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Abstract: Background: Transcranial photobiomodulation (t-PBM) is a promising non-
invasive therapy for Major Depressive Disorder (MDD). MDD is associated with altered
brain metabolism, including changes in N-acetylaspartate (NAA), choline (Cho), and crea-
tine (Cr). This study assessed the effects of varying t-PBM doses on neurometabolite levels
in the dorsolateral prefrontal cortex (dlPFC) and their correlations with clinical outcomes.
Methods: In this randomized, sham-controlled, cross-over study, 33 adults with MDD re-
ceived one session of t-PBM at low, medium, and high doses and a sham treatment. Proton
magnetic resonance spectroscopy (1H-MRS) measured NAA, Cho, and Cr pre- and post-
treatment. Clinical outcomes were assessed using the Montgomery–Åsberg Depression
Rating Scale (MADRS) and the Symptoms of Depression Questionnaire (SDQ). Statistical
analyses included paired t-tests or Wilcoxon signed-rank tests for neurometabolite changes,
and linear mixed-effects regression models for t-PBM dose, neurometabolites, and time
effects. Results: NAA levels increased significantly (7.52 ± 0.777 to 8.12 ± 1.05 mmol/L
for one session; 7.36 ± 0.85 to 7.85 ± 0.68 mmol/L across all sessions); however, these
changes were not associated with specific t-PBM doses or sham. No significant changes
were observed for Cho and Cr levels. Positive correlations were found between Cho levels
and MADRS scores (r = 0.59, p = 0.017), and negative correlations between Cr levels and
SDQ scores at the medium dose (r = −0.91, p = 0.011). Conclusions: While NAA levels
increased, and correlations between neurometabolites and clinical outcomes were observed,
these findings do not suggest a specific effect of t-PBM. Larger randomized controlled
trials with optimized dosing protocols, extended follow-up, and advanced spectroscopy
are needed to clarify the neurometabolic therapeutic potential of t-PBM in MDD.
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1. Introduction
Major Depressive Disorder (MDD) is a serious mental health condition characterized

by persistent sadness, hopelessness, and diminished interest or pleasure in activities, often
impairing daily functioning [1]. Its complex causes involve genetic, biological, environmen-
tal, and psychological factors [2]. While psychotherapy and antidepressants are standard
treatments [3], transcranial photobiomodulation (t-PBM) has emerged as a promising non-
invasive therapy [4]. t-PBM delivers near-infrared (NIR) light to the brain, modulating
neurobiological processes at the cellular level [5], and has been investigated for neuropsy-
chiatric conditions such as MDD, bipolar disorder, Alzheimer’s and Parkinson’s diseases,
neurodevelopmental disorders, Down syndrome, and traumatic brain injury [6–16]. Early
clinical trials suggest t-PBM may be a safe and effective treatment for MDD, particularly
for individuals resistant to conventional therapies [17–19]. However, despite its poten-
tial, the impact of t-PBM on neurometabolites, particularly its dose-dependent effects,
remains underexplored.

Proton magnetic resonance spectroscopy (1H-MRS), a non-invasive imaging tech-
nique, provides insights into the biochemical changes associated with MDD and t-PBM
therapy [20]. By measuring brain metabolites such as N-acetylaspartate (NAA), a marker
of neuronal viability [21]; creatine (Cr), a marker of cellular energy metabolism [22];
choline (Cho), a marker of cell membrane turn-over [23]; and myo-inositol (mIns), a
glial marker [24], 1H-MRS can be used to assess the effects of t-PBM on neurometabolites in
brain regions implicated in MDD, such as the prefrontal cortex [25,26]. Studies combining
t-PBM and 1H-MRS may enhance understanding of the metabolic effects of t-PBM and its
efficacy as an evidence-based intervention for MDD.

This study aimed to (1) evaluate the effects of varying doses of t-PBM on neurometabo-
lite levels (NAA, Cho, Cr and mIns) in the dorsolateral prefrontal cortex (dlPFC) of patients
with MDD and (2) to investigate the correlation between these changes in neurometabolite
levels and changes in depression severity.

2. Materials and Methods
2.1. Study Design

This study was a randomized, single-blinded, sham-controlled, cross-over design. It
was part of a larger initiative funded by the National Institute of Mental Health (NIMH)
(ClinicalTrials.gov identifier: NCT04366258). The full methodology was previously outlined
in an established protocol and detailed in a prior publication [19,27]. The study was
conducted across three primary centers: Massachusetts General Hospital (MGH), New
York University (NYU), and the Nathan Kline Institute for Psychiatric Research (NKI).
Ethical approval was obtained from the Institutional Review Board at NYU (IRB number:
s20-00217).

2.2. Randomization

Participants were randomized to a specific sequence of the four t-PBM/sham doses
using a computer-generated schedule. A total of 24 possible sequence orders existed; from
these, 8 orders (derived from two distinct 4 × 4 Latin squares) were selected for use at each
site. The study statistician provided each site with a block-randomized list assigning the
order in which participants received the four conditions. This cross-over design ensured
that all participants experienced each dose condition and served as their own control.

2.3. Blinding

The study was conducted under single-blinded conditions, where participants were
unaware of their assigned intervention. For the sham condition, the t-PBM device was
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left on standby, such that the device appeared activated, with a visible light, but no near-
infrared stimulation was delivered. In addition, at each visit, participants completed a
Perceived Blinding Questionnaire to assess their belief about the treatment received, the
strength of that belief, and their expectation of benefit. Outcome assessors, however, were
not blinded to the order of treatments.

2.4. Eligibility Criteria

Participants were eligible for inclusion if they were aged between 18 and 65 years,
met the criteria for MDD as described in the Diagnostic and Statistical Manual of Mental
Disorders, Fifth Edition (DSM-5), and were not classified as treatment-resistant (defined
as failure to respond to no more than two antidepressant treatments during the current
episode). Additionally, participants had to be either unmedicated or on stable doses of
antidepressants. Exclusion criteria included significant suicidal risk, a history of psychotic
or bipolar disorders, substantial cognitive impairment, neurological disorders, traumatic
brain injury, pregnancy or breastfeeding, and non-adherence to treatment protocols.

2.5. Intervention

All subjects underwent four t-PBM dosing conditions in randomized order: low,
medium, high, and sham, with each session spaced approximately one week apart. These
doses refer to specific, quantitatively defined irradiance and energy parameters, as demon-
strated in Table 1. Session durations varied by dose: low (20 min), medium (6 min), high
(10 min), and sham (10 min). The target area was the dlPFC bilaterally (F3 and F4 EEG
electrode locations). The t-PBM device used in this study was the tPBM-2.0, an investiga-
tional modification of LiteCure’s LightForce® EXPi Deep Tissue Laser Therapy™ System,
manufactured and supplied by LiteCure LLC, New Castle, DE, USA. The device delivers
NIR laser light at a wavelength of 808 nm, configured to administer different irradiance
levels and emission modes based on randomized treatment conditions. The laser system
uses a flexible, double-sheathed optical fiber connected to a helmet designed for secure
placement on the scalp, ensuring precise NIR delivery to the target regions.

Table 1. Transcranial photobiomodulation dose parameters.

Parameters Low Dose Medium Dose High Dose Sham

NIR Source Laser Laser Laser N/A

Wavelength (nm) 808 808 808 N/A

Area of Exposure (cm2) 24 24 24 24

Peak Irradiance (mW/cm2) ~50 ~300 ~850 0

Average Irradiance (mW/cm2) ~50 ~300 ~300 0

Exposure Time (s) 1200 333 600 0

Average Fluence (J/cm2) ~60 ~100 ~180 0

Total Energy (kJ) ~1.4 ~2.4 ~4.3 0

Wave Mode Continuous Continuous Pulsed N/A

Duty Cycle (%) N/A N/A 33 N/A

Pulse Rate (Hz) N/A N/A ~40 N/A
N/A: Not applicable.

2.6. Protocol Adherence and Site Standardization

The intervention was delivered inside the magnetic resonance imaging (MRI) scanner
for all participants, in accordance with the study design. Subjects entered the scanner head-
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first in a supine position, wearing the MRI-compatible headset and laser safety glasses.
Stimulation was administered with lights turned off in the scanner room to maintain
consistency across sessions. To ensure procedural consistency, weekly meetings were
held with staff across MGH, NYU, and NKI to review study protocols and address any
procedural questions. Staff at each site received similar overarching training and operated
under a shared standard operating procedure, including device calibration, session setup,
and safety protocols.

2.7. Outcomes

Imaging was conducted using a 3T Siemens Trio MRI scanner (Siemens Healthineers,
Erlangen, Germany) with 12-channel transmit/receive head coils. T1-weighted MPRAGE
sequences were used for anatomical localization, voxel placement, and partial volume
correction of cerebrospinal fluid. Single-voxel proton magnetic resonance spectroscopy
(1H-MRS) data were collected pre- and post-treatment, approximately 15 min after t-PBM
sessions. A voxel (30 × 30 × 15 mm3) was placed in the left frontal lobe for magnetic
resonance spectroscopy (MRS) acquisition using a Point RESolved Spectroscopy (PRESS)
sequence [28] (TR = 2000 ms, TE = 30 ms, bandwidth = 2000 Hz). The acquisition included
128 signal averages, with a total acquisition time of 4 min and 48 s for the main spectroscopy
sequence and 16 s for the water-suppressed spectroscopy sequence (four signal averages,
acquisition duration = 514 ms).

Neurometabolites measured included total NAA (the sum of N-acetylaspartate [NAA]
and N-acetylaspartylglutamate [NAAG]), total Cho (phosphorylcholine [PCho] and free
choline), and total Cr (creatine and phosphocreatine). Quantification was performed
using the jMRUI toolkit v6.01 and the QUEST algorithm, with phase correction and water-
referenced spectra. Only metabolites with a Cramer–Rao lower bound (CRLB) < 25% were
included. Tissue segmentation using Gannet and SPM12 corrected for partial volume
effects in gray matter, white matter, and cerebrospinal fluid (CSF). Only metabolites with a
Cramer–Rao lower bound (CRLB) < 25% were considered for further analysis. The levels
were corrected for partial volume effects by registering the MRS voxel to the T1 anatomical
space and segmenting it into gray matter, white matter, and CSF using the Gannet toolkit
v3.13 [29] and SPM12 [30]. The segmented tissue fractions were applied to partial volume
corrected for the metabolite levels using jMRUI-QUEST to account for CSF content, as
outlined in the literature [31]. The T1 and T2 values for gray matter, white matter, and
CSF used in this study were 1331, 832, and 3817 ms and 110, 79, and 503 ms, respectively.
The metabolite relaxation times used for calculating final corrected levels were based on
previous studies [32,33]. Figure 1 illustrates the MRS voxel placement, segmentation, and a
representative spectrum.

To assess clinical outcomes, we applied the Montgomery–Åsberg Depression Rating
Scale (MADRS) [34] and the Symptoms of Depression Questionnaire (SDQ) [35]. MADRS
scores were used to evaluate changes in depressive symptoms, while SDQ scores captured
a broader range of depression-related symptoms, including anxiety.

2.8. Study Data Analysis Scheme

Each participant in this study underwent three randomized t-PBM treatments and one
sham session, with each session spaced one week apart. Pre- and post-treatment MRI/MRS
data were collected during all sessions. Three separate analyses were conducted to assess
changes in neurometabolite levels following t-PBM treatment (Figure 2). Due to the poor
quality of most post-treatment MRS spectra, only pre-treatment MRS data were included in
the three-visit and two-visit analyses. This limitation prevented the inclusion of the final
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t-PBM session in these analyses. For the one-visit analysis, only high-quality post-treatment
MRS spectra were utilized.
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Figure 1. Magnetic resonance spectroscopy (1H-MRS) voxel placement, segmentation, and magnetic
resonance (MR) spectra. (A) Both pre- and post- left prefrontal MRS voxel (13 cm3) overlap density
maps for all participants in sagittal and axial planes. Individual MRS voxels were transformed to
the MNI space and then combined to show the overlap. (B) Representative spectrum from the left
dorsolateral prefrontal cortex, showing prominent peaks for N-acetylaspartate (NAA), creatine (Cr),
choline (Cho), and myo-inositol (mIns). (C) Voxel composition of gray matter (GM), white matter
(WM), and cerebrospinal fluid (CSF) in pre- and post-treatment scans.

2.9. Statistical Analysis

Sociodemographic and baseline clinical characteristics were reported as frequencies,
percent, or mean (±SD), depending on the features of the variables. We applied paired
t-test or Wilcoxon signed rank test to compare variables, depending on their distributional
characteristics. Linear mixed-effects regression models with restricted maximum likeli-
hood algorithms were fitted in R software version 4.4.1 [36] using the “lme4” package [37].
The models in the prediction of MADRS and SDQ scores included sex, age, levels of neu-
rometabolites, time (pre-, post-), and NIR doses as fixed factors and repeated measurements
across participants as the random factor. The violations and robustness of the models were
evaluated with residual histograms, normality test of residuals, residual vs. fitted plots,
and QQ plots. A p-value of <0.05 was used to denote statistical significance. The Benjamini–
Hochberg p adjustment method was used to control false discovery rate when multiple
tests were performed. When a statistically significant difference was found, the effect size
(Cohen’s d) was calculated and presented.
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Figure 2. Study design and magnetic resonance spectroscopy (1H-MRS) data analysis schemes. This
figure illustrates the three MRS data analysis schemes used in this study. In the three-visit analysis,
participants received sham, low, medium, or high transcranial photobiomodulation (t-PBM) doses
across three visits, with time point 1 (pre-MRS) at the start of visit 1 and time point 2 (pre-MRS) at the
start of visit 4. The two-visit analysis involved participants receiving sham, low, medium, or high
t-PBM doses across two visits, with time point 1 (pre-MRS) at the start of visit 1 and time point 2
(pre-MRS) at the start of visit 3. In the one-visit analysis, participants received a single dose (sham,
low, medium, or high t-PBM) during a single visit, with time point 1 (pre-MRS) at the start and time
point 2 (post-MRS) at the end of visit 1.

3. Results
All MR spectra used in the analysis had a signal-to-noise ratio (SNR) >15 and a line

width of the unsuppressed water signal at half height (FWHM) of <13 Hz (9 ± 3 Hz). The
Cramer–Rao lower bounds for NAA, Cr, and Cho were below 7%. However, the majority of
quantified mIns signals exhibited CRLBs exceeding 25% and were therefore excluded from
the analysis. The number of valid spectra per dosing condition (high, medium, low, sham)
is detailed in the corresponding analysis subsections below and in Figure 3. Neither age
nor gender was significantly associated with the main outcomes in the statistical analyses
of metabolite levels, MADRS, or SDQ at any visit frequency.

3.1. Three-Visit Analysis
3.1.1. Demographics

A total of 21 (15 female and 6 male) patients with MDD were included in this analysis.
The mean age of the sample was 37.5 ± 15. The mean baseline MADRS score was 26.8 ± 6,
and at the end of the study was 20.8 ± 10. The mean baseline SDQ score was 131.7 ± 25,
and at the end of the study was 117.9 ± 25. Participants received t-PBM doses or sham as
follows: high dose: n = 6; medium dose: n = 3; low dose: n = 4; sham: n = 8.
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Figure 3. Participant flow diagram for MR spectra dataset inclusion across analysis schemes. This
flowchart depicts participant enrollment, allocation, and inclusion in each analysis scheme (one-visit,
two-visit, and three-visit) based on valid MRS data. A total of 56 individuals were assessed for
eligibility, with 34 randomized to intervention. Final sample sizes varied by analysis due to exclusion
of visits with poor MR spectra quality.

3.1.2. Changes in Neurometabolite Levels

After three visits, patients’ dlPFC NAA levels were significantly different be-
tween pre- and post- treatment; specifically, the mean levels increased (7.36 ± 0.85 to
7.85 ± 0.68 mmol/L, Cohen’s d = 0.64) after t-PBM treatment (F(1,20) = 5.37, p = 0.031)
(Figure 4A). However, this NAA increase was not associated with any t-PBM doses or
sham (F(3,15) = 0.65, p > 0.184). Furthermore, there were no significant changes in Cho
(F(1,20) = 0.001, p = 0.973) or Cr levels (F(1,20) = 2.50, p = 0.129) post-treatment compared
to pre-treatment.

3.1.3. Changes in Depression Severity (MADRS Scores)

We observed a significant decrease in the mean MADRS scores following t-PBM
treatment. The linear mixed-effects model showed that there was a main effect of time
(pre/post) (F(1,18) = 6.18, p = 0.023) on the MADRS scores (Figure 4B). However, the MADRS
score change was not significantly different among t-PBM doses and sham (F(3,13) = 0.14,
p = 0.922). We also included neurometabolite levels in this model to assess their effect on
the MADRS score; however, none were found to be significant (minimum p > 0.176).

3.1.4. Changes in Depression Severity (SDQ Scores)

The SDQ scores were not significantly different pre- and post- treatment. However, a
trend towards decreasing SDQ scores post-treatment compared to pre-treatment was ob-
served (F(1,16) = 4.12, p = 0.059). No significant association of t-PBM dose or neurometabolite
levels on the SDQ scores was found (minimum p > 0.615).



J. Clin. Med. 2025, 14, 3402 8 of 15
J. Clin. Med. 2025, 14, x FOR PEER REVIEW 8 of 16 
 

 

 

Figure 4. N-acetylaspartate (NAA) levels and Montgomery–Åsberg Depression Rating Scale 
(MADRS) scores. (A) Changes in NAA levels (pre- and post-treatment) following three sessions of 
t-PBM. (B) Changes in MADRS scores (pre- and post-treatment) following three sessions of t-PBM. 
Data are presented as individual changes; * p < 0.05. 

3.1.3. Changes in Depression Severity (MADRS Scores) 

We observed a significant decrease in the mean MADRS scores following t-PBM 
treatment. The linear mixed-effects model showed that there was a main effect of time 
(pre/post) (F(1,18) = 6.18, p = 0.023) on the MADRS scores (Figure 4B). However, the MADRS 
score change was not significantly different among t-PBM doses and sham (F(3,13) = 0.14, p 
= 0.922). We also included neurometabolite levels in this model to assess their effect on 
the MADRS score; however, none were found to be significant (minimum p > 0.176). 

3.1.4. Changes in Depression Severity (SDQ Scores) 

The SDQ scores were not significantly different pre- and post- treatment. However, 
a trend towards decreasing SDQ scores post-treatment compared to pre-treatment was 
observed (F(1,16) = 4.12, p = 0.059). No significant association of t-PBM dose or neurometab-
olite levels on the SDQ scores was found (minimum p > 0.615). 

3.2. Two-Visit Analysis 

3.2.1. Demographics 

A total of 17 (13 female and 4 male) patients with MDD were included in this analysis. 
The mean age of the sample was 38.0 ± 14.5. The mean baseline MADRS score was 27.4 ± 
6.30, and at the end of the study was 22.9 ± 8.81. The mean baseline SDQ score was 133 ± 
27.6, and at the end of the study was 120 ± 21.3. Participants received t-PBM doses or sham 
as follows: high dose: n = 7; medium dose: n = 3; low dose: n = 1; sham: n = 6. 

3.2.2. Changes in Neurometabolite Levels 

Since there were no participants in the sham arm at baseline and only one participant 
in the low dose arm at the endpoint, comparisons in the levels of neurometabolites were 
available for the high and medium t-PBM doses only. There was no significant change in 
NAA, Cho, and Cr levels following high and medium t-PBM doses. NAA (F(2,24) = 1.27, p = 
0.300), Cho (F(2,25) = 1.16, p = 0.329), and Cr (F(2,22) = 0.40, p = 0.675) levels of neurometabolites 
were not associated with treatment. 

Figure 4. N-acetylaspartate (NAA) levels and Montgomery–Åsberg Depression Rating Scale (MADRS)
scores. (A) Changes in NAA levels (pre- and post-treatment) following three sessions of t-PBM.
(B) Changes in MADRS scores (pre- and post-treatment) following three sessions of t-PBM. Data are
presented as individual changes; * p < 0.05.

3.2. Two-Visit Analysis
3.2.1. Demographics

A total of 17 (13 female and 4 male) patients with MDD were included in this analysis.
The mean age of the sample was 38.0 ± 14.5. The mean baseline MADRS score was
27.4 ± 6.30, and at the end of the study was 22.9 ± 8.81. The mean baseline SDQ score was
133 ± 27.6, and at the end of the study was 120 ± 21.3. Participants received t-PBM doses
or sham as follows: high dose: n = 7; medium dose: n = 3; low dose: n = 1; sham: n = 6.

3.2.2. Changes in Neurometabolite Levels

Since there were no participants in the sham arm at baseline and only one participant in
the low dose arm at the endpoint, comparisons in the levels of neurometabolites were avail-
able for the high and medium t-PBM doses only. There was no significant change in NAA,
Cho, and Cr levels following high and medium t-PBM doses. NAA (F(2,24) = 1.27, p = 0.300),
Cho (F(2,25) = 1.16, p = 0.329), and Cr (F(2,22) = 0.40, p = 0.675) levels of neurometabolites
were not associated with treatment.

3.2.3. Changes in Depression Severity (MADRS Scores)

The linear mixed-effects model showed no main effect of t-PBM dose (F(3,11.80) = 3.22,
p = 0.062) or time (F(1,10.57) = 0.11, p = 0.744) and no treatment × time interaction effect on
MADRS scores (F(2,17.29) = 1.99, p = 0.167). However, Cho levels significantly and positively
impacted MADRS scores (β̂ = 11.77, t = 2.70, df = 14.21, p = 0.017). A 1-unit increase in Cho
level was associated with a 11.77-unit increase in MADRS score. The correlation between
delta (post-pre) Cho levels and MADRS scores is summarized in Figure 5.

3.2.4. Changes in Depression Severity (SDQ Scores)

No main effect of t-PBM dose (F(3,12.51) = 1.96, p = 0.172) or time (pre/post)
(F(1,10.66) = 1.03, p = 0.333) on SDQ scores was observed. In addition, no treatment × time
interaction effect on SDQ scores was observed (F(2,20.30) = 3.05, p = 0.069). None of the levels
of neurometabolites were significantly associated with SDQ score.
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3.3. One-Visit Analysis
3.3.1. Demographics

A total of 33 (27 female and 6 male) patients with MDD were included in this analysis.
The mean age of the sample was 34.8 ± 14.6. The mean baseline MADRS score was
24.2 ± 8.07, and at the end of the study was 21.0 ± 8.76. The mean baseline SDQ score was
119 ± 25.9, and at the end of the study was 114 ± 24.3. Participants received t-PBM doses
or sham as follows: high dose: n = 9; medium dose: n = 6; low dose: n = 8; sham: n = 10.

3.3.2. Changes in Neurometabolites

NAA levels significantly increased from pre-treatment (7.52 ± 0.777 mmol/L) to
post–t-PBM treatment (8.12 ± 1.05 mmol/L, t = 3.74, df = 32, p = 0.0007, Cohen’s d = 0.65)
(Figure 6A). However, the increase in NAA levels was not significantly different between
the t-PBM doses and sham (F(3,43) = 0.696, p = 0.559). Choline and Cr levels were not
significantly different in the post-treatment period compared to pre-t-PBM.

3.3.3. Changes in Depression Severity (MADRS Scores)

The linear mixed-effects regression model showed that there were no significant main
effects of treatment and time, and no treatment × time interaction effect on MADRS scores.
Furthermore, none of the levels of neurometabolites were significantly associated with
changes in MADRS scores.

3.3.4. Changes in Depression Severity (SDQ Scores)

There was a significant main effect of t-PBM treatment on SDQ scores (F(3,42.771) = 3.6385,
p = 0.021, Cohen’s d = −0.31). However, there was no main effect of time (pre/post) or
treatment × time interaction on SDQ scores (Figure 6B). Cr levels were significant and neg-
atively impacted SDQ scores. A 1-unit increase in Cr level was associated with a 5.37-unit
decrease in SDQ (β̂ = −5.37, t = −2.29, df = 42.25, p = 0.027) (Figure 6C). Further analy-
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sis revealed that the medium dose was associated with a significant negative correlation
between SDQ and Cr levels (Figure 7).
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Figure 6. N-acetylaspartate (NAA) levels and Symptoms of Depression Questionnaire (SDQ) scores,
and the correlation between creatine (Cr) levels and SDQ scores. (A) Changes in NAA levels (pre-
and post-treatment) following one session of t-PBM. Data are presented as individual changes;
*** p < 0.01. (B) Changes in SDQ scores (pre- and post-treatment) following one session of t-PBM.
(C) The scatter plot shows the relationship between changes in Cr levels and changes in SDQ scores
after one session of t-PBM. The grey area represents the 95% confidence interval for the estimated
mean response. A significant negative correlation (r = −0.14, p = 0.027) was observed between Cr
levels and SDQ scores for all doses.
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Figure 7. Correlation between changes in creatine (∆Cr) levels and the Symptoms of Depression
Questionnaire (∆SDQ) across transcranial photobiomodulation (t-PBM) treatment doses. The scatter
plots show the relationship between changes in creatine levels (∆Cr) and SDQ scores (∆SDQ) for each
dose after one session of t-PBM. The dotted line represents no change in SDQ scores (∆SDQ = 0). The
grey area represents the 95% confidence interval for the estimated mean response. A significant and
negative correlation (r = −0.91, p = 0.011) was observed between ∆Cr levels and ∆SDQ scores at the
medium t-PBM dose.
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4. Discussion
Our study did not support a dose-dependent relationship between t-PBM and changes

in neurometabolite levels. While an increase in NAA levels was observed, this finding
was independent of the dose (irradiance level) of t-PBM therapy. There were correlations
between neurometabolites and psychometric measures, including MADRS and SDQ scores,
suggesting potential neurometabolic changes associated with MDD severity. However, it is
important to note that these correlations do not establish causality and may reflect broader
physiological or temporal fluctuations unrelated to specific treatment effects.

The increase in NAA levels in both the one-visit and three-visit analyses warrants
further investigation. NAA, a marker of neuronal health and mitochondrial function, is
synthesized by the mitochondrial enzyme aspartate N-acetyltransferase, directly linking
its levels to mitochondrial metabolism [38]. Reduced NAA levels have been frequently
reported in patients with MDD, reflecting impaired mitochondrial function and neuronal
integrity [39]. Although t-PBM is hypothesized to enhance mitochondrial function by
interacting with cytochrome c oxidase, thereby boosting adenosine triphosphate (ATP)
production and reducing oxidative stress [5], the increase in NAA levels after a single
t-PBM session was not statistically significantly associated with any of the t-PBM doses
or sham and could be attributable to natural fluctuations or time-related changes. In
contrast, other neuromodulatory interventions, such as repetitive transcranial magnetic
stimulation (rTMS), have shown dose-dependent increases in NAA levels within the
dlPFC after multiple sessions, which were associated with improvements in depressive
symptoms [40]. Similarly, increases in NAA have been reported in a study investigating
repeated t-PBM administration for chronic traumatic encephalopathy [41]. However, that
study targeted the anterior cingulate cortex (ACC) rather than the dlPFC and employed
different parameters, including longer session durations (22–40 min), higher treatment
frequency (three times per week over six weeks), and NIR wavelengths ranging from 810
to 870 nm [41]. These differences in stimulation protocols and target regions could explain
the discrepancies in findings, as the full biological and clinical effects of t-PBM may require
repeated administration over several weeks.

The correlation between Cho levels and depression severity outcomes may offer
insights into the pathophysiology of MDD, even though the observed changes in Cho
levels were not dependent on t-PBM dose. While overall Cho levels remained stable post-
therapy, we found a significant positive association between changes in Cho levels and
changes in MADRS scores in the two-visit analysis (r = 0.59, p = 0.02). This finding suggests
that increases in Cho levels compared to baseline were associated with less improvement
in depressive symptoms, as higher MADRS scores indicate greater severity [34]. Brain
Cho levels are considered markers of phospholipid synthesis and degradation, reflecting
cell membrane turnover and integrity [42]. Alterations in choline metabolism have been
implicated in psychiatric conditions, including MDD [43]. Our findings are consistent with
prior work, such as Yang et al. (2016), who observed a positive association between Cho
levels in the left dlPFC of adolescents with MDD and Beck Depression Inventory scores,
indicating that Cho levels rise with the severity of MDD symptoms [44]. However, readers
should be aware that this is a correlation analysis, and it should not be interpreted as a
cause-and-effect relationship.

We observed a significant negative correlation between changes in Cr levels and
changes in SDQ scores at medium t-PBM dose in the one-visit analysis (r = −0.91, p = 0.011),
suggesting that higher Cr levels were associated with improved depression outcomes.
However, it is important to emphasize that this association does not establish causality, as
other factors may contribute to these observed changes. While overall Cr levels remained
stable post-treatment, this dose-specific correlation may highlight the potential relevance
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of medium-dose t-PBM in modulating Cr-related pathways. Cr is a key regulator of ATP
production, essential for maintaining cellular energy metabolism, neuronal activity, and
synaptic plasticity [45,46]. Our findings align with prior research indicating that lower Cr
levels in the prefrontal cortex are associated with greater depression severity, while higher
Cr levels correlate with improved structural and functional outcomes, such as increased
gray matter volume in the right superior medial frontal gyrus [47]. Our findings contribute
to this growing evidence by indicating that Cr has the potential to serve as a biomarker
for functional improvements in MDD, particularly in the context of medium-dose t-PBM.
Interestingly, although no dose resulted in significant brain temperature elevations, the
medium t-PBM dose demonstrated the lowest brain temperature fluctuations (σ2 = 0.29)
compared to the low dose (σ2 = 0.47) and high dose (σ2 = 0.67) in a previous study [19].
Further research with larger sample sizes is needed to confirm the potential relationship
between medium-dose t-PBM, Cr metabolism, and SDQ improvements.

Several limitations of this study should be acknowledged. While the cross-over design
helps reduce inter-subject variability, the one-week interval between sessions may have
introduced carryover effects that could influence neurometabolite outcomes. The limited
small sample size, further reduced by excluding poor-quality data, limits generalizability
and statistical power, complicating the detection of dose-dependent changes. Furthermore,
some experts have argued that using the quantitative difference of geometric means may
better accommodate the multiplicative, log-normal distribution of neurometabolic data [48];
however, we elected to test our hypotheses using traditional statistical methods given the
exploratory nature of our study, and as a result we may have overlooked comparisons
that alternative analyses could have identified as significant. The unbalanced number of
participants across groups also adds variability, hindering dose-specific interpretations.
Moreover, outcome assessors were not blinded to treatment order, introducing potential
observer bias. Another limitation is the lack of phosphorus spectroscopy, which would
have provided more detailed data on phospholipid metabolism; as such, we were only able
to measure total Cho and total Cr. Lastly, since participants received only one session per
dose of t-PBM, the study could not assess repeated treatment effects, and its short duration
may not have captured gradual neurometabolic changes over a longer treatment period.

5. Conclusions
In conclusion, our study did provide evidence for a dose-dependent relationship

between single-dose t-PBM administration and changes in neurometabolite levels. While
an increase in NAA levels was observed, this change was not specific to t-PBM dosing
and could be likely related to natural fluctuations or temporal effects of MDD. Corre-
lations between neurometabolites, such as Cho and Cr, and psychometric measures, in-
cluding MADRS and SDQ scores, indicate potential neurometabolic changes associated
with MDD, though no causal relationships can be inferred given the study design. Future
studies should prioritize larger, well-powered randomized controlled trials with refined
dosing protocols, repeated dosing, sham-only control groups, and extended follow-up
periods to assess long-term effects. Incorporating advanced spectroscopy techniques, such
as phosphorus spectroscopy, and enhanced imaging protocols will be essential for reli-
able neurometabolite analysis and to further elucidate the therapeutic potential of t-PBM
in MDD.
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