
Article

Natural genetic variation impacts expression levels
of coding, non-coding, and antisense transcripts in
fission yeast
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Abstract

Our current understanding of how natural genetic variation affects
gene expression beyond well-annotated coding genes is still
limited. The use of deep sequencing technologies for the study of
expression quantitative trait loci (eQTLs) has the potential to close
this gap. Here, we generated the first recombinant strain library
for fission yeast and conducted an RNA-seq-based QTL study of the
coding, non-coding, and antisense transcriptomes. We show that
the frequency of distal effects (trans-eQTLs) greatly exceeds the
number of local effects (cis-eQTLs) and that non-coding RNAs are
as likely to be affected by eQTLs as protein-coding RNAs. We iden-
tified a genetic variation of swc5 that modifies the levels of 871
RNAs, with effects on both sense and antisense transcription, and
show that this effect most likely goes through a compromised
deposition of the histone variant H2A.Z. The strains, methods, and
datasets generated here provide a rich resource for future studies.
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Introduction

Variation in gene expression, which in turn is often caused by

natural genetic variation, is a major factor causing intra-species

phenotypic differences. Hence, investigating the influence of genetic

variation on gene expression has been the focus of intense research.

The identification of expression quantitative trait loci (eQTLs), that

is, genomic regions that are linked with the expression of a specific

transcript, has primarily been conducted using DNA microarrays

(Jansen & Nap, 2001; Brem et al, 2002).

The advent of next-generation sequencing technologies is drasti-

cally changing the way we study the relationship between genotype

and gene expression. High-throughput sequencing of cDNA (RNA-

seq) has great potential to provide qualitatively new insights beyond

mere mRNA quantification (Wang et al, 2009). RNA-seq is indepen-

dent of gene annotation and provides information on all types of

transcripts (including coding, non-coding, and antisense) and on the

corresponding genotypes. However, many of these aspects have only

been partially exploited. Previous RNA-seq-based eQTL studies have

focused on measuring ‘new’ traits, giving rise to splicing QTLs

(Lalonde et al, 2011; Battle et al, 2013), isoform-specific QTLs

(Montgomery et al, 2010), and allele-specific eQTLs (Montgomery

et al, 2010, 2011; Pickrell et al, 2010; Sun, 2012; Battle et al, 2013).

Most of these studies have been limited to the detection of local

eQTLs, so-called cis-eQTLs (Montgomery et al, 2010, 2011; Pickrell

et al, 2010; Lalonde et al, 2011; Majewski & Pastinen, 2011), or have

identified only a relatively small proportion of distant eQTLs (trans-

eQTLs, Battle et al, 2013). Cis-eQTLs are located at or close to the

genes whose expression they directly affect, while trans-eQTLs are

remote from the genes whose expression they affect. It has been

suggested that the vast majority of eQTLs act in trans (Brem et al,

2002; Yvert et al, 2003; Rockman & Kruglyak, 2006; Ackermann

et al, 2013). Hence, to fully understand phenotypic variation, it will

be necessary to design RNA-seq-based eQTL studies with the ability

to detect all trans-eQTLs. Further, although the sequence variation
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information contained in the RNA-seq data has been exploited for

SNP detection (e.g. Piskol et al, 2013; Quinn et al, 2013), it has not

been used in the framework of eQTL mapping, possibly due to the

complexity of the studied organisms (Montgomery et al, 2010, 2011;

Pickrell et al, 2010; Keane et al, 2011).

Here, we have conducted an expression QTL study characterized

by a design enabling a high statistical power for association detec-

tion and by a broad investigation of pervasive expression beyond

well-annotated coding genes (i.e. non-coding and antisense tran-

scripts). The high statistical power contributed to the improved

discovery of trans-eQTLs (thereby enabling the reliable detection of

more than 2,000 trans-eQTLs), suggesting that previous studies may

have been overestimating the fraction of cis-eQTLs. First, we gener-

ated a recombinant strain library for fission yeast (Schizosacchar-

omyces pombe) suitable for powerful QTL studies, which was

subsequently subjected to high-resolution measurements of growth

kinetics and strand-specific RNA-seq. Whereas microarray probes

rely on a fixed ‘reference genome’, RNA-seq allows for the individu-

alized quantification of transcripts taking genomic variation into

account. We show that our approach, which explicitly includes indi-

vidual genomes, reduces the potential for false-positive eQTLs.

Further, because RNA-seq measures the actual transcript sequences

of a given strain, it can also be used for genotyping the strain

library. We developed a computational framework for the robust

genotyping of recombinant strains using RNA-seq data, which elimi-

nates the need for separate genotyping experiments. Finally, RNA-

seq makes no assumptions about the structure of genomic features.

In the context of QTL studies, it can thus be used to identify genetic

variants affecting non-annotated features. Here, we present a strik-

ing example of a variation affecting antisense transcription of

hundreds of S. pombe genes detected in this study.

Results

Generation of a recombinant Schizosaccharomyces pombe
strain library

To generate the first fission yeast strain library suitable for QTL

studies, we selected an independent isolate that is not derived from

Leupold’s widely used 968 h90 strain (968; standard laboratory

strain, Leupold, 1950). In order to enable the detection of associa-

tion at a high statistical power, we selected closely related parental

strains to reduce the genetic complexity of the library (Brown et al,

2011). Reproductive barriers have been reported between S. pombe

wild isolates (Kondrat’eva & Naumov, 2001), which could lead to

low recombination and biased segregation of polymorphic markers

(Chambers et al, 1996). To avoid such problems, we characterized

the mating and segregation of polymorphic markers among fission

yeast wild isolates (D. Jeffares et al, in preparation) available in

strain collections (Brown et al, 2011). Based on these analyses, we

chose Y0036 (isolated in South Africa) as a suitable mating partner

for the 968 strain to produce a QTL library. Crosses between the

Y0036 and 968 strains showed 55% spore survival by tetrad analy-

sis. Moreover, microsatellite markers (Patch & Aves, 2007) were

polymorphic between these two strains, and Affymetrix-based geno-

typing showed no segregation biases, with the exception of a low

recombination rate on a large region of Chromosome I. This result

was later confirmed with the RNA-seq genotyping of the QTL library

(see below).

The strain library was constructed with a customized protocol to

ensure that matings occurred exclusively between the Y0036 and

968 strains, but not within parental strains (Materials and Methods).

This approach also showed that increasing the number of crosses,

that is, generating F2 segregants, significantly helped to improve the

resolution of the QTL library (F2 segregants contained more recom-

binations than in F1 segregants, P = 0.0111, one-sided Wilcoxon’s

rank-sum test), as previously shown (Parts et al, 2011; Liti & Louis,

2012). In total, we generated 44 recombinant segregant strains from

the cross between Y0036 and 968 (Supplementary Table S1). Note

that fission yeast strains normally grow as haploid cells, and all our

segregants were haploid.

Phenotyping of strain library by high-resolution growth
measurements and RNA-seq

We analyzed the growth of the recombinant strains in liquid media

in standard conditions using the BioLector instrument (Kensy et al,

2009). This approach allowed us to acquire real-time cellular growth

kinetics and high-resolution growth curves, which in turn facilitated

the resolution of individual growth variables with high precision for

the parental and all segregant strains of the library (Supplementary

Fig S1A, Supplementary Dataset S1). We extracted from these data a

number of growth parameters, including the lag phase (response

time), the maximum specific growth rate (lmax, slope in exponential

phase of growth converted into population doubling time), the

growth efficiency (gain in biomass provided by nutrients in

medium), and the area under the growth curve (Supplementary Fig

S1B–D, Supplementary Dataset S2). All growth traits showed vari-

ability within the library. Interestingly, the growth efficiency and

maximum specific growth rate were higher in the parental strains

than in 96.6 and 94.1% of the segregants, respectively (Supplemen-

tary Fig S2). This apparent outbreed depression suggests an adap-

tive evolution of the parental strains during their lineage that

resulted in epistatic interactions between different loci (Edmands,

1999; Gimond et al, 2013).

We also determined the viability in stationary phase of the

parental and segregant strains after 36 h of growth in liquid medium.

A large fraction of the segregants (~46%) showed a high average

population viability corresponding to 76–100% (Supplementary

Fig S3, Supplementary Dataset S3). The viabilities of the parental

strains were very different from each other: 38.0 and 87.6% for

Y0036 and 968, respectively.

The library was also subjected to a molecular characterization of

genotypes and expression phenotypes via transcriptome sequencing

at high depth (50 base long strand-specific RNA-seq, average RNA-

seq statistics: Table 1, detailed: Supplementary Table S2). We could

reliably measure: (i) the expression of 6,464 previously identified

transcripts (5,036 protein-coding and 1,428 non-coding transcripts,

Supplementary Dataset S4, Supplementary Table S2), and (ii) the

antisense expression at the loci of 4,133 coding genes (Supplementary

Dataset S5, Supplementary Table S2) in 65 samples (including

biological replicates) derived from 46 distinct strains (Supplemen-

tary Table S2). The average Pearson’s product-moment correlation

coefficient (Pearson’s r) between the biological replicates was

r = 0.97 (Supplementary Fig S4).
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Genotyping of the strain library by RNA-seq

eQTL studies require both the genotypes and the expression profiles

of each individual of the studied population. We developed a

strategy enabling the genotyping of a recombinant strain library

through RNA-seq (Fig 1). Thus, separate genotyping experiments of

the segregant strains were not needed.

First, the genomes of the parental strains were sequenced at great

depth (273× and 244× for 968 and Y0036, respectively), allowing us

to detect potentially all genomic variants (Supplementary Fig S5).

We identified 4,570 high-confidence genomic polymorphisms

between the two parental strains. These genetic variants included

3,865 single-nucleotide polymorphisms (SNPs) and 705 small inser-

tions and deletions (indels) (Supplementary Dataset S6), represent-

ing a minimum genomic divergence of 0.05% between the two

parental strains. This degree of divergence is comparable to the

average divergence between two humans (~0.1%; Jorde & Wooding,

2004), but it is less than the divergence typically observed between

progenitors of model recombinant inbred populations; for instance,

the widely used S. cerevisiae RMxBY strains are ten times more

divergent (Brem et al, 2002; Bloom et al, 2013).

Subsequently, we used the RNA-seq data of the segregants to

detect genomic variations and thus determine their haplotype, at

4,481 polymorphic sites, with 89 sites being excluded from this

analysis (Fig 2, Supplementary Dataset S7, Materials and Methods).

On average, about half of the sites (47.7%) could be directly geno-

typed with high certainty, which was sufficient to identify haplotype

blocks and therefore infer genotypes at the remaining sites. Ambigu-

ous sites (e.g. between two haplotype blocks) were not called. Over-

all, 97.3% of the polymorphic sites could be genotyped (Materials

and Methods). From this genotype data, we inferred 765 recombina-

tion breakpoints (Supplementary Fig S6, Supplementary Dataset

S8), that is, on average 17.4 recombination sites per segregant. A set

of 708 genetic makers was then assembled (Materials and Methods,

Supplementary Dataset S9) to perform the subsequent QTL analy-

ses, with an average interval between markers of 17.8 kb.

We noticed that a large part of Chromosome I exhibited a reduced

recombination frequency (Fig 2, Supplementary Fig S6). This region

corresponds to a 2.23 Mbp pericentric inversion shared by a minority of

S. pombe isolates (Brown et al, 2011), including the 968 strain, but not

the other parental strain (Y0036). This inversion on Chromosome I

lowered the frequencies of crossovers, which resulted in a reduced

genetic resolution in this region (distances between informative genetic

markers in this region were on average three times larger, Supplemen-

tary Information, Supplementary Figs S6 and S7).

QTL detection

Next, we used the RNA-seq data from the 65 samples (derived from

44 distinct recombinant strains and the two parental strains,

Supplementary Table S2) to determine the expression levels of

6,464 coding and non-coding transcripts (Supplementary Dataset S4).

QTL mapping was done using a method that we previously devel-

oped (Michaelson et al, 2010). Because we noticed the presence of

population structure in the cross, the QTL mapping method was

improved to also account for population structure and missing geno-

type data (Materials and Methods). At an empirical false discovery

rate (FDR) of 5%, we detected 2,346 eQTLs that were linked to

2,179 transcripts, 682 of which were non-coding (Fig 3B, Supple-

mentary Datasets S10 and S11). Almost half of these eQTLs (1,040;

44%) had a FDR of < 1%, which underlines the high statistical

power of this study. We mapped the variation of antisense expres-

sion levels of 4,133 coding genes (Supplementary Dataset S5) to

genetic variation, resulting in an ‘antisense eQTL’ (aseQTL) study.

At 5% FDR, we detected 2,066 aseQTLs affecting 1,911 antisense

expression traits (Fig 3C, Supplementary Datasets S12 and S13).

QTLs were also found for all the growth traits measured (at a FDR

of 10%, Fig 3A, Supplementary Dataset S14).

Accounting for individual genomes improves
transcript quantification

In microarray-based expression studies, sequence variation in probe

regions can affect the hybridization efficiency. Because this leads to an

allele-specific signal bias, sequence variation can inflate the number of

false cis-eQTL calls (Alberts et al, 2007; Benovoy et al, 2008; Verdugo

et al, 2010). Notably, RNA-seq studies are neither immune to such arti-

facts (Degner et al, 2009) as transcript quantification usually involves

the mapping of sequence reads to a reference genome. Reads from indi-

viduals carrying the allele from the reference genome are more likely to

be mapped than reads from individuals carrying a polymorphic allele,

because alignment algorithms treat sequence differences as mismatches.

Such bias may lower the expression estimates of polymorphic alleles,

which would bias eQTL calls in a similar way as in microarray studies.

The effects of this potential artifact in whole-genome RNA-seq-based

eQTL mapping have not been investigated to our knowledge, presum-

ably because previous studies have used human samples where single-

base genotype information is often not available (Montgomery et al,

2010, 2011; Pickrell et al, 2010; Lalonde et al, 2011; Majewski &

Pastinen, 2011). However, such biases have already been noticed in the

framework of allele-specific expression in heterozygous diploid individ-

uals (Degner et al, 2009; Turro et al, 2011; Reddy et al, 2012; Satya

et al, 2012; Franzén et al, 2013; Pandey et al, 2013; Stevenson et al,

2013). As a solution to this problem, it has been proposed to mask or

exclude all or part of the polymorphic positions in the reference genome

prior to read-mapping (Degner et al, 2009; Stevenson et al, 2013), or to

use multi-mapping strategies (Turro et al, 2011; Satya et al, 2012).

In this study, haplotype information is available at single-base

resolution from the DNA sequencing of the parental strains. Thus,

we used our data to investigate potential biases caused by intragenic

polymorphisms by comparing the gene expression quantification

obtained from alignments to strain-specific genomes versus

the reference genome (Supplementary Information, Supplementary

Fig S8).

In order to initially explore the potential benefits of strain-

specific genome mapping, we simulated the sequencing of the

transcriptome of the two parental strains and of three segregants

and compared the accuracy of the expression quantification

obtained using strain-specific versus reference genome mapping.

Table 1. RNA-seq average statistics.

Average number of reads 22,372,046

Average mapping efficiency 45%

Average effective depth 37.5×

For detail see Supplementary Table S2.

ª 2014 The Authors Molecular Systems Biology 10: 764 | 2014

Mathieu Clément-Ziza et al Genetic variation impacting antisense transcription Molecular Systems Biology

3



RNA-seq reads were simulated taking natural variation into

account and in modeling sequencing errors. Considering all

simulations together, we detected 1,644 (5.1%) differentially

quantified expression traits. Moreover, as expected, the large

majority of the measurements were increased by strain-specific

genome mapping (98.3%, Supplementary Fig S9A). Next, we

compared the simulated gene expression measurements to the

input expression values. The expression obtained with strain-

specific genome mapping was closer to the input value for

89.7% of the traits differentially quantified. Furthermore, the

measurement error (absolute difference between the log-

transformed measured and input expression levels) was signifi-

cantly lower when using strain-specific genome mapping

(P < 2.2e-16, paired Kolmogorov–Smirnov test, Supplementary

Fig S9B). Although significant, the magnitude of the gains of

accuracy was small since the reduction of the measurement error

exceeded 10% in only 2.2% of the cases.

Next, we tested the effect of strain-specific genome mapping

on our real data (Supplementary Information, Supplementary Fig

S8). Indeed, most genes containing a polymorphism (92.6%)
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Figure 1. Scheme of RNA-seq-based eQTL study.
The Schizosaccharomyces pombe strain 986 (isogenic with standard laboratory strain) was crossed with an independent wild isolate (Y0036). Small genetic polymorphisms of
the parental strains were almost exhaustively characterized through DNA sequencing. Segregant transcriptomes were quantified through RNA-seq. The RNA-seq data
were also used for the detection of sequence variations in the transcribed regions of segregants. Genotypes and haplotypes of the segregants were reconstructed by
comparing the identified genetic variants to the known variants of the parental strains (Materials and Methods). Subsequently, for each strain, we reconstructed its genome
sequence based on the previously determined genotypes. The RNA-seq data were then re-mapped on these strain-specific genomes to avoid quantification biases due
to sequence variations. From these alignments, we extracted digital gene expression profiles that were used as traits for eQTL mapping.
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were differentially quantified in at least one sample (Fig 4A).

Moreover, as expected and similarly to what was observed with

simulated data, most of the affected measurements (98.3%, same

fraction as in simulations above) were increased by strain-

specific genome mapping (Fig 4B). Despite these artifacts, eQTL

detection was only marginally affected, possibly due to the small

genetic divergence between the progenitor strains (Discussion).

Taken together, these results show that aligning RNA-seq data

against individualized genomes marginally improves the

transcript quantification, while ignoring individual sequence

variation can inflate the number of falsely detected cis-eQTLs

(Supplementary Information).

trans-eQTLs greatly exceed cis-eQTLs in abundance

It is generally assumed that cis-eQTLs can be detected more easily

than trans-eQTLs (Ackermann et al, 2013; Schadt et al, 2003; Doss

et al, 2005; Gerrits et al, 2009; Holloway et al, 2011): First, because

direct effects on local genes are often stronger than indirect effects

and second, for the statistical reason that searching for trans-eQTLs

involves testing of a much larger number of hypotheses. Accord-

ingly, cis-eQTLs typically make up a large fraction of all detected

eQTLs: 15–50% for the microarray-based eQTL studies (Doss et al,

2005; Ronald et al, 2005; West et al, 2007; Breitling et al, 2008;

Ghazalpour et al, 2008; Atwell et al, 2010) or even 97.5–100% for

the existing RNA-seq-based eQTL studies (Montgomery et al, 2010,

2011; Pickrell et al, 2010; Sun, 2012; Battle et al, 2013). In contrast

to these previous studies, we detected a lower fraction of cis-eQTLs

(243 cis-eQTLs, 10.4% of all eQTLs, Fig 3B). This discrepancy with

previous work can be explained by several factors, but we think that

it results from the increased statistical power for detecting QTL,

which may have arisen from the experimental design, and/or our

experimental and analytic approaches (Discussion).

Non-coding RNA expression is strongly affected by
genetic variation

RNA-seq enables the quantification of entire transcriptomes, includ-

ing non-coding RNAs (ncRNAs) (Wilhelm et al, 2008; Wang et al,

2009; Costa et al, 2010; Marguerat & Bähler, 2010). We know little

about the extent to which variation of ncRNA levels can be

explained by natural genetic variation (Schadt et al, 2008;

Montgomery et al, 2010; Pickrell et al, 2010; Kumar et al, 2013).

The high sequencing depth used here and the extensive annotation

of the fission yeast genome enabled us to quantify transcript levels

for 1,428 annotated ncRNAs. Thus, this analysis presents the first

comparative eQTL mapping for coding versus non-coding transcript

levels at a genomic scale. We detected 753 significant (FDR < 0.05)

eQTLs that together affected the expression of 682 distinct ncRNAs.

Surprisingly, the fraction of ncRNAs targeted by at least one eQTL

was even higher than the respective fraction of coding RNAs

(47.8% versus 29.7%, respectively; enrichment for non-coding
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Figure 2. Genotype of strain library obtained through RNA-seq-based genotyping.
Each row corresponds to one strain, with inherited markers shown across the three chromosomes. Blue bars are markers inherited from the 968 parent, red bars from
the Y0036 parent, and black bars correspond to unknowns.
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genes among eQTL targets P < 2.2e-16, one-sided Fisher’s exact

test). To rule out that only a small number of loci affecting many

ncRNAs are responsible for this trend, we re-computed these frac-

tions after excluding all eQTL hotspots (see below) and the Chromo-

some I inversion. The trend remained the same, although the

difference was not statistically significant anymore (7.2% versus

6.3%, respectively, P = 0.14, one-sided Fisher’s exact test). Finally,

we noticed that the ncRNAs were significantly more often affected

by cis-eQTLs than coding RNAs (3.2 and 5.7% cis-eQTL for coding

and non-coding RNAs, respectively, P = 2.54e-05, one-sided Fisher’s

exact test). Altogether, these findings indicate that the expression of

non-coding RNAs is at least as much affected by genetic variation as

the expression of protein-coding RNAs.

To further investigate the importance of non-coding RNAs as

effectors of eQTLs, we predicted the most likely causal gene for each

eQTL (Supplementary Dataset S11). We noticed that ncRNAs were

enriched among the genes predicted as being most likely causal

(31.2% of the predicted causal genes were ncRNAs, whereas 21.7%

of all genes at eQTL are ncRNA; P < 10�15, Fisher’s exact test). This

result suggests that non-coding RNAs substantially contribute as

effectors of the genetic variation of gene expression. Note that we

identified 12 trans-linkages that involved eQTL containing either no

genes or only non-coding genes. Those cases (Supplementary Data-

set S15) constitute a set of eQTL where the causal gene is most

likely non-coding.

eQTL and aseQTL hotspots

Loci affecting gene expression in eQTL studies are non-randomly

distributed in the genome: A few ‘hotspot’ loci can regulate the

expression of numerous genes (Brem et al, 2002; Ghazalpour et al,

2008; Atwell et al, 2010). We identified 8 genomic regions signifi-

cantly enriched for eQTLs (Fig 3B, Supplementary Fig S10A, Supple-

mentary Table S3). These hotspots were robust with respect to

different strategies for normalization of the expression measurements

and different FDR cutoffs, suggesting that they do not represent

statistical artifacts (Supplementary Fig S10B; Wang et al, 2007;

Williams, 2006). Moreover, the method that we used to assess the

significance of QTL follows a previously suggested principle for

preventing the detection of spurious QTL hotspots (Breitling et al,

2008). Four hotspots were located in the region of the Chromosome I

inversion, and eQTLs in this region together targeted 44% of all

transcripts affected by any eQTL (950 out of 2,179). Thus, this large

inversion has a strong influence on the expression of many genes

(Supplementary Information, Supplementary Fig S10A). Four out

of eight eQTL hotspots were also aseQTL hotspots (Supplementary

Fig S10A, Supplementary Table S3). Further, the eQTL hotspots 1,

2, 4, and 8 were also QTL for several growth traits (Fig 3). This

result further suggests that the eQTL mapping and hotspot

detection results are not statistical artifacts, since the growth traits

represent independently measured phenotypes.

Functional enrichment analysis revealed hotspot-specific func-

tions enriched among the target genes (Supplementary Tables S3

and S4). Targets of hotspot 1 were enriched for ribosome biogenesis

(Supplementary Table S3). The same hotspot also affected a growth

trait (growth rate). Ribosome biogenesis has been shown to play an

important role in growth via the Tor pathway (Schmelzle & Hall,

2000; Mayer & Grummt, 2006). Hotspot 2, linked to genes enriched

for stress response (Supplementary Table S3), is also linked to

survival in stationary phase. The importance of molecular stress

response for aging and survival is well established in diverse

species, including fission yeast (Sohal & Weindruch, 1996; Zuin

et al, 2010). Taken together, these results highlight the utility of this

fission yeast library for studying the relationships between molecu-

lar and macroscopic traits.

A frameshift in swc5 causes major eQTL hotspot

Whereas several hypotheses could explain the strong impact of the

inversion on Chromosome I on gene expression (Supplementary
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Information), the cause of a second major hotspot on

Chromosome III was not immediately apparent. This other eQTL

hotspot (hotspot 8), influenced the expression of 871 genes

(Supplementary Fig S10A, Supplementary Table S3). This hotspot

was also the strongest aseQTL hotspot. It was linked to 1,384

antisense traits, that is, it is affecting antisense transcription even

more than sense transcription. To our knowledge, hotspot 8

shows more widespread gene expression effects than any other

hotspot reported so far (note that the effect of the Chromosome I

inversion is spread over several loci). It has been discussed that

eQTL hotspots, especially the strongest ones, can constitute arti-

facts (Williams, 2006; Wang et al, 2007; Breitling et al, 2008).

Here, two lines of evidence suggest that hotspot 8 represents a

true biological event: (i) This hotspot was also linked to cellular

growth, that is, an independent and distinct trait (Fig 3); and (ii)

it was robust to the application of different normalization strate-

gies (Supplementary Fig S10B), which is notable as insufficient

correction for confounding factors is believed to be a major

source of false eQTL hotspots (Williams, 2006; Michaelson et al,

2010).

Because of its extraordinary strength, we wanted to unravel the

molecular cause of hotspot 8. In previous eQTLs studies, the

genetic variations explaining eQTL hotspots were often deletions

of entire genes or mutations in the coding sequence of genes

resulting in de facto knockouts (Brem & Kruglyak, 2005; Keurentjes

et al, 2007; Breitling et al, 2008; Foss et al, 2011). Therefore, we

focused our attention on non-silent polymorphisms within the

hotspot region (Supplementary Fig S11). Six protein-coding genes

in this region were affected, five of them through amino acid

substitutions. The only exception was a frame-shift mutation in

the Y0036 allele (p.Asn74Lysfs*2), potentially resulting in an early

translation termination of the Swc5 protein (Swc5-fs; Fig 5A). The

truncation of Swc5 in strains carrying the Y0036 allele (swc5-

Y0036) was confirmed using targeted proteomics: Whereas we reli-

ably detected peptides located before and after the frameshift in

strains carrying the 968 allele (swc5-968), we only detected

peptides located before, but not after the frameshift in swc5-Y0036

strains (Fig 5A and B, Supplementary Fig S12). This result was

observed for all analyzed samples and replicates (Supplementary

Fig S12).

Previous work has shown that genes causal for eQTL hotspots

often affect their own expression, resulting in cis-eQTLs (Loguercio

et al, 2010). The swc5 gene showed the strongest cis-eQTL in this

region (FDR < 0.0017), further suggesting that swc5 could be

causal. To corroborate this hypothesis, we performed RNA-seq of

a strain with a swc5 deletion (Dswc5). The correlation of expres-

sion between the Dswc5 and swc5-Y0036 (swc5-fs) strains was

greater than between the Dswc5 and swc5-968 (wild-type swc5)

strains (Fig 5C). Notably, significant differences in correlation

were restricted to genes linked to the hotspot (expression of the

hotspot target genes in Dswc5 was more strongly correlated with

swc5-fs segregants than with swc5+ segregants, P = 1.3 × 10�11,

Wilcoxon’s signed-rank test). Similar results were obtained with

respect to antisense expression (Pearson’s r correlation between

Dswc5 replicates and swc5-fs segregants was greater than between

Dswc5 replicates and swc5+ segregants when considering the anti-

sense traits linked to swc5 locus, P < 0.001, one-sided Wilcoxon’s

rank-sum test). Moreover, clustering analysis confirmed that the

Dswc5 expression profile clusters with swc5-Y0036 (Supplementary

Fig S13) and genes being differentially expressed in the knockout

versus wild-type strain overlapped significantly with hotspot 8

targets (sense expressions: P < 10�58, antisense expression:

P < 10�11, one-sided Fisher’s exact test, Supplementary Fig S14).

We attribute the remaining trait variance that is not explained by

the swc5-knockout to other variants in linkage disequilibrium with

swc5, effects of auxotrophic markers in the knockout strain, or

simply noise in the data. Taken together, these observations

suggest the swc5 frameshift (swc5-fs) as the major genetic cause

underlying hotspot 8.

swc5-fs reduces H2A.Z deposition

Swc5 is a component of the Swr1 protein complex controlling the

chromosomal deposition of the histone variant H2A.Z (named Pht1

in fission yeast; Krogan et al, 2003; Mizuguchi et al, 2004; Kobor

et al, 2004; Wu et al, 2005; Zofall et al, 2009; Buchanan et al,

2009). We therefore hypothesized that the strong phenotype of the

swc5-fs allele is mediated by altered H2A.Z localization. In fission

yeast, H2A.Z is involved in the regulation of antisense transcription

(Zofall et al, 2009), maintenance of subtelomeric and centromeric

gene silencing (Buchanan et al, 2009; Hou et al, 2010), chromo-

some segregation (Kim et al, 2009; Hou et al, 2010), and genome

stability (Kim et al, 2009). To test the impact of swc5-fs on H2A.Z

deposition, we performed genome-wide chromatin immunoprecipi-

tation of H2A.Z coupled with deep sequencing (ChIP-seq) in the

two parental strains and in Dswc5 strains. H2A.Z was enriched at

the first nucleosome after the transcription start site (Fig 5D), as

previously reported (Buchanan et al, 2009). Although the localiza-

tion of H2A.Z was similar in the two parental strains, Y0036 exhib-

ited a significant reduction of H2A.Z occupancy at the first

nucleosome after the transcription start site (Fig 5D, 47.9%,

P < 10�15, one-sided Wilcoxon’s signed-rank test). The same reduc-

tion of H2A.Z occupancy at the +1 nucleosome was also observed

in the Dswc5 strains, thus confirming the specificity of the effect

(Fig 5D, 53.2%, P < 10�15, one-sided Wilcoxon’s signed-rank test).

We also observed marginal but significant differences between

Y0036 and Dswc5 (P = 5.83e-09, Wilcoxon’s signed-rank test, but

small in magnitude, 5.4% on average), suggesting that the change

in H2A.Z deposition in Y0036 is not exclusively caused by the swc5

frameshift. The reduced H2A.Z occupancy with no modification of

its localization observed in Dswc5 and swc5-fs strains is consistent

with previous findings in Saccharomyces cerevisiae showing that

the function of Swc5 in the SWR1 complex is related to the H2A–

H2AZ histone exchange, but neither to the H2AZ nor the nucleo-

some binding (Wu et al, 2005). In addition, we noticed that in the

968 strain, H2A.Z occupancy was significantly greater at target

genes of the swc5-eQTL as compared to non-target genes (Fig 5E,

P < 10�15, Wilcoxon’s rank-sum test). Similar results were obtained

for antisense expression: H2A.Z occupancy at swc5 aseQTL targets

was greater than at non-target genes (Supplementary Fig S15,

P < 10�15, one-sided Wilcoxon’s rank-sum test). Thus, the swc5-

eQTL and swc5-aseQTL coincides with stronger H2A.Z deposition

under the wild-type condition (968 genetic background). These

findings further corroborate the causal role of swc5-fs and the

resulting changes in H2A.Z deposition for the eQTL hotspot on

Chromosome III.

Molecular Systems Biology 10: 764 | 2014 ª 2014 The Authors

Molecular Systems Biology Genetic variation impacting antisense transcription Mathieu Clément-Ziza et al

8



swc5-fs is associated with an increase in antisense and a
reduction in sense RNAs

It has been shown that H2A.Z was involved in the repression of

antisense transcription (Zofall et al, 2009; Ni et al, 2010). Since

swc5-fs was leading to a reduction of H2A.Z occupancy, an

increase in the antisense RNA levels was expected in swc5-fs

strains. Therefore, we explored the direction of the genetic regu-

lation of swc5-fs on its targets for sense and antisense transcrip-

tion. For coding genes, hotspot 8 caused a striking increase in

antisense RNA levels and a reduction in sense RNA levels. For

non-coding genes, on the other hand, the reverse trend was

observed (Fig 6A), consistent with the fact that many ncRNAs in

fission yeast correspond to antisense transcripts of coding genes

(Wilhelm et al, 2008; Ni et al, 2010; Bitton et al, 2011; Rhind

et al, 2011). Similar observations have been made in strains

deleted for H2A.Z, Swr1, or RNAi components (Zofall et al,

2009), thus suggesting that the same, or similar, molecular

mechanisms are involved in swc5-fs. Antisense transcription can

negatively affect the expression of the corresponding sense tran-

scripts through several mechanisms, including transcriptional

collision, RNA interference, and modification of mRNA stability

(Faghihi & Wahlestedt, 2009; Ni et al, 2010; Bitton et al, 2011;

Chen et al, 2012b). Accordingly, we observed that a significant

fraction of swc5 eQTL gene targets whose sense expression was

down-regulated in swc5-fs were also swc5 aseQTL targets

(P < 10�15, one-sided Fisher’s exact test) and swc5 eQTL targets

whose sense expression was up-regulated were unlikely targets

of corresponding aseQTLs (P = 0.006, Fig 6B). Hence, sense and

antisense transcription seem to be directly coupled for at least a

subset of genes, with increased antisense transcription coinciding

with decreased sense transcription, as previously observed (Fag-

hihi & Wahlestedt, 2009; Xu et al, 2011; Chen et al, 2012a;

Pelechano & Steinmetz, 2013). We confirmed these results by

semi-quantitative real-time PCR (RT–qPCR) with strand-specific

reverse transcription in four different genes which sense and

antisense levels were linked to the hotspot 8 (Fig 7, Supplemen-

tary Fig S16). For those genes, we showed an increase in anti-

sense-to-sense ratio in a pool of segregants carrying wild-type

swc5 compared to a pool of segregant carrying swc5-fs. More-

over, we also observed these differences among the parental

strains in all cases but one (Fig 7A, Supplementary Fig S16B).

This constitutes a clear example of transgressive segregation and

highlights that, at least for this gene (cdb4), other genetic factors

influence antisense transcription, as detected in the aseQTL

analysis.

SWC5-968    1   MTEKLIDFGL EQEEEDTEFV PGDSTDTESS FSDADSSEEE FVEEKEASQV QSTKSKIATS ESEDVTLKNI AKKNKRERND KLIPQQSNES
SWC5-Y0036  1   MTEKLIDFGL EQEEEDTEFV PGDSTDTESS FSDADSSEEE FVEEKEASQV QSTKSKIATS ESEDVTLKNI AKKK*----- ----------
 

SWC5-968    91  EAIEKPVQST TEVELKTNEL AESNSSVAVE GDENSYAETP KKKHSLIRKR RKSPLDSSSA QKVLKKNKLN TLEQAQQNWS KYIKEQDIQD
SWC5-Y0036  91  ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- 

SWC5-968    181 ELRIANKDGY VERQEFLAKT RAAHEEKIRE MKKLP
SWC5-Y0036  181 ---------- ---------- ---------- -----
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Figure 5. swc5 frameshift as molecular basis of the Chromosome III hotspot.

A Sequence of Swc5 in the 968 and Y0036 genetic backgrounds, the latter containing the frameshift polymorphism swc5-fs.
B Average ratios and standard deviations for all three peptides determined from three independent replicates of strains 968 and Y0036. MS signals with signal-to-noise

ratios of < 3 are not considered (#). Error bars indicate standard deviation. The peptides located after the frameshift could not be detected.
C Pearson’s product-moment correlation coefficient of expression patterns between Dswc5 and swc5-Y0036 (frameshift polymorphism; swc5-fs) and swc5-968 (wild-

type; swc5+) strains. For genes linked to the swc5 locus (hotspot targets; 871 genes), expression in Dswc5 was significantly more correlated with swc5-fs segregants
(red) than with swc5+ segregants (blue) (*P = 1.3 × 10�11, Wilcoxon’s signed-rank test). For genes not linked to the swc5 locus (non-targets; 5,593 genes), there was
no difference in correlation. Thus, the swc5 deletion mimics the expression signature of the Y0036 allele at this locus.

D Average Pht1 (H2A.Z) occupancy at the 50-ends of all coding genes in the parental strains of the recombinant yeast library. Genes were aligned at the transcription
start site. Pht1 peaks at the +1 nucleosome after the transcription start site. There is significantly less Pht1 at the +1 nucleosome in Y0036 than in the 968
background (P < 10�15, one-sided Wilcoxon’s signed-rank test, n = 5,016).

E Comparative average Pht1 occupancy in 968 (scw5+) of the genes linked (orange, n = 602) and not linked (gray, n = 4,504) to the swc5 locus. There is significantly
more Pht1 at the +1 nucleosome in genes associated with the swc5 QTL than in others (P < 10�15, one-sided Wilcoxon’s rank-sum test).
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Possible molecular mechanisms underlying antisense
transcription in swc5-fs strains

Possible molecular mechanisms leading to antisense transcription

include read-through transcription (improper transcription termina-

tion), bi-directional transcription, overlapping transcripts, and

autonomous antisense transcription (Ni et al, 2010; Bitton et al,

2011; Chen et al, 2012b). Read-through transcription occurs when

two genes are oriented in a convergent (tail-to-tail) manner. H2A.Z

has been shown to specifically play a role in the suppression of anti-

sense transcripts originating from convergent genes in fission yeast

(Zofall et al, 2009; Ni et al, 2010; Anver et al, 2014). In this configu-

ration, the transcript of one of the gene (overlapping or read-

through; note that in S. pombe, this distinction is questionable,

Supplementary Information) becomes the antisense transcript of the

neighboring gene encoded on the opposite strand (Zofall et al, 2009;

Ni et al, 2010). In particular, deletion of H2A.Z (Δpht1) causes wide-

spread increase in antisense levels originated from convergent genes

(Zofall et al, 2009; Kumar et al, 2013). Since we showed that

swc5-fs was leading to reduced H2A.Z occupancy, we hypothesized

that molecular mechanisms leading to increased antisense levels in

targets of swc5 also implicated a defect in the suppression of anti-

sense RNAs emanating from read-through transcription. We

performed additional analysis and experiments to assess this

hypothesis.

First, we noticed that 72% of the antisense traits linked to the

swc5 hotspot were antisense of convergent genes. A more precise

analysis confirmed an important and significant enrichment of

convergent genes among the swc5 antisense targets (P < 10�6, Fig 8,

Supplementary Fig S17, Supplementary Information). This result is

consistent with the effects of the genetic variation at hotspot 8 going

through H2A.Z.

Second, we performed RT–qPCR in the four previously studied

genes in which sense and antisense were linked to hotspot 8 (see

above) in strains deleted for swc5, H2A.Z (Δpht1), and in a Δpht1
Δclr4 double mutant. The H3K9 methyltransferase Clr4 is partially

redundant with H2A.Z with regard to antisense suppression (Zofall

et al, 2009; Zhang et al, 2011), and their co-mutation has been

shown to synergistically decrease antisense suppression (Zofall

et al, 2009). Results (Fig 7, Supplementary Fig S16B) show that the

antisense-to-sense ratio was increased in these mutants, with the

exception of Δswc5 for two of the four examples (for those two

genes, we attribute the lack of consistency in the swc5-knockout to

other variants in linkage disequilibrium with swc5, or effects of

auxotrophic markers in the knockout strain, Supplementary Infor-

mation). Moreover, compared to Δpht1 (H2A.Z): (i) effects were

weaker in Δswc5, as expected since swc5 leads to a reduction of

H2A.Z occupancy, (ii) effects were stronger in a Δpht1 Δclr4, as

expected because of their synergistic effect on antisense RNA

suppression (Zofall et al, 2009). These results are also consistent

with our hypothesis (Supplementary Information).

Since read-through transcripts were observed in absence of

H2A.Z (Zofall et al, 2009; Ni et al, 2010), we tried to characterize

their presence. We performed 30-rapid amplification of cDNA ends

(RACE) experiments in the convergent gene pair its3-tpp1 to detect

potential read-through originating from tpp1 promoter (Supplemen-

tary Fig S18). Although read-through transcripts were detected in all

tested strains (RS3, RS4 and RS5 in Supplementary Fig S18), signals

were stronger in Y0036, Δswc5, Δpht1, and other mutants known to

affect read-through transcription compared to signals in 968 and

other control strains (Supplementary Fig S18B and C). This result is

also consistent with our hypothesis.

Although not formally conclusive, these results taken together

strongly support the hypothesis that swc5-fs is the major molecular

event at hotspot 8 and that it influences the levels of multiple RNAs

via a compromised H2A.Z deposition. This reduction of H2A.Z

would lead an increase in antisense levels because of the non-

suppression of antisense transcript at convergent genes pairs

(overlapping transcripts or read-through transcripts), which in turn

negatively affects the levels of the sense counterpart. This sequence

of molecular events could directly explain 68% of the antisense

expression effects (proportion of aseQTL targets of swc5 whose
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Figure 6. Influence of swc5 locus on sense and antisense expression.

A Directionality of the effect of swc5-fs on expression for eQTL (orange) and aseQTL (purple). Coding (mRNAs) and non-coding (ncRNAs) transcripts are distinguished.
Fractions of up- and down-regulated traits (relative to strains carrying the swc5+ allele) are shown.

B Overlap between up- and down-regulated eQTL targets and aseQTL targets of the swc5 locus. The overlap between down-regulated eQTL and aseQTL targets is highly
significant (P = 2.2e-16, one-sided Fisher’s exact test), whereas there is a significant depletion of down-regulated eQTL targets among the aseQTL targets
(P = 0. 006302, one-sided Fisher’s exact test).
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expression is increased and that are part of convergent gene pair)

and 31% of the sense expression effects (proportion of eQTL targets

of swc5 whose expression is decreased and that are part of conver-

gent gene pair) of the major eQTL hotspot on Chromosome III.

Discussion

We have generated a genetically and phenotypically diverse fission

yeast strain library of segregants from a cross between 968 (stan-

dard laboratory strain) and Y0036 (independent natural isolate).

The widely used RMxBY library in budding yeast (Brem et al, 2002;

Yvert et al, 2003; Bloom et al, 2013) has proven to be an excellent

tool for studying the relationship between genotype variation and

complex traits (Ehrenreich et al, 2009; Liti & Louis, 2012). The

fission yeast library will be an important complement, because

compared to budding yeast, many characteristics of fission yeast are

more similar to metazoan cells. The importance of non-coding RNA

and fission yeast’s chromatin structure are just two examples

(Käufer & Potashkin, 2000; Schwartz et al, 2008; Creamer &

Partridge, 2011).

Conducting a high-power RNA-seq eQTL study in this strain

library enabled us to: (i) detect a much larger fraction of trans-

eQTLs than previous studies, (ii) systematically explore eQTLs

affecting coding, non-coding, and antisense transcripts, (iii)

reveal that ncRNA expression is at least as strongly affected by

natural genetic variation as mRNA expression, (iv) detect eight

hotspots that are linked with the expression variation of thou-

sands of transcripts, both coding and non-coding, (v) uncover a

genetic variation of swc5 that modifies the levels of ~800 sense

and ~1,400 antisense transcripts, and (vi) accumulate evidence

pointing at elevated read-through transcription via compromised

deposition of the histone variant H2A.Z as the underlying molec-

ular mechanism.
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Figure 7. Strand-specific semi-quantitative real-time PCR quantification of sense and antisense levels of selected targets of swc5 locus.

A–D y-axis shows the ratio of antisense-to-sense levels relative to ratio in 968 strain (log scale). Error bars indicate the standard error to the mean among the three
biological replicates. Analysis was performed for four genes: cdb4 (A), SPAC29E6.10c (B), its3 (C), paf1 (D) in seven different strains: the two parental strains (968,
Y0036), two pools of strains corresponding to all the segregants separated according to their genotype at the swc5 locus, and strains deleted for swc5, pht1, and
both pht1 and clr4. No difference was observed between the parents in cdb4, which indicates that other genetic events are implicated, as expected since cdb4 is
also associated with another aseQTL (Supplementary Information). For paf1 and its3, effects observed in swc5-fs strains (pool and Y0036) were not observed in
Δswc5. This may be due to other genetic effects in cis of swc5, or to effects of auxotrophic and mating makers which differ between 968 and Δswc5
(Supplementary Information).
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One of the most surprising results of this study was the small

fraction of cis-eQTLs that were detected (only 10.4% of the eQTL

were cis-eQTL). Even after excluding hotspot 8 and the Chromo-

some I inversion, we still observed substantially more trans- than

cis-eQTL (14.0% cis-eQTL). This observation could partly be

explained by considering strain-specific genotypes, which reduces

the potential for false-positive cis-eQTL calls. However, although

our analysis confirmed that accounting for individual genomes

improves transcript quantification, the magnitude of effects in this

study was far too small to fully explain the drastically reduced frac-

tion of cis-eQTLs. A second explanation could be a too restrictive

definition of cis-QTL. Our definition of a ‘cis-region’ potentially

affecting a gene is based on the correlation of flanking markers (i.e.

the extent of linkage disequilibrium; see Materials and Methods).

However, lowering the threshold of correlation even further (to 0.7

or 0.6) did not change our conclusion (12.5 and 14.9% of cis-eQTL,

respectively). A third explanation is the established phenomenon

that increasing statistical power of an eQTL study increases the

number of detected trans-eQTLs, whereas the number of detected

cis-eQTLs starts to plateau (Schadt et al, 2003; Doss et al, 2005;

Rockman & Kruglyak, 2006; Gerrits et al, 2009; Ackermann et al,

2013). Thus, under the assumption that the fraction of trans-affected

genes in our cross is not substantially higher than in other compara-

ble crosses, this observation suggests a high statistical power of our

study. This increase in statistical power could be due to a combina-

tion of several factors. First, the genetic similarity of the strains

reduces the complexity of the traits, thus simplifying the investiga-

tion of its genetic basis, notably by reducing the problem of

multiple-hypothesis testing (McClurg et al, 2007). Note that increas-

ing genetic similarity reduces the total number of cis-eQTL and also

statistically simplifies the detection of eQTL. Second, the use of deep

sequencing may have reduced the data noise, thus facilitating the

identification of smaller genetic effects. Indeed, previous studies

suggest that RNA-seq can be more precise than DNA microarrays,

especially for highly or lowly expressed genes, due to its larger

dynamic range (Mortazavi et al, 2008; Degner et al, 2009; Wang

et al, 2009; Marguerat & Bähler, 2010; Malone & Oliver, 2011) (but

see Willenbrock et al, 2009; Malone & Oliver, 2011; McIntyre et al,

2011). This notion is supported by our data, because we saw no bias

with regard to gene expression level for the detection of eQTLs.

Consistent with other recent work performed using mouse eQTL

data (Ackermann et al, 2013), our findings suggest that the fraction

of cis-eQTLs may have been overestimated in previous studies, due

partially to lacking statistical power for the detection of trans-

eQTLs. We wish to note, however, that while the fraction of cis-

eQTL depends partially on the statistical power of the study, the

absolute number of cis-eQTL that could be detected will largely by

determined by the genetic similarity (or difference) of the strains

being crossed.

The RNA-seq-based genotyping method reduces the costs and

workload at the bench, since no additional genotyping experiments

are required. The method has great potential for the application to

tandem no overlap

divergent no overlap

convergent no overlap

tandem overlap

divergent overlap

convergent overlap

observed
expected

number of gene pairs
0 200 400 600 800 1000 1200 1400

P < 10−6
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Figure 8. Organization of coding genes whose antisense expression is linked to the swc5 locus.
The organization of gene pairs in the genome is either convergent, divergent, or in tandem and overlapping or not. However, the distinction between overlapping and non-
overlapping genes is questionable in Schizosaccharomyces pombe, because of imprecise definition of the untranslated regions (UTRs). Scheme on the left shows geometry of
gene pair orientations and the potential antisense RNA (represented in red wavy lines). The number of swc5 aseQTL targets falling into each category is shown (green;
observed). We used an empirical distribution based on 1,000,000 random assignments of antisense swc5 targets (gray; expected), to test for enrichment or depletion of
each category (*P < 10�6). The depletion of tandem gene pairs is due to the non-random organization of the S. pombe genome (Supplementary Information,
Supplementary Fig S17). Error bars indicate standard deviation over 1,000,000 permutations.
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other recombinant strains, where parental strains have been fully

sequenced (Keane et al, 2011). This approach requires relatively

deep sequencing to be efficient, but its accuracy is robust against

changing the sequencing depth (Supplementary Fig S19, Supple-

mentary Information). The sensitivity of RNA-seq-based genotyping

was higher than most other strategies used for genotyping recombi-

nant populations (Supplementary Information).

Natural genetic variation is known to bias expression quantifica-

tion based on both microarrays and RNA-seq, with known impacts

on eQTL studies (Alberts et al, 2005, 2007; Degner et al, 2009;

Verdugo et al, 2010). The fact that RNA-seq also indirectly

sequences the actual genome of an individual enabled us to pursue a

two-step strategy, where we first used the RNA-seq data for deter-

mining an individual’s genotype to subsequently map against this

individualized genome to quantify expression. Previous studies have

used similar strategies for other applications requiring sensitive tran-

script quantification (Degner et al, 2009; Turro et al, 2011; Reddy

et al, 2012; Satya et al, 2012; Franzén et al, 2013; Pandey et al,

2013; Stevenson et al, 2013), and here, we evaluated the relevance

of this phenomenon for eQTL mapping. Our analysis, using real and

simulated data, revealed significant improvements of small magni-

tude when accounting for the strain-specific genome, with, however,

minimal impact on eQTL mapping results. These differences are

likely to become more prominent in RNA-seq studies involving

genetically more diverse individuals such as human populations and

especially cancer genomics (Supplementary Fig S8D and E). We

therefore also advocate the development of read-mappers that

incorporate sequence variations into their model, which would

solve the issue of our strategy with respect to homologous regions

(Supplementary Information; Degner et al, 2009; Wu & Nacu, 2010;

Reddy et al, 2012).

Another important advantage of RNA-seq is its ability to quantify

all transcribed products, without relying on previously determined

annotation (Wilhelm et al, 2008; Wang et al, 2009; Costa et al,

2010; Marguerat & Bähler, 2010). In the context of this study, we

could show that ncRNA levels are even more affected by eQTLs than

mRNA levels. Previous eQTL work only considered the cis regula-

tion of a subset of the large intergenic ncRNAs (Kumar et al, 2013).

Here, RNAs were enriched for polyadenylated species, which make

up the great majority of ncRNAs in fission yeast (Marguerat et al,

2012). By using protocols especially developed for the purification

of ncRNAs, one might detect even more ncRNA-eQTLs.

It has been shown that erroneous antisense expression quantifi-

cation could arise from reverse transcription leading to positive

correlation between sense and antisense levels (Perocchi et al,

2007). Our results show not such correlation. In the contrary, we

observe an anticorrelation between the expression level of sense

transcripts and the expression levels of their antisense counterparts

(q = �0.34, Spearman’s rank correlation coefficient, Supplementary

Fig S20), as one could expect considering the repressive cis effect of

antisense transcripts (Pelechano et al, 2013).

The use of strand-specific RNA-seq provided remarkable and

unforeseen advantages for analyzing the swc5 locus. Without any

additional experiments, we could investigate antisense transcription

and conduct an ‘aseQTL study’. Importantly, even though the

majority of aseQTLs were associated with the swc5 locus, many

additional aseQTL regions could be detected. Future research may

address the role and mechanisms of those loci.

Our results showed that swc5-fs reduced the replacement of

histone H2A by the H2A.Z variant at the 50 end of coding genes. In

budding yeast, Swc5 is implicated in the transfer of H2A.Z, but not

in the binding of H2A.Z to the nucleosome (Wu et al, 2005). Our

H2A.Z ChIP-seq results suggest a similar role in fission yeast: The

positioning of H2A.Z was unchanged in swc5-fs strains, but the

occupancy, that is, the efficiency of the deposition, was reduced

(Fig 5D). In accordance with previous studies of the function of

H2A.Z (Zofall et al, 2009; Ni et al, 2010; Zhang et al, 2011), our

data hint that the reduced H2A.Z occupancy at the 50 end of coding

genes increased antisense transcription either through read-through

transcription or through overlapping convergent gene pairs. H2A.Z

is known to cooperate with RNAi and heterochromatin factors

to suppress antisense read-through, presumably via exosome-

dependent degradation (Zofall et al, 2009; Ni et al, 2010) (schema-

tized in Supplementary Fig S21). The anticorrelation between sense

and antisense transcription that we observed is in agreement with

the hypothesis that sense and antisense transcription establish a

negative feedback cycle (reviewed in Pelechano & Steinmetz, 2013).

However, the effect sizes that we observed differed between sense

and antisense transcription: While swc5-fs caused a dramatic

increase in antisense expression, the associated reduction in sense

expression was weaker. Indeed, linkages between sense traits and

the swc5 locus were only found for ~19% of the swc5 aseQTL

targets, showing that there is no simple and general antagonistic

relationship between sense and antisense expression (Xu et al,

2011; Chen et al, 2012a).

According to our high-density growth data, the swc5-fs allele

substantially compromised cellular fitness, resulting in less effi-

cient growth. It is likely that this growth defect indirectly altered

the expression of some genes that were not directly affected by the

H2A.Z deposition phenotype. We found 153 coding genes linked to

swc5 that were up-regulated in swc5-fs strains and thus likely not

affected by antisense transcription. The directionality of these link-

ages suggests that they were indirectly affected by swc5-fs; indeed,

there was a depletion of swc5 aseQTLs among those genes

(Fig 6B). Accordingly, these genes were also highly enriched for

genes involved in stress response (Supplementary Table S5),

which is typically regulated as a function of growth (López-Maury

et al, 2008).

In addition to the library of segregants, the datasets generated in

this project provide a rich resource for future studies. Many aspects

of the data have not been analyzed so far, such as the impact of

sequence variation on alternative transcription start or polyadenyla-

tion sites, or exon usage. As opposed to budding yeast, a substantial

number of fission yeast genes are spliced. The depth and precision

of this data makes it an excellent resource for addressing these

questions.

Materials and Methods

QTL strain library construction

To cross different strains and select for segregants derived from

a mating between the two parental strains, we introduced domi-

nant markers at the ade6 locus in Chromosome III. We deleted

differentially the ade6 locus in the two parental strains by inserting
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nourseothricin (NAT) or hygromycin B resistance markers at this

locus (Gregan et al, 2006). Subsequently, we plated the mating

mixture onto double selection plates that contained both NAT

and hygromycin B. This strategy allowed us to select for diploid

hybrids that arose from a cross between the two parental

strains. F1 haploid recombinants were obtained straight from the

selected diploid hybrids by tetrad analysis. F2 haploid recombi-

nants were obtained by performing tetrad analysis of F2 diploid

hybrids obtained from a mass mating among F1 haploid segre-

gants. Double selection of dominant markers was performed to

select F2 diploid hybrids, thus avoiding the high proportion of

identical sibling matings observed in a mass mating involving an

h90 homothallic strain.

High-throughput profiling of cellular growth

The growth of the parental and segregant strains was profiled in

normal conditions using the BioLector micro-fermentation system

(mp2p-labs GmbH, Baesweller, Germany). Based on the light scat-

tering (LS) technology, the BioLector system records biomass values

at 620 nm (Kensy et al, 2009). Cells of each strain were grown for

36 h in pre-cultures, which were prepared in 10-ml falcon tubes

containing YES broth (Formedium, PCM0305). The pre-cultures

were used to inoculate microtiter plates with 48 ‘flower’-shaped

wells (m2p-labs GmbH, MTP-48-B) filled with YES broth. Compared

to round or square wells, ‘flower’-shaped wells provide improved

mixing and oxygen transfer within the culture (Funke et al, 2009).

The cell density in each well of the plate was adjusted to an optical

density (OD595) of 0.2, with the final culture volume being 1.5 ml.

Gas-permeable adhesive seals (Thermo Fisher Scientific, AB-0718

and m2p-labs GmbH, F-R48M-25) were used to cover the wells of

the plate. Duplicate cultures were prepared for each strain tested.

Micro-fermentations were performed with the following settings:

Temperature was set at 32°C, humidity at 99%, shaking at

1,000 rpm, and LS measurements were retrieved every 3 min. A

linear regression approach between the LS and OD595 data measured

in the beginning and at the end of each experiment was applied to

convert the LS data of a BioLector experiment to OD595 values. The

raw growth data are provided in Supplementary Dataset S1.

Estimation of growth parameters

The collected BioLector data constituted a useful resource for the

detailed phenotypic characterization of the recombinant library in

normal growth conditions. Diverse growth parameters were

extracted from the highly resolved growth curves. Firstly, we calcu-

lated the growth efficiency of the segregants, which defined by the

gain of biomass given the substrate provided in the medium. The

efficiency of growth was simply the change in optical density

(OD595) value of the culture from the time of inoculation to the end

of the experiment (i.e. stationary phase) (Supplementary Fig S1B).

Secondly, the area under each growth curve, which is another indi-

cator of the growth capacity of a given strain, was calculated after

subtraction of a baseline (Supplementary Fig S1C). Moreover, calcu-

lation of the maximum slope of the log-transformed OD-

calibrated values within the exponential phase provided an estimation

of the maximum specific growth rate (lmax). The lmax of a culture

was also estimated from the log-scale OD-calibrated values via the

first derivatives of a smoothing spline fit. Furthermore, we calcu-

lated the lag time (lagT), which corresponds to the time at which

the tangent to the maximal growth rate intersects the time axis

(Supplementary Fig S1D). Finally, we estimated the doubling (or

generation) time of a culture (Td), which provides a direct link

between growth and cell cycle and is inversely proportional to the

growth rate (Td = ln(2)/lmax). Growths parameters are provided in

Supplementary Dataset S2.

Cell survival at the stationary phase of growth

Aliquots of biomass samples collected from stationary phase

cultures were diluted to ~106 cells, and a 1/10 aliquot was stained

with 0.05 g/l propidium iodide (Sigma, P4170). Stained cells were

incubated for 5 min at room temperature and analyzed for cell

survival using a Cell Lab Quanta SC MPL flow cytometer (Beckman

Coulter, Fullerton, CA). The jumper was set to ‘small’, and the cell

survival protocol of the Cell Lab Quanta SC software was applied

with the following gain and voltage settings: EV = 4.80, SS = 5.00,

FL1 = 4.22, and FL2 = 4.13. Flow cytometry data were analyzed

using the FlowJo v.7.1 (Tree Star, Inc.) software package. Survival

data are provided in Supplementary Dataset S3.

Parental strain genome sequencing

DNA was extracted with Qiagen genomic DNA kits. Paired-end Illu-

mina libraries were constructed according to the manufacturer’s

instructions, with 300 to 400 nt fragmented DNA. Sequences were

produced using a Illumina Genome Analyzer II, to at least 240×

coverage. Sequence data are archived in the European Nucleotide

Archive (http://www.ebi.ac.uk/ena/) under the accession numbers

ERX007392 and ERX007395 for the strains 968 and Y0036,

respectively.

RNA-seq library preparation and sequencing

Strand-specific RNA-seq libraries were created for SOLiD sequencing

from poly(dT)-enriched RNA using the SOLiDTM Total RNA-Seq kit

(Applied Biosystems, LifeTechnologies). Briefly, 50-ml cultures

grown at 32°C were harvested at 0.4–0.5 OD595 by filtration and

snap-frozen in liquid N2. Total RNA was isolated by hot phenol

extraction (Lyne et al, 2003), and RNA quality was assessed on a

Bioanalyzer instrument (Agilent). For poly(dT)-enrichment, three

rounds of poly(dT) Sera-Mag magnetic bead purifications were

carried out using 50 lg of total RNA starting material and verified

on a Bioanalyzer. 500 ng poly(A)-enriched RNA was then frag-

mented to an average size of ~200 nt. SOLiD adaptors were hybrid-

ized and ligated, RT–PCR performed, and the cDNA purified by size

selection on 6% TBE-urea gels. The 30 barcodes (1–48) were incor-

porated at the library amplification step using 16 PCR cycles and

purified using SPRI-beads (Agencourt, Beckman Coulter). Library

size distributions and concentrations were determined on a Bioana-

lyzer, and samples were pooled and put through emulsion PCR

steps. RNA-seq libraries were sequenced on an ABI SOLiD V4.0

System (50 bases long reads; Applied Biosystems, LifeTechnolo-

gies).

The RNA-seq data are available at ArrayExpress (http://www.

ebi.ac.uk/ arrayexpress/, identifier E-MTAB-2640).
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ChIP-seq library preparation and sequencing

To investigate H2A.Z (Pht1) occupancy in 968 compared with

Y0036 cells, endogenous pht1 was c-terminally tagged in 968

and Y0036 strains with 13c-myc:kanMX6 (Bähler et al, 1998).

We named the resulting strains JB1221 and JB1220 (968-pht1-

13c-myc and Y0036-pht1-13c-myc, respectively) and verified the

successful tagging by Western analysis, Supplementary Fig

S22A). The swc5D-pht1-13c-myc-tagged strain was created by

crossing JB1221 with a prototroph swc5D strain. We used the

h+ swc5D strain from the S. pombe Bioneer deletion library

(Kim et al, 2010), crossed out all the auxotrophic markers asso-

ciated with that background using the h� 972 wild-type strain,

and then crossed the prototroph swc5D with the previously

generated 968-13c-myc strain. Two swc5D-pht1-13c-myc-tagged

clones were verified by PCR and Western analysis (Supplemen-

tary Fig S22B and C), named JB1448 and JB1449, and used for

further analysis.

Western verification of C-terminal 13cmyc-tagged pht1 strains

(Supplementary Fig S22A) was performed using the Novex NuPAGE

system (LifeTechnologies). Cell lysates, 15 lg, were separated on 4–

12% Bis–Tris Gel, transferred to nitrocellulose membrane, and incu-

bated with anti-c-myc antibody (Ab32, Abcam).

To verify swc5-knockout, checking primers were used in colony

PCR (Supplementary Fig S22C). For swc5Δ 50, junction checking

primers CPN1 (within KanMX) 5-CGTCTGTGAGGGGAGCGTTT-3

and Cp5 5-TAACAAATCCCCCACAAGTCTTATT-3 (upstream of

swc5 gene) were used. For 30, junction checking primers CPC1

5-TGATTTTGATGACGAGCGTAAT-3 (within KanMX) and Cp3

5-ACAACAAGCATTGCAACATCACAAT-3 (downstream of swc5

gene) were used.

ChIP-seq libraries were created for Illumina MiSeq sequencing

from Chromatin immunoprecipitations (ChIPs) using antibodies

specific for either c-myc or histone H3 (ab32 and ab1791, respec-

tively; Abcam) in biological triplicates. Briefly, 500-ml cultures

grown at 32°C were formaldehyde-fixed for 30 min, harvested by

centrifugation, and snap-frozen. Chromatin extract (CE) was

prepared with a Fastprep machine (MP Biomedicals) at 6 × 20 s,

5.5 m/s using an equal volume of 0.5 ml acid-washed glass beads

(BioSpec products) to break cells. Lysates were sonicated using a

Bioruptor (Diagenode) at 6 × 50, 30 s on, 30 s off, in ice-cold condi-

tions, to create CE with an average DNA size of approximately

200 bp. Immunoprecipitations (ChIPs) were set up using 5 mg CE

on Dynabeads Protein A with appropriate antibody (Invitrogen, Life-

Technologies). Input (CE) and ChIPs were de-crosslinked overnight,

treated with DNase-free RNase (Roche) and proteinase K (Invitro-

gen, LifeTechnologies), and the DNA-purified using PureLink PCR

micro kits (Invitrogen, LifeTechnologies).

Triplicate ChIP-seq libraries from the immunoprecipitated

samples and corresponding input material were prepared using

the NEBNext ChIP-Seq Library Prep Master Mix set for Illumina

(New England Biolabs) combined with Illumina Barcodes 1–12.

Briefly, and according to manufacturer’s instructions, DNA was

end-repaired, end adaptors ligated, and the libraries amplified

with 15 PCR cycles in the presence of Illumina barcodes.

Libraries were purified using SPRI-beads (Agencourt, Beckman

Coulter), and library size distributions and concentrations were

determined by Bioanalyzer (Supplementary Fig S22D) and Qubit

(Invitrogen, LifeTechnologies). Pooled ChIP-seq libraries were

loaded at 10 pmol onto a MiSeq instrument using reagent kit v2,

50–55 cycles (Illumina). The ChIP-seq data are available

at ArrayExpress (http://www.ebi.ac.uk/ arrayexpress/ identifier

E-MTAB-2650). qPCRs were performed in triplicate, as a QC to

verify enrichment in ChIP samples over input material. Briefly,

four regions over the S. pombe adh1 locus, including the tran-

scription start site, were examined using the fast SYBR Green

Master Mix system (Applied Biosystems). Relative quantities

were derived from Ct values obtained from the SDS software

(Applied Biosystems) using 10-fold serial dilutions of input mate-

rial as standards. Once enrichment was verified, ChIP-seq

libraries were constructed. Supplementary Fig S22E shows qPCR

data over the transcription start site of adh1.

Strand-specific RT–qPCR

Design

RT–qPCRs were performed for four pairs of genes arranged conver-

gently. The gene pairs were cdb4 (SPAC23H4.09)/thi4 (SPA

C23H4.10c); SPAC29E6.10c/SPAC29E6.09; its3 (SPAC19G12.14)/

tpp1 (SPAC19G12.15c); and paf1 (SPAC664.03)/rps1602 (SPAC6

64.04c); the first indicated gene of each pair was the swc5 target

gene. For each pair of convergent genes, two different reverse-tran-

scription (RT) reactions (plus two control reactions) and four qPCRs

were performed (the procedure was repeated in triplicate). The

cDNAs of all the sense transcripts were generated in one of the RT

reaction, while the antisense cDNAs were generated in a second

reaction (Supplementary Fig S16A).

RNA extraction

Total RNA was isolated by hot phenol extraction (Lyne et al,

2003). The residual DNA was digested with Qiagen’s DNase via

in column digestion using Qiagen’s RNAeasy mini kit protocol.

RNA quality was assessed on a Bioanalyzer instrument from

Agilent. All RNAs used in this assay had a RIN (RNA Integrity

Number) above 9.

RT reaction

cDNA was generated using primer-specific RT reactions

(2 pmols per primer) according to Superscript III manual, and 3 lg
of total RNA was retro-transcribed using Superscript (R) III Reverse

Transcriptase (Life Technologies). To reduce the synthesis of

primer-independent cDNA, which has been shown to account to up

to 57% of the RT products in loci that express both sense and anti-

sense transcripts (Haddad et al, 2007; Perocchi et al, 2007; Feng

et al, 2012), the temperature of the RT reaction was set at 55°C

(relatively high temperature) and actinomycin D was added to the

reactions after the denaturating step at 70°C at a concentration of

6 lg/ml (Perocchi et al, 2007). For each RNA, 4 sets of RTs were

carried out:

1 Sense RT.

2 Antisense RT.

3 Self-priming RT in which no primers were added to assess for

the primer-independent cDNA synthesis.

4 DNase control RT in which no enzyme was added, to estimate

the remaining DNA after DNase treatment.

The list of RT primers is provided in Supplementary Table S6.
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Semi-quantitative PCR

The expression of the transcripts analyzed was performed using the

fast SYBR Green Master Mix system (Applied Biosystem). Ct values

were obtained from the SDS software (Applied Biosystem). The list

of qPCR primers is provided in Supplementary Table S6. Raw qPCR

data are provided in Supplementary Dataset S16.

Analysis

All qPCRs were performed relative to the expression of the house-

keeping gene cdc2. Because we were assessing expression differ-

ences induced by genetic variations that had widespread effects on

transcription levels, we could not assume that the level of house-

keeping genes (like cdc2) were stable between the strains. There-

fore, we restricted our analysis to the comparison of ratios (like

antisense-to-sense ratios), because this quantity was independent of

potential variations in reference gene levels. Indeed, in semi-

quantitative qPCR, the expression levels are measured relatively to

a reference gene (here cdc2); for instance, the sense level of gene g

(senseg) is estimated via senseg/cdc2 and its antisense level (anti-

senseg) via antisenseeg/cdc2. Thus, their ratio is independent of cdc2

level:

antisenseg=cdc2

senseg=cdc2
¼ antisenseg

senseg

30-rapid amplification of cDNA ends experiments

30-RACE experiments were done using SMARTer RACE kit (Clon-

tech) according to the manufacturer’s instructions.

Targeted proteomics analysis of swc5

Samples for protein analysis were harvested from the exact same

cultures as that for the RNA. Fifty milliliter of growing culture

(as described above) was pelleted at 4°C, washed once in

1× PBS, and snap-frozen in liquid N2. Cells were harvested by

centrifugation at 2,000 × g and resuspended in 100 ll of lysis

buffer (100 mM ammoniumbicarbonate, 8 M urea, 0.1% Rapi-

GestTM) and 100 ll of glass beads. The cells were lysed first by

vortexing for 3 × 1 min using a multivortexer followed by soni-

cation for 2 × 30 s. A small aliquot of the supernatant was taken

to determine the protein concentration using a BCA assay

(Thermo Fisher Scientific) and the protein concentration adjusted

to 5 mg/ml using additional lysis buffer. 100 lg total protein

was employed for targeted LC-MS analysis as recently specified

(Glatter et al, 2012). First, disulfide bonds were reduced with

5 mM TCEP for 30 min and alkylated with 10 mM iodoaceta-

mide at room temperature in the dark. Excess of iodoacetamide

was quenched with 12.5 mM N-acetyl-cysteine for 10 min at

37°C. Protein samples were diluted five times with 50 mM

NH4HCO3 to obtain a urea concentration of 1.6 M during digest.

2 lg of trypsin (Promega) was added to the protein sample (pro-

tein to trypsin ratio = 50:1), and digestion was carried out at

37°C overnight (about 18 h). Then, the samples were acidified

with 2 M HCl to a final concentration of 50 mM and incubated

for 15 min at 37°C, and the cleaved detergent was removed by

centrifugation at 10,000 × g for 5 min. Subsequently, a mixture

containing 1 pmol of heavy labeled reference peptides (Spike-

Tides_L, JPT Peptide Technologies), respectively, was spiked into

each sample and subsequently C18-purified using spin columns

(Harvard Apparatus) according to manufacturer’s instructions.

The corresponding Swc5 peptides were selected from two recent

large-scale proteomic studies of S. pombe (Marguerat et al, 2012;

Gunaratne et al, 2013). Data derived from a spectral library

generated based on data-dependent LC-MS/MS analysis of the

standard peptide mix were imported into Skyline version 1.4

(https://skyline.gs.washington.edu/labkey/wiki/home/software/Sky-

line/page.view?name=default) to define precursor charge states

and the most intense transitions. Up to 10 transitions per peptide

were traced on a LTQ Velos mass spectrometer connected to an

electrospray ion source (both Thermo Fisher Scientific). Peptide

separation was carried out using an easy nano-LC systems

(Thermo Fisher Scientific) equipped with a RP-HPLC column

(75 lm × 37 cm) packed in-house with C18 resin (ReproSil-Pur

C18–AQ, 3 lm resin; Dr. Maisch GmbH, Ammerbuch-Entringen,

Germany) using a linear gradient from 96% solvent A (0.15%

formic acid, 2% acetonitrile) and 4% solvent B (98% acetonitrile,

0.15% formic acid) to 35% solvent B over 90 min at a flow rate

of 0.2 ll/min. The data acquisition mode was set to obtain only

MS/MS scans in the linear ion trap of the defined precursor

masses. Maximal ion time was set to 50 ms, automatic gain

control target was set to 30,000 ions, and one microscan was

acquired per MS/MS scan. The MS data were imported into

Skyline that was used for further visualization, transition detec-

tion, and calculation of transition ratios. The generated transition

list used for the targeted analysis and the skyline results are

provided in the Supplementary Dataset S17.

DNA re-sequencing data processing

Paired-end reads were aligned against the S. pombe reference

genome using BWA (Li & Durbin, 2009) (maximum edit distance 4,

maximum gap expansion 15, seed length 32). We then applied

the GATK pipeline (v.1.0-6148) for quality score recalibration,

indel realignment, SNP, and small indel discovery and genotyp-

ing across the three parental samples simultaneously using

standard hard filtering parameters with a minimum variant score

of 50 (DePristo et al, 2011). Although the strains were haploid,

the GATK pipeline assumed diploidy for genotyping. We

therefore rejected polymorphisms that were genotyped as hetero-

zygous. We identified 4,570 polymorphisms (Supplementary

Dataset S6).

RNA-seq-based genotyping

Step 1: Identifying genomic variants in the segregants

For every sample, reads were mapped to the S. pombe reference

genome, in which the sequences of the spikes were added, using

Bowtie v.0.12.7 (Langmead et al, 2009) (using the following

command line options: -C –n 3 –e 100 –best). Read group

information was added, and sample-specific BAM files were sorted

using Picard utilities (http://picard.sourceforge.net/). We then used

the GATK pipeline (v.1.0-6148) to perform a local realignment of

reads around the indels that were previously identified in progenitor

strains. In the same step, data of samples derived from identical
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segregant strains were pooled together to obtain strain-specific BAM

files. Next, SNPs and indels were genotyped at the sites polymorphic

in the progenitors using GATK.

Step 2: Inferring genotype

For every polymorphic site between the progenitors, we

compared the polymorphisms in the segregant and the parental

strains to infer which allele was inherited. Ambiguous genotype

calls (heterozygous calls—we studied haploid individuals) and

calls where the GATK genotype score was below 20 were

considered as unknown. This threshold was determined empiri-

cally by analyzing the genotype calls made from RNA-seq data

of the parental strains—for which we knew the expected

genotype.

Step 3: Filtering for potential genotyping errors

Polymorphic sites that were not correctly called in the parental

strains and with a minor allele frequency below 10% were

discarded (89 polymorphisms). Another class of potentially errone-

ous genotype calls regards markers with genotype calls differing

from the two flanking markers (47 cases in the entire strain library).

Such patterns are likely to denote an erroneous genotype call when

the flanking markers are close (Supplementary Information). When

the distance between the flanking sites was smaller than 50 kilo

base pairs (kbp), those genotype calls were considered as erroneous

and corrected to match the segregation pattern of the flanking sites

(34 cases).

Step 4: Imputing missing genotypes

The genotype of less than half of the polymorphic sites could be

directly deduced from the RNA-seq data. Genotypes of the remain-

ing sites could not be determined because of the lack of read cover-

age resulting from low (or no) expression. However, the segregation

of a polymorphism is not an independent event since the meiotic

recombination generates relatively large haplotype blocks. This can

be taken into account to infer missing genotypes using the data of

genotyped flanking polymorphic sites. Therefore, when the informa-

tive flanking sites showed the same segregation patterns and when

they were < 50 kb away, the same genotype as the flanking one was

assigned to the missing value, thus assuming that no recombination

event took place (Supplementary Information). When the distance

was greater, or when the flanking polymorphic sites showed oppo-

site segregation patterns, the genotype was still considered as

unknown.

Step 5: Assembling a set of markers for linkage analyses

Genotypic markers that were not called in half of the segregants

after the imputation step were discarded (29 sites). Adjacent

markers with the same segregation pattern across all segregants

were collapsed into one unique marker, resulting in a set of 708

unique mapping genotypic markers (Supplementary Dataset S9).

Thus, each marker represents a genomic interval in which

all polymorphisms are in full linkage disequilibrium in the

cross.

If replicates RNA-seq data of the same strain led to comple-

tely different genotypes, thus indicating probable sample

inversions, the data of all replicates were removed from the

analysis.

Generation of strain-specific genome and annotation files

We used the genotype data to generate both strain-specific genome

sequences and strain-specific annotations starting from: (i) the refer-

ence genome (RG) sequence, (ii) the RG annotation files, and (iii)

the genomic variations information (VCF file) of the strain of inter-

est. Annotation files had to be generated to take insertions and dele-

tions into account. For this task, we developed a standalone Python

script called GenomeGenerator, which is freely available (www.

cellularnetworks.org).

RNA-seq simulation

To explore the potential advantage of the strain-specific RNA-seq

mapping, we simulated sets of 48 bp long RNA-seq reads for the

two parental strains (968 and Y0036) and three segregants (R1-10,

R1-13, and R1-22). First, we simulated the expression levels using

the average normalized expression values that we measured in the

real data for these samples (the same expression values were used

for all the simulations). To generate the number of RNA-seq reads

to simulate for each gene (NR), the normalized log expression

values (expression) were transformed to a natural scale and

multiplied by 10. This value was then ceiled (number of reads are

integer), and all values smaller than 1 were set to 1. This led to a

total of 77,110,382 reads by simulated samples.

NR ¼ 1 d10 � 2expressione� 1
d10 � 2expressione otherwise

�

For each strain, we then generated a strain-specific transcriptome

(the sequence of the 6,464 coding and non-coding transcripts

considered in this study) that took polymorphisms into account and

added a poly-A tail of 48 bases for every transcript.

Before generating the RNA-seq reads, we built an error model to

simulate sequencing errors. It has been shown that sequencing

errors play an important role for the accuracy of RNA-seq-based

gene expression quantification when polymorphisms were consid-

ered (Degner et al, 2009). In order to quantify the sequencing error,

we used the RNA-seq results for strain 968 (laboratory strain

isogenic to the strain from which the S. pombe reference genome

was derived). We assumed that all mismatches between aligned

reads and the reference genome represent sequencing errors. There-

fore, for each read position, we evaluated the mismatch frequency

and used it as a sequencing error probability in the error model. We

then generated the RNA-seq reads by choosing randomly segments

of 48 bases from the transcript sequences and added mismatches

randomly following the previously generated error model. Note that

the coordinates of the RNA-seq reads were the same for all the simu-

lated strains in order to facilitate comparisons.

Gene expression quantification and normalization

To avoid biases due to sequence variations in gene expression quan-

tification, RNA-seq reads were mapped onto strain-specific genomes

(sequences of the spikes were also added to the genome sequence

file) using Bowtie v.0.12.7 (Langmead et al, 2009) with the follow-

ing command line options: (-C ––best -m 1). Gene expression

was evaluated by counting the number of reads mapped into each
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annotated element (strand specifically). For coding genes, only the

coding sequences were considered to avoid the problem of variable

UTR length (Pelechano et al, 2013).

Read counts were filtered to remove genes, for which no read

was mapped in more than half of the samples. The remaining zero

read counts were replaced by 0.1 to avoid mathematical errors in

subsequent logarithmic transformation. Data were then sample-wise

scaled to the total number of mapped reads (spike excluded from

the counts).

ei scaled ¼ ei
ti
� �t

where ei is the expression vector of the sample i, ti is the total

number of mapped reads, and �t is the average.

Finally, potential batch effects were removed by mean-centering

(also known as zero-mean, or one-way analysis of variance adjust-

ment (Luo et al, 2010)), and data were log2-transformed.

egnorn ¼ eg �
egb1=�eg b1
egb2=�eg b2

� � �
egbn=�eg bn

0
BB@

1
CCA

where eg is the expression vector of the gene g over all samples

and egb1, the expression vector of the gene g over the samples of

the first batch. For the computation of the mean expression across

a batch (�eg bi ), the samples corresponding to the swc5 deletion

strain (Dswc5) were not taken into account because they were

likely to be different from the recombinant lines (different genetic

background). This did not alter the analyses that were carried out

with these particular samples since only correlations were studied.

Antisense expression quantification and normalization

Antisense expression data were quantified and normalized as the

sense expression data, but raw expression measurements were

obtained by counting the reads mapped on the opposite strand of

each annotated elements. Only the antisense expressions of coding

gene were considered in all subsequent analyses. Moreover, zero

values were not replaced by 0.1 but considered as missing values,

to account for the overall lower read coverage of antisense traits.

Differential gene expression analysis

Differential gene expression analysis has been carried out to

compare the expression of the 6,464 sense traits and of the 4,133

antisense traits in the swc5-deletion strain (measured in triplicate)

and the wild-type parental strain 968 (measured in seven repli-

cates). We used DeSeq2 to carry out this analysis. DeSeq models

read counts using negative binomial distributions and uses general-

ized linear models to test for differential expression.

eQTL, aseQTL, and growth QTL mapping

A previously developed QTL detection method based on Random

Forest (RF) (Michaelson et al, 2010) was adapted to handle missing

genotype values. The RF-based mapping uses genetic markers as

predictors. The original RF cannot handle missing values in the

predictor matrix. A naı̈ve solution would be to define missing values

as a third category (i.e. possible ‘genotypes’ would be the two

parental alleles 968 and Y0036, and ‘missing’). However, we

observed that treating missing values like a genotype introduces a

bias in some special cases even though the total number of missing

values was very small. We thus developed a new strategy that only

uses real genotypes: In the case of missing values, one of the two

alleles (either 968 or Y0036) is randomly assigned to that locus. This

procedure is repeated 1,000 times, each time re-assigning a random

genotype, and subsequently, the resulting models (forests) are

combined. This strategy removed biases previously introduced by

missing values.

We further modified our Random Forest strategy to correct for

potential population sub-structure, by adopting previously proposed

concepts that essentially include population structure as a covariate

in the model (Patterson et al, 2006; Price et al, 2006, 2010; Novem-

bre & Stephens, 2008). First, we estimated the relatedness between

the strains (i.e. the kinship matrix) using the ‘emma’ package (Kang

et al, 2008). Subsequently, we selected those eigenvectors of the

kinship matrix corresponding to the top eighth eigenvalues as cova-

riates for the QTL mapping (additional predictors for growing the

Random Forests). These eight-first vectors explained more than

80% of the genotype variance.

For the eQTL and aseQTL mapping, forests of 16,000 trees

(100 forests of 160 trees) were grown using the R implementa-

tion of the Random Forest algorithm (randomForest package).

The strategies described above were used to handle missing

genotype values and model the population structure. The mtry

parameter, which defines the number of randomly preselected

predictors at each split, was left to default (one-third of the total

number of predictors). The QTL was then scored using the

predictor selection frequency as previously proposed (Michaelson

et al, 2010). To estimate the significance of the linkages, each

trait was permuted 1,000 times and random forests were grown

for each permutation. The correspondence between the covari-

ates (batches and population structure models) and the permu-

tated traits was maintained in order to properly estimate the

significance of the trait-marker linkages. Note that the same

permutation scheme was used for all traits in order to account

for inter-trait correlation. This permutation strategy has previ-

ously been proposed in order to avoid biases in the subsequent

detection of eQTL hotspots (Breitling et al, 2008). By pooling the

results of all the studied traits, we obtained null distributions of

the selection frequencies for each marker (predictor). These

distributions were used to generate empirical P-values for the

selection frequencies. We then reused the permutation results to

generate P-values for each randomized trait and thus obtained a

null distribution of P-values that was used to estimate false

discovery rates (FDR). For growth QTLs, forests of 50,000 trees

were grown (2,000 forest of 25 trees) and 10,000 permutations

were used to estimate the null distributions.

When consecutive markers were linked to the same trait, the

QTL was considered to span over the markers of interest. Further,

regions containing multiple markers linked to the same trait were

combined into a single locus if the linked markers were in high link-

age disequilibrium (LD) to each other (Pearson’s r > 0.8) and sepa-

rated by not more than 10 non-linked markers. All of those markers
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(including the intermediate non-linked markers) were combined

into one QTL (one region). If such markers were separated by more

than 10 non-linked markers (or resided on different chromosomes),

they were counted as a single linkage, because it is a priori

unknown, which of those regions contains a causal variant. We

refer to these sets of markers as ‘QTL groups’, because they do not

constitute a contiguous genomic region (i.e. not a single ‘locus’).

QTL genomic coordinates (Supplementary Datasets S11 and S13)

were reported as spanning in between the first non-linked polymor-

phisms. Linkages with last (or first) markers at the end (or begin-

ning) of a chromosome were considered as enclosing the entire

telomere.

eQTL hotspot detection

To formally identify eQTL hotspots in our dataset, the genome was

divided into 50-kb bins (250 bins, bins at the end of chromosomes

were bigger) and the number of eQTLs falling in each bin was

counted. Nineteen bins contained more eQTLs than expected

(P < 8e-4) if the eQTLs were randomly distributed across the

genome. The expected number of eQTLs per bin was computed

assuming a Poisson distribution (Brem et al, 2002). Consecutive

bins sharing the same targets were subsequently regrouped in 8

eQTL hotspots.

cis versus trans-QTL

eQTLs and aseQTLs were considered to act in cis when the marker

defining the QTL that was the most correlated with the markers

surrounding the target gene was correlated at more than 0.8 (Pear-

son’s r). The results that we obtained regarding the proportion of

cis-eQTLs were not importantly affected by lowering the threshold

(Discussion).

Identification of the strongest candidate regulator genes

eQTL loci usually span multiple genes. Identifying the causal

sequence variation or the causal gene responsible for a QTL has

proven to be difficult (Bing & Hoeschele, 2005; Kulp & Jagalur,

2006; Suthram et al, 2008; Verbeke et al, 2013). Several methods

take into account the correlation between the expression of the

target gene and the genes located at the eQTL (regulator genes) to

address this issue (Bing & Hoeschele, 2005; Kulp & Jagalur, 2006).

Here, we used a similar approach to identify potential likely regula-

tor gene for each eQTL target. For each trans-eQTL (or eQTL group),

we computed the squared Pearson’s r between the target gene and

all annotated genes located at the QTL. The candidate regulator

showing the maximal correlation was then considered as the poten-

tial regulator of the coding or non-coding target of interest. Note that

this method selects one candidate regulator for each gene–QTL link-

age. Therefore, if several genes are linked to the same QTL, this

method can identify several strongest regulator candidates in this

QTL, provided it contains several genes.

The prediction of the putative regulator at the hotspot (Supple-

mentary Table S3) was done based on a voting approach: For each

target of the hotspot, the strongest candidate regulator gene has

been determined. The most frequently selected candidate regulator

was considered the regulator of the hotspot.

Directionality of the effects

To determine the directionality of the regulation of a QTL on a trait,

we simply compared the average trait level in the strains carrying

the Y0036 allele at the locus of interest to the average level in the

strains carrying the 968 allele. The directionality was always

expressed relative to 968. Note that the directionality test implied

that a significant linkage had been previously found between the

locus and the trait; hence, the statistical significance had already

been tested.

Gene pair organization

Only the protein-coding genes were considered in this analysis,

because many ncRNAs correspond to antisense RNAs in S. pombe

(Wilhelm et al, 2008; Ni et al, 2010; Bitton et al, 2011; Xu et al,

2011). On each chromosome, genes were ordered according to geno-

mic position of the transcription start site position (or, when not

available, the start codon). All pairs of successive genes were then

classified into six categories by analyzing the orientation of the

genes (plus or minus strand) and whether they overlapped. Since

we evaluated the antisense transcription considering only the region

located on the opposite strand of the coding region (CDS), genes

were not considered as overlapping when only their UTRs over-

lapped.

The significance of the gene pair enrichment was empirically

determined: 1,384 antisense traits were linked to the swc5 locus;

we randomly picked the same number of traits and counted the

number of picked gene pairs falling in each category. By repeating

this operation 1,000,000 times, we obtained empirical null distribu-

tions of the number of gene pairs in each category. No empirical

value was above the observed number of overlapping and non-

overlapping convergent gene pairs, and no empirical value was

below the observed number of non-overlapping tandem gene

pairs.

ChIP-seq analysis

ChIP-seq reads were aligned onto the S. pombe reference genome

using Bowtie v.0.12.7 (Langmead et al, 2009) (using the following

command line options: -m 1 ––best). Pht1 peaks were called

using MACS2 v2.0.10.09132012 (Zhang et al, 2008), using input

DNA (specific for each replicate) as background control. The shift

size was fixed 73 in all samples; it corresponds to the average shift

size modeled by MACS2 for the studied samples.

Per base Pht1 occupancy relative to control was calculated using

the MACS2 ‘bdgcmp’ command using the ‘divide’ method (indepen-

dently for each replicate). The resulting bedgraph files were used to

map all coding genes onto a meta-gene. For each gene, the upstream

intergenic region and part of the coding region were analyzed within

a region ranging from �800 to+2800 bp from the transcription start

site with a resolution of 1 bp, similarly as described (Buchanan

et al, 2009).

GO enrichment

Gene Ontology (GO) enrichment analyses were performed using

topGO (‘weight’ algorithm, maximum node size 3, Fisher test),
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which takes the topology of the ontology into account (Alexa et al,

2006).

Data Accessibility

Sequencing data of the parental strains are archived in the European

Nucleotide Archive (http://www.ebi.ac.uk/ena/) under the acces-

sion numbers ERX007392 and ERX007395 for the strains 968 and

Y0036, respectively.

All RNA-seq data generated in this study are available at Array-

Express (http://www.ebi.ac.uk/ arrayexpress/, identifier E-MTAB-

2640).

All ChIP-seq data generated in this study are available at ArrayEx-

press (http://www.ebi.ac.uk/arrayexpress, identifier E-MTAB-2650).

The standalone script that generates strain-specific genome

sequence and annotation (GenomeGenerator), is freely available at

http://www.cellularnetworks.org.

All the other raw data, processed data, and dataset results are

provided as Supplementary Datasets with this manuscript.

Supplementary information for this article is available online:

http://msb.embopress.org
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