GmVQ11/GmVQ22 GmVQ39/GmVQ41 GmVQ46/AtVQ8 GmVQ11/GmVQ23 GmVQ40/GmVQ41 GmVQ75/AtVQ9 GmVQ11/GmVQ55 GmVQ40/GmVQ2 GmVQ21/AtVQ9 GmVQ14/GmVQ52 GmVQ41/GmVQ2 GmVQ47/AtVQ10 GmVQ14/GmVQ52 GmVQ42/GmVQ69 GmVQ47/AtVQ10 GmVQ14/GmVQ52 GmVQ43/GmVQ69 GmVQ37/AtVQ11 GmVQ14/GmVQ52 GmVQ43/GmVQ69 GmVQ27/AtVQ11 GmVQ14/GmVQ52 GmVQ43/GmVQ69 GmVQ37/AtVQ10 GmVQ14/GmVQ53 GmVQ43/GmVQ69 GmVQ37/AtVQ11 GmVQ14/GmVQ54 GmVQ43/GmVQ57 GmVQ3/AtVQ11 GmVQ14/GmVQ53 GmVQ43/GmVQ57 GmVQ3/AtVQ14 GmVQ18/GmVQ48 GmVQ53/GmVQ56 GmVQ3/AtVQ15 GmVQ18/GmVQ30 GmVQ53/GmVQ56 GmVQ3/AtVQ20 GmVQ23/GmVQ67	GmVQ8/GmVQ73	GmVQ29/GmVQ61	GmVQ52/AtVQ3
GmVQ10/GmVQ11 GmVQ34/GmVQ68 GmVQ29/AtVQ5 GmVQ10/GmVQ22 GmVQ34/GmVQ48 GmVQ53/AtVQ5 GmVQ10/GmVQ23 GmVQ37/GmVQ64 GmVQ53/AtVQ5 GmVQ10/GmVQ23 GmVQ39/GmVQ40 GmVQ56/AtVQ5 GmVQ11/GmVQ22 GmVQ39/GmVQ40 GmVQ56/AtVQ8 GmVQ11/GmVQ23 GmVQ39/GmVQ2 GmVQ75/AtVQ8 GmVQ11/GmVQ55 GmVQ40/GmVQ2 GmVQ21/AtVQ9 GmVQ14/GmVQ24 GmVQ41/GmVQ2 GmVQ37/AtVQ10 GmVQ14/GmVQ55 GmVQ43/GmVQ69 GmVQ44/AtVQ10 GmVQ14/GmVQ59 GmVQ43/GmVQ62 GmVQ21/AtVQ11 GmVQ16/GmVQ32 GmVQ43/GmVQ66 GmVQ1/AtVQ14 GmVQ16/GmVQ34 GmVQ46/GmVQ57 GmVQ3/AtVQ11 GmVQ18/GmVQ68 GmVQ51/GmVQ57 GmVQ5/AtVQ15 GmVQ18/GmVQ48 GmVQ53/GmVQ61 GmVQ50/AtVQ19 GmVQ20/GmVQ30 GmVQ53/GmVQ63 GmVQ23/AtVQ19 GmVQ22/GmVQ57 GmVQ53/AtVQ21 GmVQ23/AtVQ21 GmVQ20/GmVQ30 GmVQ53/GmVQ56 GmVQ53/AtVQ21 GmVQ22/GmVQ67 GmVQ63/GmVQ56 GmVQ28/AtVQ20 GmVQ22/GmVQ57	GmVQ9/GmVQ21	GmVQ29/GmVQ56	GmVQ59/AtVQ3
GmVQ10/GmVQ22 GmVQ34/GmVQ48 GmVQ53/AtVQ5 GmVQ10/GmVQ67 GmVQ37/GmVQ64 GmVQ61/AtVQ5 GmVQ11/GmVQ22 GmVQ39/GmVQ40 GmVQ56/AtVQ5 GmVQ11/GmVQ22 GmVQ39/GmVQ41 GmVQ46/AtVQ8 GmVQ11/GmVQ67 GmVQ39/GmVQ2 GmVQ75/AtVQ8 GmVQ11/GmVQ23 GmVQ40/GmVQ1 GmVQ75/AtVQ8 GmVQ11/GmVQ57 GmVQ40/GmVQ2 GmVQ21/AtVQ9 GmVQ14/GmVQ25 GmVQ40/GmVQ2 GmVQ37/AtVQ10 GmVQ14/GmVQ52 GmVQ41/CmVQ2 GmVQ37/AtVQ10 GmVQ14/GmVQ52 GmVQ43/GmVQ26 GmVQ37/AtVQ10 GmVQ14/GmVQ53 GmVQ49/GmVQ26 GmVQ1/AtVQ14 GmVQ18/GmVQ48 GmVQ50/GmVQ57 GmVQ5/AtVQ15 GmVQ18/GmVQ48 GmVQ53/GmVQ56 GmVQ5/AtVQ19 GmVQ19/GmVQ33 GmVQ53/GmVQ56 GmVQ28/AtVQ20 GmVQ22/GmVQ67 GmVQ65/GmVQ36 GmVQ28/AtVQ20 GmVQ22/GmVQ67	GmVQ10/GmVQ11	GmVQ34/GmVQ68	GmVQ29/AtVQ5
GmVQ10/GmVQ23 GmVQ37/GmVQ64 GmVQ61/AtVQ5 GmVQ10/GmVQ67 GmVQ39/GmVQ40 GmVQ56/AtVQ5 GmVQ11/GmVQ22 GmVQ39/GmVQ41 GmVQ46/AtVQ8 GmVQ11/GmVQ23 GmVQ39/GmVQ2 GmVQ75/AtVQ8 GmVQ11/GmVQ25 GmVQ40/GmVQ1 GmVQ9/AtVQ9 GmVQ11/GmVQ25 GmVQ40/GmVQ2 GmVQ37/AtVQ10 GmVQ14/GmVQ24 GmVQ41/GmVQ2 GmVQ37/AtVQ10 GmVQ14/GmVQ52 GmVQ42/GmVQ69 GmVQ64/AtVQ10 GmVQ14/GmVQ52 GmVQ42/GmVQ69 GmVQ37/AtVQ10 GmVQ14/GmVQ52 GmVQ43/GmVQ62 GmVQ37/AtVQ10 GmVQ14/GmVQ52 GmVQ43/GmVQ66 GmVQ37/AtVQ10 GmVQ14/GmVQ32 GmVQ43/GmVQ66 GmVQ37/AtVQ10 GmVQ14/GmVQ32 GmVQ43/GmVQ56 GmVQ38/AtVQ11 GmVQ14/GmVQ34 GmVQ50/GmVQ57 GmVQ5/AtVQ19 GmVQ18/GmVQ48 GmVQ53/GmVQ56 GmVQ28/AtVQ19 GmVQ20/GmVQ30 GmVQ53/GmVQ56 GmVQ28/AtVQ20 GmVQ22/GmVQ52 GmVQ56/GmVQ36 GmVQ28/AtVQ20 GmVQ23/GmVQ67 GmVQ66/GmVQ48 GmVQ28/AtVQ20 GmVQ23/GmVQ67	GmVQ10/GmVQ22	GmVQ34/GmVQ48	GmVQ53/AtVQ5
GmVQ10/GmVQ67 GmVQ39/GmVQ40 GmVQ56/AtVQ5 GmVQ11/GmVQ22 GmVQ39/GmVQ41 GmVQ46/AtVQ8 GmVQ11/GmVQ23 GmVQ39/GmVQ2 GmVQ75/AtVQ8 GmVQ11/GmVQ23 GmVQ40/GmVQ41 GmVQ9/AtVQ9 GmVQ11/GmVQ25 GmVQ40/GmVQ2 GmVQ21/AtVQ9 GmVQ14/GmVQ24 GmVQ41/GmVQ2 GmVQ21/AtVQ9 GmVQ14/GmVQ52 GmVQ42/GmVQ69 GmVQ4/AtVQ10 GmVQ14/GmVQ52 GmVQ43/GmVQ62 GmVQ37/AtVQ10 GmVQ14/GmVQ52 GmVQ43/GmVQ69 GmVQ38/AtVQ11 GmVQ14/GmVQ53 GmVQ49/GmVQ55 GmVQ38/AtVQ11 GmVQ18/GmVQ34 GmVQ50/GmVQ57 GmVQ38/AtVQ15 GmVQ18/GmVQ34 GmVQ52/GmVQ59 GmVQ44/AtVQ17 GmVQ18/GmVQ48 GmVQ53/GmVQ56 GmVQ50/AtVQ19 GmVQ20/GmVQ30 GmVQ53/GmVQ56 GmVQ28/AtVQ20 GmVQ22/GmVQ23 GmVQ68/GmVQ68 GmVQ28/AtVQ20 GmVQ22/GmVQ52 GmVQ68/GmVQ48 GmVQ35/AtVQ21 GmVQ23/GmVQ67 GmVQ68/GmVQ48 GmVQ28/AtVQ20 GmVQ24/GmVQ52 GmVQ68/GmVQ48 GmVQ35/AtVQ21 GmVQ24/GmVQ52	GmVQ10/GmVQ23	GmVQ37/GmVQ64	GmVQ61/AtVQ5
GmVQ11/GmVQ22 GmVQ39/GmVQ41 GmVQ46/AtVQ8 GmVQ11/GmVQ23 GmVQ39/GmVQ2 GmVQ75/AtVQ8 GmVQ11/GmVQ25 GmVQ40/GmVQ11 GmVQ9/AtVQ9 GmVQ13/GmVQ25 GmVQ40/GmVQ2 GmVQ21/AtVQ9 GmVQ14/GmVQ24 GmVQ41/GmVQ2 GmVQ21/AtVQ10 GmVQ14/GmVQ52 GmVQ42/GmVQ69 GmVQ44/AtVQ10 GmVQ14/GmVQ52 GmVQ43/GmVQ62 GmVQ37/AtVQ11 GmVQ14/GmVQ52 GmVQ43/GmVQ62 GmVQ27/AtVQ11 GmVQ14/GmVQ52 GmVQ44/GmVQ55 GmVQ38/AtVQ11 GmVQ16/GmVQ32 GmVQ49/GmVQ56 GmVQ1/AtVQ14 GmVQ18/GmVQ48 GmVQ52/GmVQ57 GmVQ5/AtVQ15 GmVQ18/GmVQ48 GmVQ52/GmVQ59 GmVQ44/AtVQ17 GmVQ18/GmVQ48 GmVQ53/GmVQ66 GmVQ50/AtVQ19 GmVQ20/GmVQ30 GmVQ53/GmVQ66 GmVQ57/AtVQ19 GmVQ22/GmVQ32 GmVQ66/GmVQ68 GmVQ28/AtVQ20 GmVQ22/GmVQ33 GmVQ66/GmVQ68 GmVQ28/AtVQ20 GmVQ22/GmVQ52 GmVQ68/GmVQ48 GmVQ35/AtVQ21 GmVQ24/GmVQ52 GmVQ68/GmVQ48 GmVQ36/AtVQ21 GmVQ24/GmVQ52 <td>GmVQ10/GmVQ67</td> <td>GmVQ39/GmVQ40</td> <td>GmVQ56/AtVQ5</td>	GmVQ10/GmVQ67	GmVQ39/GmVQ40	GmVQ56/AtVQ5
GmVQ11/GmVQ23 GmVQ39/GmVQ2 GmVQ75/AtVQ8 GmVQ11/GmVQ67 GmVQ40/GmVQ41 GmVQ9/AtVQ9 GmVQ13/GmVQ25 GmVQ40/GmVQ2 GmVQ21/AtVQ9 GmVQ14/GmVQ24 GmVQ41/GmVQ2 GmVQ37/AtVQ10 GmVQ14/GmVQ52 GmVQ42/GmVQ69 GmVQ47/AtVQ10 GmVQ14/GmVQ52 GmVQ42/GmVQ69 GmVQ44/AtVQ10 GmVQ14/GmVQ59 GmVQ43/GmVQ62 GmVQ27/AtVQ11 GmVQ15/GmVQ66 GmVQ49/GmVQ26 GmVQ37/AtVQ14 GmVQ16/GmVQ32 GmVQ49/GmVQ26 GmVQ1/AtVQ14 GmVQ18/GmVQ34 GmVQ50/GmVQ57 GmVQ5/AtVQ15 GmVQ18/GmVQ48 GmVQ52/GmVQ59 GmVQ4/AtVQ17 GmVQ18/GmVQ35 GmVQ53/GmVQ56 GmVQ57/AtVQ19 GmVQ22/GmVQ30 GmVQ53/GmVQ66 GmVQ27/AtVQ20 GmVQ22/GmVQ30 GmVQ53/GmVQ66 GmVQ57/AtVQ19 GmVQ22/GmVQ30 GmVQ53/GmVQ66 GmVQ57/AtVQ19 GmVQ22/GmVQ31 GmVQ66/GmVQ36 GmVQ28/AtVQ20 GmVQ22/GmVQ67 GmVQ65/GmVQ36 GmVQ35/AtVQ21 GmVQ24/GmVQ52 GmVQ68/GmVQ48 GmVQ36/AtVQ34 GmVQ24/GmVQ52 <td>GmVQ11/GmVQ22</td> <td>GmVQ39/GmVQ41</td> <td>GmVQ46/AtVQ8</td>	GmVQ11/GmVQ22	GmVQ39/GmVQ41	GmVQ46/AtVQ8
GmVQ11/GmVQ67 GmVQ40/GmVQ41 GmVQ9/AtVQ9 GmVQ13/GmVQ25 GmVQ40/GmVQ2 GmVQ21/AtVQ9 GmVQ14/GmVQ24 GmVQ41/GmVQ2 GmVQ37/AtVQ10 GmVQ14/GmVQ52 GmVQ42/GmVQ69 GmVQ64/AtVQ10 GmVQ14/GmVQ52 GmVQ43/GmVQ62 GmVQ27/AtVQ11 GmVQ15/GmVQ66 GmVQ46/GmVQ75 GmVQ38/AtVQ11 GmVQ18/GmVQ32 GmVQ49/GmVQ26 GmVQ1/AtVQ14 GmVQ18/GmVQ34 GmVQ50/GmVQ57 GmVQ5/AtVQ15 GmVQ18/GmVQ68 GmVQ51/GmVQ74 GmVQ70/AtVQ15 GmVQ18/GmVQ48 GmVQ52/GmVQ59 GmVQ44/AtVQ17 GmVQ26/GmVQ30 GmVQ53/GmVQ66 GmVQ57/AtVQ19 GmVQ22/GmVQ30 GmVQ53/GmVQ66 GmVQ57/AtVQ19 GmVQ22/GmVQ30 GmVQ53/GmVQ66 GmVQ28/AtVQ20 GmVQ22/GmVQ31 GmVQ65/GmVQ36 GmVQ28/AtVQ20 GmVQ22/GmVQ67 GmVQ65/GmVQ36 GmVQ35/AtVQ21 GmVQ24/GmVQ52 GmVQ68/GmVQ48 GmVQ35/AtVQ21 GmVQ24/GmVQ52 GmVQ68/GmVQ48 GmVQ36/AtVQ34 GmVQ24/GmVQ52 GmVQ68/GmVQ48 GmVQ20/AtVQ34 GmVQ24/GmVQ52<	GmVQ11/GmVQ23	GmVQ39/GmVQ2	GmVQ75/AtVQ8
GmVQ13/GmVQ25 GmVQ40/GmVQ2 GmVQ21/AtVQ9 GmVQ14/GmVQ24 GmVQ41/GmVQ2 GmVQ37/AtVQ10 GmVQ14/GmVQ52 GmVQ42/GmVQ69 GmVQ64/AtVQ10 GmVQ14/GmVQ59 GmVQ43/GmVQ62 GmVQ27/AtVQ11 GmVQ15/GmVQ66 GmVQ46/GmVQ75 GmVQ38/AtVQ11 GmVQ16/GmVQ32 GmVQ49/GmVQ26 GmVQ1/AtVQ14 GmVQ18/GmVQ34 GmVQ50/GmVQ57 GmVQ5/AtVQ15 GmVQ18/GmVQ48 GmVQ52/GmVQ59 GmVQ44/AtVQ17 GmVQ19/GmVQ35 GmVQ53/GmVQ66 GmVQ50/AtVQ19 GmVQ22/GmVQ30 GmVQ53/GmVQ66 GmVQ57/AtVQ19 GmVQ22/GmVQ33 GmVQ54/GmVQ66 GmVQ54/AtVQ20 GmVQ22/GmVQ30 GmVQ54/GmVQ63 GmVQ28/AtVQ20 GmVQ22/GmVQ52 GmVQ68/GmVQ48 GmVQ35/AtVQ21 GmVQ23/GmVQ67 GmVQ68/GmVQ36 GmVQ35/AtVQ21 GmVQ24/GmVQ52 GmVQ68/GmVQ48 GmVQ35/AtVQ21 GmVQ24/GmVQ52 GmVQ68/GmVQ48 GmVQ36/AtVQ31 GmVQ34/AtVQ34 GmVQ34/AtVQ34 GmVQ34/AtVQ34 GmVQ34/AtVQ34 GmVQ34/AtVQ34 GmVQ34/AtVQ34	GmVQ11/GmVQ67	GmVQ40/GmVQ41	GmVQ9/AtVQ9
GmVQ14/GmVQ24 GmVQ41/GmVQ2 GmVQ37/AtVQ10 GmVQ14/GmVQ52 GmVQ42/GmVQ69 GmVQ64/AtVQ10 GmVQ14/GmVQ59 GmVQ43/GmVQ62 GmVQ27/AtVQ11 GmVQ15/GmVQ66 GmVQ46/GmVQ75 GmVQ38/AtVQ11 GmVQ16/GmVQ32 GmVQ49/GmVQ26 GmVQ1/AtVQ14 GmVQ18/GmVQ34 GmVQ50/GmVQ57 GmVQ5/AtVQ15 GmVQ18/GmVQ48 GmVQ52/GmVQ59 GmVQ44/AtVQ17 GmVQ19/GmVQ35 GmVQ53/GmVQ61 GmVQ50/AtVQ19 GmVQ20/GmVQ30 GmVQ53/GmVQ63 GmVQ28/AtVQ20 GmVQ22/GmVQ23 GmVQ61/GmVQ56 GmVQ28/AtVQ20 GmVQ23/GmVQ67 GmVQ65/GmVQ36 GmVQ35/AtVQ21 GmVQ24/GmVQ52 GmVQ68/GmVQ48 GmVQ35/AtVQ21 GmVQ24/GmVQ52 GmVQ68/GmVQ48 GmVQ35/AtVQ21 GmVQ24/GmVQ52 GmVQ68/GmVQ48 GmVQ35/AtVQ21 GmVQ24/GmVQ52 GmVQ68/GmVQ48 GmVQ30/AtVQ31 GmVQ30/AtVQ31 GmVQ30/AtVQ31 GmVQ34/AtVQ34 GmVQ34/AtVQ34 GmVQ34/AtVQ34 GmVQ34/AtVQ34 GmVQ68/AtVQ34 GmVQ34/AtVQ34 GmVQ34/AtVQ34	GmVQ13/GmVQ25	GmVQ40/GmVQ2	GmVQ21/AtVQ9
GmVQ14/GmVQ52 GmVQ42/GmVQ69 GmVQ64/AtVQ10 GmVQ14/GmVQ59 GmVQ43/GmVQ62 GmVQ27/AtVQ11 GmVQ15/GmVQ66 GmVQ46/GmVQ75 GmVQ38/AtVQ11 GmVQ16/GmVQ32 GmVQ49/GmVQ26 GmVQ1/AtVQ14 GmVQ18/GmVQ34 GmVQ50/GmVQ57 GmVQ5/AtVQ15 GmVQ18/GmVQ68 GmVQ51/GmVQ74 GmVQ70/AtVQ15 GmVQ19/GmVQ35 GmVQ53/GmVQ59 GmVQ50/AtVQ19 GmVQ20/GmVQ30 GmVQ53/GmVQ61 GmVQ57/AtVQ19 GmVQ22/GmVQ33 GmVQ54/GmVQ63 GmVQ28/AtVQ20 GmVQ22/GmVQ67 GmVQ66/GmVQ56 GmVQ28/AtVQ20 GmVQ23/GmVQ67 GmVQ68/GmVQ36 GmVQ35/AtVQ21 GmVQ24/GmVQ52 GmVQ68/GmVQ48 GmVQ35/AtVQ21 GmVQ24/GmVQ52 GmVQ68/GmVQ48 GmVQ36/AtVQ21 GmVQ20/AtVQ52 GmVQ68/GmVQ48 GmVQ30/AtVQ21 GmVQ30/AtVQ31 GmVQ30/AtVQ31 GmVQ30/AtVQ31 GmVQ34/AtVQ34 GmVQ34/AtVQ34 GmVQ34/AtVQ34 GmVQ68/AtVQ34 GmVQ68/AtVQ34 GmVQ48/AtVQ34	GmVQ14/GmVQ24	GmVQ41/GmVQ2	GmVQ37/AtVQ10
GmVQ14/GmVQ59 GmVQ43/GmVQ62 GmVQ27/AtVQ11 GmVQ15/GmVQ66 GmVQ46/GmVQ75 GmVQ38/AtVQ11 GmVQ16/GmVQ32 GmVQ49/GmVQ26 GmVQ1/AtVQ14 GmVQ18/GmVQ34 GmVQ50/GmVQ57 GmVQ5/AtVQ15 GmVQ18/GmVQ68 GmVQ51/GmVQ74 GmVQ70/AtVQ15 GmVQ18/GmVQ48 GmVQ52/GmVQ59 GmVQ44/AtVQ17 GmVQ19/GmVQ35 GmVQ53/GmVQ61 GmVQ50/AtVQ19 GmVQ20/GmVQ30 GmVQ54/GmVQ663 GmVQ28/AtVQ20 GmVQ22/GmVQ57 GmVQ61/GmVQ56 GmVQ45/AtVQ20 GmVQ22/GmVQ67 GmVQ65/GmVQ36 GmVQ19/AtVQ21 GmVQ24/GmVQ52 GmVQ68/GmVQ48 GmVQ35/AtVQ21 GmVQ24/GmVQ52 GmVQ68/GmVQ48 GmVQ30/AtVQ24 GmVQ20/AtVQ31 GmVQ30/AtVQ31 GmVQ30/AtVQ31 GmVQ34/AtVQ34 GmVQ34/AtVQ34 GmVQ48/AtVQ34	GmVQ14/GmVQ52	GmVQ42/GmVQ69	GmVQ64/AtVQ10
GmVQ15/GmVQ66 GmVQ46/GmVQ75 GmVQ38/AtVQ11 GmVQ16/GmVQ32 GmVQ49/GmVQ26 GmVQ1/AtVQ14 GmVQ18/GmVQ34 GmVQ50/GmVQ57 GmVQ5/AtVQ15 GmVQ18/GmVQ68 GmVQ51/GmVQ74 GmVQ70/AtVQ15 GmVQ18/GmVQ48 GmVQ52/GmVQ59 GmVQ44/AtVQ17 GmVQ19/GmVQ35 GmVQ53/GmVQ61 GmVQ50/AtVQ19 GmVQ20/GmVQ30 GmVQ53/GmVQ63 GmVQ28/AtVQ20 GmVQ22/GmVQ23 GmVQ61/GmVQ56 GmVQ45/AtVQ20 GmVQ23/GmVQ67 GmVQ65/GmVQ36 GmVQ19/AtVQ21 GmVQ24/GmVQ52 GmVQ68/GmVQ48 GmVQ35/AtVQ21 GmVQ24/GmVQ52 GmVQ68/GmVQ48 GmVQ35/AtVQ21 GmVQ30/AtVQ31 GmVQ30/AtVQ31 GmVQ30/AtVQ34 GmVQ34/AtVQ34 GmVQ68/AtVQ34 GmVQ44/AtVQ34	GmVQ14/GmVQ59	GmVQ43/GmVQ62	GmVQ27/AtVQ11
GmVQ16/GmVQ32 GmVQ49/GmVQ26 GmVQ1/AtVQ14 GmVQ18/GmVQ34 GmVQ50/GmVQ57 GmVQ5/AtVQ15 GmVQ18/GmVQ68 GmVQ51/GmVQ74 GmVQ70/AtVQ15 GmVQ18/GmVQ48 GmVQ52/GmVQ59 GmVQ44/AtVQ17 GmVQ19/GmVQ35 GmVQ53/GmVQ61 GmVQ50/AtVQ19 GmVQ20/GmVQ30 GmVQ53/GmVQ56 GmVQ57/AtVQ19 GmVQ22/GmVQ23 GmVQ54/GmVQ63 GmVQ28/AtVQ20 GmVQ23/GmVQ67 GmVQ65/GmVQ36 GmVQ19/AtVQ21 GmVQ24/GmVQ52 GmVQ68/GmVQ48 GmVQ35/AtVQ21 GmVQ24/GmVQ52 GmVQ68/GmVQ48 GmVQ35/AtVQ21 GmVQ30/AtVQ31 GmVQ30/AtVQ31 GmVQ30/AtVQ31 GmVQ30/AtVQ34 GmVQ48/AtVQ34 GmVQ44/AtVQ34	GmVQ15/GmVQ66	GmVQ46/GmVQ75	GmVQ38/AtVQ11
GmVQ18/GmVQ34 GmVQ50/GmVQ57 GmVQ5/AtVQ15 GmVQ18/GmVQ68 GmVQ51/GmVQ74 GmVQ70/AtVQ15 GmVQ18/GmVQ48 GmVQ52/GmVQ59 GmVQ44/AtVQ17 GmVQ19/GmVQ35 GmVQ53/GmVQ61 GmVQ50/AtVQ19 GmVQ20/GmVQ30 GmVQ53/GmVQ56 GmVQ28/AtVQ20 GmVQ22/GmVQ23 GmVQ54/GmVQ63 GmVQ28/AtVQ20 GmVQ22/GmVQ67 GmVQ65/GmVQ36 GmVQ19/AtVQ21 GmVQ23/GmVQ67 GmVQ65/GmVQ36 GmVQ35/AtVQ21 GmVQ24/GmVQ52 GmVQ68/GmVQ48 GmVQ35/AtVQ24 GmVQ20/AtVQ52 GmVQ68/GmVQ48 GmVQ03/AtVQ24 GmVQ04/AtVQ31 GmVQ30/AtVQ31 GmVQ30/AtVQ34 GmVQ48/AtVQ34 GmVQ48/AtVQ34 GmVQ48/AtVQ34 GmVQ48/AtVQ34 GmVQ48/AtVQ34 GmVQ48/AtVQ34	GmVQ16/GmVQ32	GmVQ49/GmVQ26	GmVQ1/AtVQ14
GmVQ18/GmVQ68 GmVQ51/GmVQ74 GmVQ70/AtVQ15 GmVQ18/GmVQ48 GmVQ52/GmVQ59 GmVQ44/AtVQ17 GmVQ19/GmVQ35 GmVQ53/GmVQ61 GmVQ50/AtVQ19 GmVQ20/GmVQ30 GmVQ53/GmVQ56 GmVQ57/AtVQ19 GmVQ22/GmVQ23 GmVQ54/GmVQ63 GmVQ28/AtVQ20 GmVQ22/GmVQ67 GmVQ61/GmVQ56 GmVQ45/AtVQ20 GmVQ23/GmVQ67 GmVQ65/GmVQ36 GmVQ19/AtVQ21 GmVQ24/GmVQ52 GmVQ68/GmVQ48 GmVQ35/AtVQ24 GmVQ20/AtVQ52 GmVQ68/GmVQ48 GmVQ35/AtVQ24 GmVQ20/AtVQ52 GmVQ68/GmVQ48 GmVQ44/AtVQ25 GmVQ0/AtVQ31 GmVQ30/AtVQ31 GmVQ30/AtVQ34 GmVQ34/AtVQ34 GmVQ68/AtVQ34 GmVQ68/AtVQ34 GmVQ68/AtVQ34 GmVQ48/AtVQ34 GmVQ48/AtVQ34	GmVQ18/GmVQ34	GmVQ50/GmVQ57	GmVQ5/AtVQ15
GmVQ18/GmVQ48 GmVQ52/GmVQ59 GmVQ44/AtVQ17 GmVQ19/GmVQ35 GmVQ53/GmVQ61 GmVQ50/AtVQ19 GmVQ20/GmVQ30 GmVQ53/GmVQ56 GmVQ57/AtVQ19 GmVQ22/GmVQ23 GmVQ54/GmVQ63 GmVQ28/AtVQ20 GmVQ22/GmVQ67 GmVQ61/GmVQ56 GmVQ19/AtVQ21 GmVQ23/GmVQ67 GmVQ68/GmVQ36 GmVQ35/AtVQ21 GmVQ24/GmVQ52 GmVQ68/GmVQ48 GmVQ35/AtVQ24 GmVQ20/AtVQ24 GmVQ20/AtVQ24 GmVQ20/AtVQ24 GmVQ20/AtVQ31 GmVQ30/AtVQ31 GmVQ34/AtVQ34 GmVQ68/AtVQ34 GmVQ68/AtVQ34 GmVQ48/AtVQ34	GmVQ18/GmVQ68	GmVQ51/GmVQ74	GmVQ70/AtVQ15
GmVQ19/GmVQ35 GmVQ53/GmVQ61 GmVQ50/AtVQ19 GmVQ20/GmVQ30 GmVQ53/GmVQ56 GmVQ57/AtVQ19 GmVQ22/GmVQ23 GmVQ54/GmVQ63 GmVQ28/AtVQ20 GmVQ22/GmVQ67 GmVQ61/GmVQ56 GmVQ45/AtVQ21 GmVQ23/GmVQ67 GmVQ65/GmVQ36 GmVQ35/AtVQ21 GmVQ24/GmVQ52 GmVQ68/GmVQ48 GmVQ35/AtVQ21 GmVQ24/GmVQ52 GmVQ68/GmVQ48 GmVQ5/AtVQ24 GmVQ20/AtVQ31 GmVQ20/AtVQ31 GmVQ30/AtVQ31 GmVQ30/AtVQ34 GmVQ34/AtVQ34 GmVQ34/AtVQ34 GmVQ68/AtVQ34 GmVQ48/AtVQ34 GmVQ48/AtVQ34	GmVQ18/GmVQ48	GmVQ52/GmVQ59	GmVQ44/AtVQ17
GmVQ20/GmVQ30 GmVQ53/GmVQ56 GmVQ57/AtVQ19 GmVQ22/GmVQ23 GmVQ54/GmVQ63 GmVQ28/AtVQ20 GmVQ22/GmVQ67 GmVQ61/GmVQ56 GmVQ45/AtVQ20 GmVQ23/GmVQ67 GmVQ65/GmVQ36 GmVQ19/AtVQ21 GmVQ24/GmVQ52 GmVQ68/GmVQ48 GmVQ35/AtVQ24 GmVQ70/AtVQ24 GmVQ70/AtVQ24 GmVQ44/AtVQ25 GmVQ20/AtVQ31 GmVQ30/AtVQ31 GmVQ30/AtVQ34 GmVQ18/AtVQ34 GmVQ34/AtVQ34 GmVQ68/AtVQ34 GmVQ68/AtVQ34 GmVQ48/AtVQ34 GmVQ48/AtVQ34	GmVQ19/GmVQ35	GmVQ53/GmVQ61	GmVQ50/AtVQ19
GmVQ22/GmVQ23 GmVQ54/GmVQ63 GmVQ28/AtVQ20 GmVQ22/GmVQ67 GmVQ65/GmVQ36 GmVQ19/AtVQ21 GmVQ24/GmVQ52 GmVQ68/GmVQ48 GmVQ35/AtVQ24 GmVQ70/AtVQ24 GmVQ70/AtVQ24 GmVQ20/AtVQ31 GmVQ30/AtVQ31 GmVQ30/AtVQ31 GmVQ18/AtVQ34 GmVQ34/AtVQ34 GmVQ34/AtVQ34 GmVQ34/AtVQ34 GmVQ68/AtVQ34 GmVQ34/AtVQ34 GmVQ34/AtVQ34 GmVQ48/AtVQ34 GmVQ48/AtVQ34 GmVQ48/AtVQ34	GmVQ20/GmVQ30	GmVQ53/GmVQ56	GmVQ57/AtVQ19
GmVQ22/GmVQ67 GmVQ61/GmVQ56 GmVQ45/AtVQ20 GmVQ23/GmVQ67 GmVQ65/GmVQ36 GmVQ19/AtVQ21 GmVQ24/GmVQ52 GmVQ68/GmVQ48 GmVQ5/AtVQ24 GmVQ5/AtVQ24 GmVQ5/AtVQ24 GmVQ5/AtVQ24 GmVQ20/AtVQ31 GmVQ20/AtVQ31 GmVQ30/AtVQ31 GmVQ30/AtVQ34 GmVQ34/AtVQ34 GmVQ34/AtVQ34 GmVQ68/AtVQ34 GmVQ68/AtVQ34 GmVQ48/AtVQ34	GmVQ22/GmVQ23	GmVQ54/GmVQ63	GmVQ28/AtVQ20
GmVQ23/GmVQ67 GmVQ65/GmVQ36 GmVQ19/AtVQ21 GmVQ24/GmVQ52 GmVQ68/GmVQ48 GmVQ35/AtVQ21 GmVQ5/AtVQ24 GmVQ5/AtVQ24 GmVQ44/AtVQ25 GmVQ44/AtVQ25 GmVQ20/AtVQ31 GmVQ30/AtVQ31 GmVQ18/AtVQ34 GmVQ34/AtVQ34 GmVQ68/AtVQ34 GmVQ68/AtVQ34 GmVQ48/AtVQ34 GmVQ48/AtVQ34	GmVQ22/GmVQ67	GmVQ61/GmVQ56	GmVQ45/AtVQ20
GmVQ24/GmVQ52 GmVQ68/GmVQ48 GmVQ35/AtVQ21 GmVQ5/AtVQ24 GmVQ5/AtVQ24 GmVQ70/AtVQ24 GmVQ70/AtVQ24 GmVQ20/AtVQ31 GmVQ20/AtVQ31 GmVQ30/AtVQ31 GmVQ30/AtVQ31 GmVQ34/AtVQ34 GmVQ34/AtVQ34 GmVQ68/AtVQ34 GmVQ48/AtVQ34 GmVQ48/AtVQ34 GmVQ48/AtVQ34	GmVQ23/GmVQ67	GmVQ65/GmVQ36	GmVQ19/AtVQ21
GmVQ5/AtVQ24 GmVQ70/AtVQ24 GmVQ44/AtVQ25 GmVQ20/AtVQ31 GmVQ30/AtVQ31 GmVQ18/AtVQ34 GmVQ34/AtVQ34 GmVQ48/AtVQ34 GmVQ48/AtVQ34	GmVQ24/GmVQ52	GmVQ68/GmVQ48	GmVQ35/AtVQ21
GmVQ70/AtVQ24 GmVQ44/AtVQ25 GmVQ20/AtVQ31 GmVQ30/AtVQ31 GmVQ18/AtVQ34 GmVQ34/AtVQ34 GmVQ68/AtVQ34 GmVQ48/AtVQ34			GmVQ5/AtVQ24
GmVQ44/AtVQ25 GmVQ20/AtVQ31 GmVQ30/AtVQ31 GmVQ18/AtVQ34 GmVQ34/AtVQ34 GmVQ68/AtVQ34 GmVQ68/AtVQ34			GmVQ70/AtVQ24
GmVQ20/AtVQ31 GmVQ30/AtVQ31 GmVQ18/AtVQ34 GmVQ34/AtVQ34 GmVQ68/AtVQ34 GmVQ48/AtVQ34			GmVQ44/AtVQ25
GmVQ30/AtVQ31 GmVQ18/AtVQ34 GmVQ34/AtVQ34 GmVQ68/AtVQ34 GmVQ48/AtVQ34			GmVQ20/AtVQ31
GmVQ18/AtVQ34 GmVQ34/AtVQ34 GmVQ68/AtVQ34 GmVQ48/AtVQ34			GmVQ30/AtVQ31
GmVQ34/AtVQ34 GmVQ68/AtVQ34 GmVQ48/AtVQ34			GmVQ18/AtVQ34
GmVQ68/AtVQ34 GmVQ48/AtVQ34			GmVQ34/AtVQ34
GmVQ48/AtVQ34			GmVQ68/AtVQ34
			GmVQ48/AtVQ34

 Table 2
 Paralogous (Gm-Gm) and orthologous (Gm-At) gene pairs.

cis-acting elements in the promoter. Others *cis*-elements that were found in the 75 *GmVQ* s can be classified into three groups (Fig. 11). Twelve *cis*-elements involve in the hormone responsiveness; five *cis*-elements are stress-related elements: ARE/GC/LTR/MBS/TC;

Table 5 Ka, Ks and Ka/Ks values calculated for paralogous vQ gene pairs.					
Gene 1	Gene 2	Ka	Ks	Ka/Ks ratio	
GmVQ10	GmVQ11	0.002146692	0.013590406	0.15795643	
GmVQ39	GmVQ40	0.014329244	0.032130119	0.445975451	
GmVQ54	GmVQ63	0.070550548	0.066958938	1.053638991	
GmVQ65	GmVQ36	0.129398947	0.090241867	1.433912564	
GmVQ39	GmVQ41	0.015091052	0.092583143	0.163	
GmVQ37	GmVQ64	0.033904078	0.095366382	0.355513935	
GmVQ40	GmVQ41	0.02957328	0.096785754	0.305554062	
GmVQ42	GmVQ69	0.039057024	0.110714815	0.352771436	
GmVQ16	GmVQ32	0.056833182	0.117015316	0.485690114	
GmVQ40	GmVQ2	0.056768509	0.119061292	0.476800713	
GmVQ50	GmVQ57	0.012662345	0.127110953	0.099616473	
GmVQ49	GmVQ26	0.034291687	0.128532842	0.26679319	
GmVQ43	GmVQ62	0.057675771	0.129647567	0.444865819	
GmVQ19	GmVQ35	0.060650867	0.132943691	0.456214704	
GmVQ20	GmVQ30	0.047369299	0.134768712	0.351485879	
GmVQ7	GmVQ72	0.073853375	0.1352768	0.545942653	
GmVQ39	GmVQ2	0.050072412	0.136741168	0.366183886	
GmVQ18	GmVQ34	0.048240383	0.141323284	0.341347734	
GmVQ68	GmVQ48	0.072358564	0.146626964	0.493487433	
GmVQ3	GmVQ47	0.082715722	0.153202253	0.539911912	
GmVQ5	GmVQ70	0.053173881	0.15994977	0.33244112	
GmVQ46	GmVQ75	0.053993084	0.162730183	0.33179514	
GmVQ41	GmVQ2	0.047558234	0.164392307	0.289297198	
GmVQ10	GmVQ22	0.080947528	0.167701359	0.482688565	
GmVQ22	GmVQ23	0.12358775	0.173118789	0.713889871	
GmVQ51	GmVQ74	0.051867494	0.17525146	0.295960409	
GmVQ27	GmVQ38	0.068641212	0.187083237	0.366901992	
GmVQ8	GmVQ73	0.07651417	0.194357737	0.393676994	
GmVQ15	GmVQ66	0.064674193	0.201500105	0.32096357	
GmVQ9	GmVQ21	0.031810279	0.204712416	0.155390081	
GmVQ11	GmVQ22	0.068482759	0.20561255	0.33306702	
GmVQ28	GmVQ45	0.07428748	0.212707642	0.349246879	
GmVQ13	GmVQ25	0.0495425	0.21323249	0.232340297	
GmVQ61	GmVQ56	0.078572076	0.228081862	0.344490682	
GmVQ11	GmVQ67	0.187484416	0.242381253	0.773510383	
GmVQ14	GmVQ24	0.070535521	0.260458812	0.270812571	
GmVQ11	GmVQ23	0.143077885	0.278054006	0.514568687	
GmVQ10	GmVQ67	0.25396485	0.28526939	0.890263236	
GmVQ6	GmVQ71	0.098963625	0.304675089	0.324816923	
GmVQ22	GmVQ67	0.242648421	0.35967981	0.674623413	
GmVQ29	GmVQ53	0.1121903	0.365440906	0.306999841	

 Table 3
 Ka, Ks and Ka/Ks values calculated for paralogous VQ gene pairs.

(continued on next page)

Gene 1	Gene 2	Ka	Ks	Ka/Ks ratio
GmVQ10	GmVQ23	0.206060196	0.446610645	0.461386664
GmVQ18	GmVQ48	0.431966031	0.855432366	0.50496807
GmVQ18	GmVQ68	0.415845352	0.884745464	0.470016936
GmVQ34	GmVQ68	0.40356234	0.937434864	0.430496406
GmVQ34	GmVQ48	0.385776641	0.968352827	0.398384381
GmVQ29	GmVQ61	0.320802002	0.987438675	0.324882963
GmVQ24	GmVQ59	0.231784771	1.001714144	0.231388139
GmVQ14	GmVQ59	0.271393455	1.079747859	0.251348917
GmVQ23	GmVQ67	0.564635744	1.087320132	0.51929117
GmVQ53	GmVQ61	0.281138217	1.090000891	0.257924759
GmVQ29	GmVQ56	0.422850584	1.281581327	0.329944401
GmVQ53	GmVQ56	0.280639233	1.337494009	0.209824665
GmVQ14	GmVQ52	1.027115432	1.538918692	0.667426705
GmVQ24	GmVQ52	1.074280372	1.754750076	0.612212751

Table 3 (continued)

Figure 5 Expression analysis of *GmVQ* genes in different tissues and different stages. The clusters were designated as group A-C. Different colors in map represent gene transcript abundance values as shown in bar at top of figure.

Full-size 🖾 DOI: 10.7717/peerj.7509/fig-5

some *GmVQ* genes containe plant growth and development elements, such as CAT-box/circadian/GCN4/HD-Zip 1/MSA-like/RY-element. In addition, some *GmVQ* genes containe W-box motif, which is binding site for WRKY transcription factor.

Gene Ontology Enrichment

To further understand the functions of the GmVQs, we performed GO annotation and GO enrichment analyses (Fig. S2 and Table S8). The GO terms included three categories, biological process (BP), molecular function (MF) and cellular component (CC). GO enrichment confirmed that these GmVQs were enriched in the biological process (GO:0008150), regulation of biological process (GO:0050789) and biological regulation (GO:0065007) terms of the BP category. Cellular component (GO:0005575), intracellular

Peer

ABA

Figure 6 qRT-PCR analysis reveals GmVQ genes under ABA treatment compared to the controls. Stress treatments and time course are described in the Materials and Methods section. (A-Y) represent different genes which were used in qRT-PCR analysis. Asterisks on top of the bars indicating statistically significant differences between the stress and counterpart controls (*p < 0.05, **p < 0.01).

Full-size DOI: 10.7717/peerj.7509/fig-6

(GO:0005622) and cell (GO:0005623) were the most abundant functions in the CC category (Table S8). MF was enriched in molecular function (GO:0003674) and binding (GO:0005488). The GO ebrichment suggested that GmVQs were play curcial roles in regulated of biological process.

Gene interaction network analysis

Based on the PAIR tool, we found the functions and their interactions of the GmVQs and GmWRKYs. As shown in Fig. 12A, 3 GmWRKYs are supposed to interact with GmVQ proteins, included GmWRKY115, GmWRKY149 and GmWRKY156, all of them belong to WRKY's IIc group. In the Fig. 12B, we found that GmWRKYs and AtWRKYs are quite

Figure 7 qRT-PCR analysis reveals *GmVQ* **genes under SA treatment compared to the controls.** Stress treatments and time course are described in the Materials and Methods section. (A-Y) represent different genes which were used in qRT-PCR analysis. Asterisks on top of the bars indicating statistically significant differences between the stress and counterpart controls (*p < 0.05, **p < 0.01).

similar in their core domains, indicated that they might have same functions, such as interacted with VQ proteins.

DISCUSSION

VQ protein is a kind of specific protein that widely exists in plant, involved in plant growth and can response to different stresses (*Petersen et al., 2010; Fiil & Petersen, 2011; Xie et al., 2010*). Hence, we completed genome-wide analysis of soybean VQ proteins by bioinformatic analysis and qRT-PCR to understand their regulation when environmental changed. In the previous study, 74 *GmVQ* genes were identified (*Wang et al., 2014; Zhou et*

Figure 8 qRT-PCR analysis reveals *GmVQ* genes under cold treatment compared to the controls. Stress treatments and time course are described in the Materials and Methods section. (A-Y) represent different genes which were used in qRT-PCR analysis. Asterisks on top of the bars indicating statistically significant differences between the stress and counterpart controls (*p < 0.05, **p < 0.01). Full-size \square DOI: 10.7717/peerj.7509/fig-8

al., 2016). After the database was updated, we identified and isolated 75 *GmVQ* genes in the soybean genome. Compared with previous study, the number of genes in chromosome 2, 4 and 17 show a big difference. Soybean contains more VQ genes than that of *A. thaliana* (34) (*Cheng et al.*, 2012), *Populus trichocarpa* (51) (*Chu et al.*, 2016) and *O. sativa* (42) (*Kim et al.*, 2013a; *Kim et al.*, 2013b). The reason is the whole genome duplication events (WGD). There are two rounds of genome duplication, occurred at around 59 and 13 million years ago, which caused 75% soybean genes duplicated (*Jeremy et al.*, 2010).

Seventy-five VQ genes were identified in *Glycine max's* genome, divided into seven groups based on their comprehensive phylogenetic tree among *G. max*, *A. thaliana*, and

O. sativa. These proteins are in the shorter branches and with closer spacing, suggesting that they were highly conserved during the evolution. The more closer related genes within the same group shared more similar gene structures, either in their intron or in the exon patterns. Whereas, the variation in different groups suggested the functional diversity of the VQ genes (*Jiang, Sevugan & Ramachandran, 2018*). In addition, most GmVQ genes (59; 78.67%) were found intronless, and most GmVQ genes (64; 85.33%) encoded relatively small proteins with protein length less than 300 amino acid. This suggests that VQ gene families were intronless and they were highly conserved during evolution. At the same time, gene duplication can help plants to adapt to different environments during their

Peer

Full-size 🖾 DOI: 10.7717/peerj.7509/fig-10

development and growth (*Huang et al., 2016; Storz, 2009*). The main expansion of GmVQ gene family is segmental duplication (52; 92.9%), only 4 pairs of genes involved in tandem duplication events (4; 7.1%). A similar phenomenon was reported in the BrVQ gene family, which contains a high proportion of segmental duplication (71.9%) and low proportion of tandem duplication (28.1%) (*Zhang et al., 2015*).

Nonfunctionalization, subfunctionalization, and neofunctionalization generally take place after genome duplication, resulting in lose or fix of genes (*He & Zhang, 2005; Sandve, Rohlfs & Hvidsten, 2018; Stark et al., 2017*). Soybean has undergone the WGD and the whole genome triplication (WGT) compared to grapevine (*Wang et al., 2017*). As there

Figure 11 Number of each cis-acting element in the promoter region (1.5 kb upstream of the translation start site) of *GmVQ* genes.

Full-size DOI: 10.7717/peerj.7509/fig-11

Figure 12 Interaction of GmVQ proteins with GmWRKY proteins. (A) The prediction of interaction between GmVQ proteins and GmWRKY proteins by the PAIR website, and the interaction network was draw in Cytoscape 3.6.1. (B) Sequence analysis of the WRKY domains of GmWRKY proteins and AtWRKY proteins.

are 18 VQ genes in grapevine genome, the predicted number of VQ genes in soybean should be more than 100 (*Wang et al., 2015*). However, in this study, we only found 75 VQ genes in the soybean genome, suggesting that there were gene loss events after genome duplication. In addition, the Ks value of each paralogous pairs was calculated to find gene duplication events, the most duplication events in *GmVQ* gene occurred between 5 and 30 MYA, consistent with the recent WGD in soybean (*Wang et al., 2017*; *Jeremy et al., 2010*). The *Ka/Ks* ratios in different gene pairs are different, but most gene pairs' *Ka/Ks* ratios are less than one and only two gene pairs' (*GmVQ54-GmVQ63* and *GmVQ65-GmVQ36*) ratios are larger than 1, implying these gene pairs undergo different selection pressure. The above analysis indicated that purifying selection played a crucial role during the evolution, conserved VQ proteins evolved much slowly at the protein level.

Expression patterns of 67 GmVQ genes were performed to determine their tissue expression using RNA-seq data. The results showed that 24 genes were relatively highly expressed in nine tissues, indicated that they may relate to the growth and development of plants. Moreover, 76% (57/75) and 64% (48/75) of GmVQ genes' expression levels were obviously increased in leaves and roots, respectively. More and more studies have shown that VQ proteins played a significant role in plants development. The study of *A. thaliana* mutants showed that AtVQ8 had a certain influence on chlorophyll formation and leaf growth and development (*Cheng et al., 2012*). In this study, GmVQ7 and GmVQ75 were in the same evolutionary branch with AtVQ8. Their high expression in leaves indicating

they might have similar function as *AtVQ8* (*Cheng et al., 2012*). These results will help us to study the further function of soybean's VQ proteins.

Plants need to face various abiotic stresses during their growth in natural conditions, the most common of which are high salt, drought and cold (Kim et al., 2013a; Kim et al., 2013b; Wang et al., 2014). Except for regulation by environmental factors, VQ gene family is regulated by defense-related hormones, such as SA and ABA. In our study, we selected 25 GmVQs for qRT-PCR analysis under five different stresses (salt, drought, cold, SA and ABA stresses). In this study, most GmVQ genes were up-regulated with the SA treatment, the result is consistent with previous study that most AtVQ genes can response to pathogen or the SA treatment (*Cheng et al., 2012*). In addition, fifteen *GmVQ* genes (e.g., *GmVQ2/21/29/46*) were up-regulated under SA treatment, suggesting that they play a potential role in stress resitance. 56% GmVQ genes (14/25) were up-regulated, which is different with the up-regulation of VQ genes in rice that only three OsVQ genes were up-regulated more than two fold (Kim et al., 2013a; Kim et al., 2013b). Increasing evidence suggests that VQ genes are involved in various stress response. For example, 23% ZmVQgenes were upregulated, all the VvVQ genes were up-regulated by drought stress (Song et al., 2016; Wang et al., 2015). Consistently, 30% of GmVQ genes were up-regulated, GmVQ2/29/33 were highly expressed under drought stress. Nevertheless, AtVQ9 and AtVQ15 were reported can response to abiotic stress during high salinity treatment. The response of VQ genes to cold stress is similar to that of Chinese cabbage (Hu et al., 2013; Zhang et al., 2015; Cheng et al., 2012). In our study, GmVQ5/6/7/31/46/58/59 and GmVO7/9/28 were activated the salt and cold stresses, respectively, because that their promoter region exists in specific stress *cis*-elements. Besides, homologous *GmVQ* genes possessed similar expression pattern but may exhibit opposite expression trend under stress, such as GmVQ9-GmVQ21 were up-regulated under SA treatment, but GmVQ9 was up-regulated and GmVQ29 was down-regulated during cold stress. These results suggest that GmVQ genes participate in response mechanism of abiotic stresses, their regulation mechanism is complex and diverse.

As auxiliary factor, VQ genes regulate transcription, can interact with many proteins to participate in regulating complex physiological and biochemical processes of plants, such as they can interact with *WRKY* transcription factors (*Wang et al., 2015; Lei et al., 2017; Lai et al., 2011*). Studies have shown that the responses under three different pathogens, *VQ* protein are interacted with *WRKY* protein in rice (*Li et al., 2014*). VQ proteins and WRKY proteins may form a protein complex to exercise function. We found some of the *GmVQ* genes interact with group I's *WRKY*, most *VQ* genes interact with groups I and IIc's VQ protein in various stresses in previous reports (*Dong et al., 2018; Guo et al., 2018; Lei et al., 2017*). The promoter analysis indicated that 23 of 75 *GmVQ* genes (30.67%) contained one or more W-box motif in their 1,500 bp promoter regions, W-box were present in 78% *VvVQ* genes, 91% *ZmVQ* genes, w-boxes could regulate *GmWRKY* members (*Dong, Chen, 2003*). It indicates that WRKY protein affect VQ genes expression and thus responses to environmental stimuli (*Dong et al., 2018; Guo et al., 2018*).

CONCLUSIONS

Seventy-five VQ genes were identified in the soybean genomes. All VQ genes fell into seven groups (I-VII). VQ genes from the same evolutionary branches of soybean shared similar motifs and structures. The selection pressure analysis showed that most of the paralogous pairs were under a strong purifying selection in the GmVQ genes. RNA-seq analysis revealed that the VQ genes had different expression patterns in different tissues, indicating that they play crucial roles in different tissue. Finally, qRT-PCR showed that the VQ gene family was responsive to biotic and abiotic stresses. Our results provide a theoretical basis for further study on the function of GmVQs.

ACKNOWLEDGEMENTS

The authors would like to thank the key laboratory of crop and livestock molecular breeding of Heilongjiang Province for providing plenty of helpful manpower and material support.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work was supported by the National Transgenic Major Program of China (No. 2016ZX08004001-006), the National Key R&D Program for Crop Breeding (No. 2016YFD0102105), the Science and Technology Program for Innovation Talents of Harbin (No. 2014RFQYJ016, No. 2014RFXYJ011) and the Project of Heilongjiang Academy of Agricultural Sciences (HAAS) (No. 2017BZ12). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors: National Transgenic Major Program of China: 2016ZX08004001-006. National Key R&D Program for Crop Breeding: 2016YFD0102105. Science and Technology Program for Innovation Talents of Harbin: 2014RFQYJ016, 2014RFXYJ011.

Project of Heilongjiang Academy of Agricultural Sciences (HAAS): 2017BZ12.

Competing Interests

The authors declare there are no competing interests.

Author Contributions

- Yongbin Wang performed the experiments, analyzed the data, contributed reagents/materials/analysis tools, prepared figures and/or tables, authored or reviewed drafts of the paper, approved the final draft.
- Zhenfeng Jiang performed the experiments, analyzed the data, authored or reviewed drafts of the paper, approved the final draft.
- Zhenxiang Li analyzed the data, contributed reagents/materials/analysis tools, prepared figures and/or tables, authored or reviewed drafts of the paper, approved the final draft.

- Yuanling Zhao and Weiwei Tan performed the experiments, prepared figures and/or tables, approved the final draft.
- Zhaojun Liu contributed reagents/materials/analysis tools, prepared figures and/or tables, approved the final draft.
- Shaobin Cui, Xiaoguang Yu and Jun Ma contributed reagents/materials/analysis tools, approved the final draft.
- Guangjin Wang and Wenbin Li conceived and designed the experiments, approved the final draft.

Data Availability

The following information was supplied regarding data availability:

The raw measurements are available in Fig. S1 and Table S1.

Supplemental Information

Supplemental information for this article can be found online at http://dx.doi.org/10.7717/ peerj.7509#supplemental-information.

REFERENCES

- Bailey TL, Johnson J, Grant CE, Noble WS. 2015. The MEME Suite. *Nucleic Acids Research* 43(W1):W39–W49 DOI 10.1093/nar/gkv416.
- Cheng Y, Zhou Y, Yang Y, Chi YJ, Zhou J, Chen JY, Wang F, Fan B, Shi K, Zhou YH. 2012. Structural and functional analysis of VQ motif-containing proteins in Arabidopsis as interacting proteins of WRKY transcription factors. *Plant Physiology* 159(2):810–825 DOI 10.1104/pp.112.196816.
- Chu W, Liu B, Wang Y, Pan F, Chen Z, Yan H, Xiang Y. 2016. Genome-wide analysis of poplar VQ gene family and expression profiling under PEG, NaCl, and SA treatments. *Tree Genetics & Genomes* 12(6):Article 124 DOI 10.1007/s11295-016-1082-z.
- **Dong J, Chen C, Chen Z. 2003.** Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. *Plant Molecular Biology* **51**:21–37 DOI 10.1023/A:1020780022549.
- Dong Q, Zhao S, Duan D, Tian Y, Wang Y, Mao K, Zhou Z, Ma F. 2018. Structural and functional analyses of genes encoding VQ proteins in apple. *Plant Science* 272:208–219 DOI 10.1016/j.plantsci.2018.04.029.
- **Fiil BK, Petersen M. 2011.** Constitutive expression of MKS1 confers susceptibility to Botrytis cinerea infection independent of PAD3 expression. *Plant Signaling & Behavior* **6(10)**:1425–1427 DOI 10.4161/psb.6.10.16759.
- Garcia D, Berger F. 2003. Arabidopsis haiku mutants reveal new controls of seed size by endosperm. *Plant Physiology* 131(4):1661–1670 DOI 10.1104/pp.102.018762.
- Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J. 2004. Bioconductor: open software development for computational biology and bioinformatics. *Genome Biology* 5:1–16 DOI 10.1186/gb-2004-5-10-r80.

- Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N. 2012. Phytozome: a comparative platform for green plant genomics. *Nucleic Acids Research* **40**(D1):D1178–D1186 DOI 10.1093/nar/gkr944.
- Guo J, Chen J, Yang J, Yu Y, Yang Y, Wang W. 2018. Identification, characterization and expression analysis of the VQ motif-containing gene family in tea plant (Camellia sinensis). *BMC Genomics* 19(1):710 DOI 10.1186/s12864-018-5107-x.
- He X, Zhang J. 2005. Rapid subfunctionalization accompanied by prolonged and substantial neofunctionalization in duplicate gene evolution. *Genetics* 169(2):1157–1164 DOI 10.1534/genetics.104.037051.
- Hu Y, Chen L, Wang H, Zhang L, Wang F, Yu D. 2013. Arabidopsis transcription factor WRKY8 functions antagonistically with its interacting partner VQ9 to modulate salinity stress tolerance. *Plant Journal* **74**(3):730–745 DOI 10.1111/tpj.12159.
- Huang Z, Duan W, Song X, Tang J, Peng W, Bei Z, Hou X. 2016. Retention, molecular evolution, and expression divergence of the auxin/indole acetic acid and auxin response factor gene families in brassica rapashed light on their evolution patterns in plants. *Genome Biology & Evolution* 8:302–316 DOI 10.1093/gbe/evv259.
- Jeremy S, Cannon SB, Jessica S, Jianxin M, Therese M, William N, Hyten DL, Qijian S, Thelen JJ, Jianlin C. 2010. Genome sequence of the palaeopolyploid soybean. *Nature* 463(7278):178–183 DOI 10.1038/nature08670.
- Jiang SY, Sevugan M, Ramachandran S. 2018. Valine-glutamine (VQ) motif coding genes are ancient and non-plant-specific with comprehensive expression regulation by various biotic and abiotic stresses. *BMC Genomics* 19(1):342 DOI 10.1186/s12864-018-4733-7.
- Jing Y, Lin R. 2015. The VQ motif-containing protein family of plant-specific transcriptional regulators. *Plant Physiology* 169:371–378 DOI 10.1104/pp.15.00788.
- Kim DY, Kwon SI, Choi C, Lee H, Ahn I, Park SR, Bae SC, Lee SC, Hwang DJ. 2013a. Expression analysis of rice VQ genes in response to biotic and abiotic stresses. *Gene* **529(2)**:208–214 DOI 10.1016/j.gene.2013.08.023.
- Kim MY, Yang JK, Lee T, Lee SH. 2013b. Divergence of flowering-related genes in three legume species. *Plant Genome* 6(3):841–856 DOI 10.3835/plantgenome2013.03.0008.
- Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA. 2009. Circos: an information aesthetic for comparative genomics. *Genome Research* 19(9):1639–1645 DOI 10.1101/gr.092759.109.
- Lai Z, Li Y, Wang F, Cheng Y, Fan B, Yu JQ, Chen Z. 2011. Arabidopsis sigma factor binding proteins are activators of the WRKY33 transcription factor in plant defense. *The Plant Cell* 23(10):3824–3841 DOI 10.1105/tpc.111.090571.
- Lei R, Li X, Ma Z, Lv Y, Hu Y, Yu D. 2017. Arabidopsis WRKY2 and WRKY34 transcription factors interact with VQ20 protein to modulate pollen development and function. *Plant Journal* 91:962–976 DOI 10.1111/tpj.13619.
- Letunic I, Doerks T, Bork P. 2012. SMART 7: recent updates to the protein domain annotation resource. *Nucleic Acids Research* 40(D1):302–305 DOI 10.1093/nar/gkr931.

- Li N, Li X, Xiao J, Wang S. 2014. Comprehensive analysis of VQ motif-containing gene expression in rice defense responses to three pathogens. *Plant Cell Reports* 33(9):1493–1505 DOI 10.1007/s00299-014-1633-4.
- Li WH, Gojobori T, Nei M. 1981. Pseudogenes as a paradigm of neutral evolution. *Nature* 292(5820):237–239 DOI 10.1038/292237a0.
- Liu MM, Li DM. 2010. An analysis on total factor productivity and influencing factors of soybean in China. *Journal of Agricultural Science* 2(2):158–163 DOI 10.5539/jas.v2n2p158.
- **Livak KJ, Schmittgen TD. 2001.** Analysis of relative gene expression data using realtime quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods* **25**:402–408 DOI 10.1006/meth.2001.
- Perruc E, Charpenteau M, Ramirez BC, Jauneau A, Galaud JP, Ranjeva R, Ranty B. 1999. A novel calmodulin-binding protein functions as a negative regulator of osmotic stress tolerance in Arabidopsis thaliana seedlings. *Plant Journal* 38:410–420 DOI 10.1111/j.1365-313X.2004.02062.x.
- Petersen K, Qiu JL, Lütje J, Fiil BK, Hansen S, Mundy J, Petersen M. 2010. Arabidopsis MKS1 is involved in basal immunity and requires an intact N-terminal domain for proper function. *PLOS ONE* 5(12):e14364 DOI 10.1371/journal.pone.0014364.
- Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J. 2012. The Pfam protein families database. *Nucleic Acids Research* 40(1):D290–D301 DOI 10.1093/nar/gkh121.
- Rueda J, Realpe T, Mejia GI, Zapata E, Rozo JC, Ferro BE, Robledo J. 2015. Genotypic analysis of genes associated with independent resistance and cross-resistance to isoniazid and ethionamide in mycobacterium tuberculosis clinical isolates. *Antimicrobial Agents & Chemotherapy* **59**(12):7805–7810 DOI 10.1128/AAC.01028-15.
- Sandve SR, Rohlfs RV, Hvidsten TR. 2018. Subfunctionalization versus neofunctionalization after whole-genome duplication. *Nature Genetics* 50(7):908–909 DOI 10.1038/s41588-018-0162-4.
- **Song W, Zhao H, Zhang X, Lei L, Lai J. 2016.** Genome-wide identification of VQ motifcontaining proteins and their expression profiles under abiotic stresses in maize. *Frontiers in Plant Science* **6**:Article 1177 DOI 10.3389/fpls.2015.01177.
- Stark TL, Liberles DA, Holland BR, O Reilly MM. 2017. Analysis of a mechanistic Markov model for gene duplicates evolving under subfunctionalization. *BMC Evolutionary Biology* 17(1):38 DOI 10.1186/s12862-016-0848-0.
- **Storz JF. 2009.** Genome evolution: gene duplication and the resolution of adaptive conflict. *Heredity* **102(2)**:99–100 DOI 10.1038/hdy.2008.114.
- Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. *Molecular Biology & Evolution* 28(10):2731–2739 DOI 10.1093/molbev/msr121.
- Wang AH, Garcia D, Zhang HY, Ke F, Chaudhury A, Berger F, Peacock WJ, Dennis ES, Ming L. 2010. The VQ motif protein IKU1 regulates endosperm growth and seed

size in Arabidopsis. *Plant Journal* **63**(**4**):670–679 DOI 10.1111/j.1365-313X.2010.04271.x.

- Wang J, Sun P, Li Y, Liu Y, Yu J, Ma X, Sun S, Yang N, Xia R, Lei T. 2017. Hierarchically aligning 10 legume genomes establishes a family-level genomics platform. *Plant Physiology* 174(1):284–300 DOI 10.1104/pp.16.01981.
- Wang M, Vannozzi A, Wang G, Zhong Y, Corso M, Cavallini E, Cheng ZM. 2015. A comprehensive survey of the grapevine VQ gene family and its transcriptional correlation with WRKY proteins. *Frontiers in Plant Science* **6**:Article 417 DOI 10.3389/fpls.2015.00417.
- Wang X, Zhang H, Sun G, Jin Y, Qiu L. 2014. Identification of active VQ motifcontaining genes and the expression patterns under low nitrogen treatment in soybean. *Gene* 543(2):237–243 DOI 10.1016/j.gene.2014.04.012.
- Wang Y, Tang H, Debarry JD, Tan X, Li J, Wang X, Lee T, Jin H, Marler B, Guo H, Kissinger JC. 2012. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. *Nucleic Acids Research* **40**(7):e49–e49 DOI 10.1093/nar/gkr1293.
- Xie YDWLI, Guo D, Dong J, Zhang QYFU, Ren D, Peng M, Xia Y. 2010. The Arabidopsis gene SIGMA FACTOR-BINDING PROTEIN 1 plays a role in the salicylate- and jasmonate-mediated defence responses. *Plant Cell & Environment* 33(5):828–839 DOI 10.1111/j.1365-3040.2009.02109.x.
- Xu L, Qiao X, Zhang M, Zhang S. 2018. Genome-wide analysis of aluminum-activated malate transporter family genes in six rosaceae species, and expression analysis and functional characterization on malate accumulation in chinese white pear. *Plant Science* 24(3):431–442 DOI 10.1111/1744-7917.12336.
- Zhang G, Wang F, Li J, Qian D, Zhang Y, Li H, Zhang J, Gao J. 2015. Genome-Wide identification and analysis of the VQ motif-containing protein family in Chinese cabbage (Brassica rapa L. ssp. pekinensis). *International Journal of Molecular Sciences* 16(12):28683–28704 DOI 10.3390/ijms161226127.
- Zhou Y, Yang Y, Zhou X, Chi Y, Fan B, Chen Z. 2016. Structural and functional characterization of the VQ protein family and VQ protein variants from soybean. *Science Reports* 6:34663 DOI 10.1038/srep34663.