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The renoprotective mechanisms of hemeoxygenase-1 (HO-1) in diabetic nephropathy remain to be investigated. We hypothesize
that HO-1 protects the kidney from diabetic insult via lowering renal oxidative stress and inflammation. We used control and
diabetic SHR with or without HO-1 inducer cobalt protoporphyrin (CoPP) treatment for 6 weeks. Urinary albumin excretion
levels were significantly elevated in diabetic SHR compared to control and CoPP significantly attenuated albumin excretion.
Immuno-histochemical analysis revealed an elevation in TGF-β staining together with increased urinary collagen excretion in
diabetic versus control SHR, both of which were reduced with CoPP treatment. Renal oxidative stress markers were greater in
diabetic SHR and reduced with CoPP treatment. The increase in renal oxidative stress was associated with an elevation in renal
inflammation in diabetic SHR. CoPP treatment also significantly attenuated the markers of renal inflammation in diabetic SHR.
In vitro inhibition of HO with stannous mesoporphyrin (SnMP) increased glomerular NADPH oxidase activity and inflammation
and blocked the anti-oxidant and anti-inflammatory effects of CoPP. These data suggest that the reduction of renal injury in
diabetic SHR upon induction of HO-1 are associated with decreased renal oxidative stress and inflammation, implicating the role
of HO-1 induction as a future treatment of diabetic nephropathy.

1. Introduction

The incidence of diabetes mellitus has dramatically increased
worldwide [1, 2]. One of the major complications of diabetes
is the progression of renal injury, affecting approximately
35% of type 1 and type 2 diabetic patients, which often leads
to end-stage renal disease. Diabetes is often associated with
an elevation in blood pressure which is known to worsen
renal function [3–5]. Accordingly, we induced diabetes in
spontaneously hypertensive rats (SHR) in the current study
as a genetic model of essential hypertension to address the
effects of diabetes on a hypertensive background.

Increased oxidative stress has been implicated in the
pathogenesis of diabetes and hypertension [6, 7]. NADPH
oxidase, the major source of superoxide production in the
vasculature, is known to activate numerous inflammatory
cytokines [8]. NADPH oxidase has been shown to be
activated in the kidney of diabetic animal models, with

enhanced expression in the glomerulus and distal tubules
[9–11]. NADPH oxidase-derived reactive oxygen species
increase renal hypertrophy and fibronectin expression in
streptozotocin-induced type 1 diabetic rats [11, 12] as well
as exacerbate the damage in glomerular basement membrane
and slit diaphragm [10, 13]. Collectively, these data suggest
that NADPH oxidase-derived superoxide contributes to the
progression of diabetic-induced renal injury.

Clinically, inflammatory processes in the kidney also
contribute to the progression of nephropathy in patients
with type 1 diabetes and in diabetic animal models [14–
19]. Diabetic renal injury is an inflammatory disease char-
acterized by monocyte infiltration at every stage of the
disease progression with chemokines driving the recruit-
ment of inflammatory cells into renal compartments [15,
18]. Kidney of diabetic humans and experimental animal
models both show increased macrophage infiltration and
overproduction of leukocyte adhesion molecules [14–19].

mailto:aelmarakby@georgiahealth.edu


2 International Journal of Hypertension

Activated inflammatory cells further exacerbate cytokine
release leading to enhanced fibrosis, matrix deposition, and
progressive renal injury. Moreover, oxidative stress has been
demonstrated to modulate expression of many inflammatory
genes in diabetes, including cell adhesion molecules (CAMs)
and monocyte chemoattractant protein (MCP-1). Taken
together, these data support a role of immune response in
the progression of diabetic renal injury [11, 20].

Heme catabolism is primarily driven by hemeoxygenase
(HO) generating biliverdin, iron, and carbon monoxide [21,
22]. There are two isoenzymes of HO: inducible HO-1 and
constitutive HO-2 which accounts for most HO activity in
the normal state [21, 22]. Studies have shown that HO-
1 is upregulated in response to oxidative stress, ischemia,
and inflammation [21, 22]. Induction of HO-1 also reduces
blood pressure and inflammation in experimental models of
diabetes and hypertension suggesting that HO-1 induction
may protect the diabetic kidney via inhibition of oxidative
stress and inflammation [23–26].

Previous studies have suggested a role for hyperglycemia
in increasing oxidative stress and inflammation in diabetic
animal models [27, 28]; however, most of the studied diabetic
animal models remained normotensive. Because diabetic
nephropathy is characterized by increased albuminuria with
an elevation in blood pressure and decline in renal function,
the coexistence of hypertension and diabetes in the current
animal model is expected to worsen the degree of renal
injury and more accurately reflect the clinical picture of
diabetic nephropathy. The current study tests the hypothesis
that HO-1 induction-mediated decreases in renal injury
are associated with decreases in renal oxidative stress and
inflammation in diabetic SHR.

2. Materials and Methods

All procedures with animals were performed in accordance
with the Public Health Service Guide for the Care and Use of
Laboratory Animals and Georgia Health Sciences University
guidelines. Eleven-week-old male SHR (Charles River, MA)
were used to induce diabetes by a single injection of
streptozotocin (Sigma, MO; 65 mg/kg i.v dissolved in 0.1 M
citrate buffer) and control SHR only received 0.1 M citrate
buffer injection. The blood glucose levels of these rats were
maintained within 400–500 mg/dL via the use of sustained
release insulin implants (s.c, Lanshin, Canada), and blood
glucose levels were tested weekly using a glucometer. Normal
control and diabetic SHR rats were randomized to receive
either vehicle (0.1 M NaOH, pH 8.3) or the HO-1 inducer
cobalt protoporphyrin (CoPP, 5.0 mg/100 g body weight s.c)
weekly for six weeks after induction of diabetes (n =
8/group). Systolic blood pressure was recorded weekly using
the tail cuff method (IITC Life Science, Woodland Hills,
CA) [25]. Rats were placed in metabolic cages (Nalgene
Corp. Rochester, NY) for 24-hour urine collection at the end
of the experiment. Urinary creatinine (Cayman Chemical,
Ann Arbor, MI), albumin, and collagen (Exocell, Philadel-
phia, PA) excretion levels were determined as indices of
renal injury. Urinary thiobarbituric acid reactive substances

(TBARs, Cayman Chemical, Ann Arbor, MI), and 8-hydroxy
deoxyguanosine (8-OHdG, Northwest, WA) excretion levels
were assessed as markers of oxidative stress.

2.1. Homogenization of the Renal Cortex for Protein Expression
Using Western Blotting Analysis. Renal cortical samples were
homogenized in RIPA buffer supplemented with inhibitors
for proteases and phosphatases as previously described [25].
Protein concentrations were determined by Bradford assay
(Bio-Rad, Hercules, CA). Cortical samples were separated
by SDS-PAGE as previously described [25]. Gels were then
transferred onto nitrocellulose membranes. The primary
antibodies used were: rabbit HO-1, HO-2 (EMD Biosciences,
San Diego, CA), and mouse β-actin (Sigma, St. Louis,
MO). These antibodies were detected with a horseradish
peroxidase-conjugated secondary antibody and ECL chemi-
luminescence (Amersham BioSciences, Buckinghamshire,
UK). Intensity of immunoreactivity was measured by den-
sitometry, and β-actin was used to verify equal loading of
protein.

2.2. Renal NADPH Oxidase Activity. NADPH activity was
measured in cortical samples by lucigenin chemilumines-
cence using 35 μg protein in the presence of NADPH
(100 μM) and lucigenin (5 μM) as previously described [29]
and average sample counts (cpm) were normalized to μg
protein.

2.3. Renal MCP-1, HO-1, and sICAM-1 Assays. HO-1 activ-
ity was measured in renal cortical samples using a commer-
cially available ELISA according to manufacturer’s instruc-
tions (Enzo Life Sciences Inc., Farmingdale, NY). Renal
cortical MCP-1 levels were assessed using a commercially
available ELISA according to manufacturer’s instructions
(BD Biosciences, Bedford, MA). Renal soluble ICAM-1
levels (sICAM-1) were also determined using a commercially
available ELISA according to manufacturer’s instructions
(R&D Systems, Minneapolis, MN).

2.4. Renal Histopathology. In a separate set of rats (n =
5/group), kidneys were perfused with 10% formalin solution
and were then paraffin embedded and cut into 4- to 5-μm
sections. Kidney sections were used for immunohistochem-
ical evaluation of CD68 to assess monocyte/macrophage
infiltration (ED-1 staining) and CD3 to assess T-cell infil-
tration as previously described [30]. Ten microscopic images
of the kidney cortex per rat were randomly taken at
×200 magnification, and CD68-positive and CD3-positive
cells were counted by a blinded reviewer experienced in
analysis. The number of positive cells per millimeter squared
was calculated and averaged for each group. Additional
kidney sections were immunohistochemically stained with
TGF-β antibodies (Santa Cruz Biotechnology, Santa Cruz,
CA), and staining intensity was evaluated at ×200 and
×400 magnification power, respectively. Masson’s trichrome
staining of kidney sections was also used to assess the amount
of collagen deposition, ×200 magnification.
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Figure 1: Renal cortical HO-1 expression relative to β-actin (a), HO-1 activity (b), and HO-2 expression relative to β-actin (c) in control
and diabetic (D) SHR with or without CoPP treatment (n = 6, ∗indicates significant difference from control SHR and #indicates significant
difference from diabetic SHR).

2.5. Isolation of Glomeruli. Glomeruli were isolated as pre-
viously described [39] by a gradual sieving technique from
control and diabetic SHR and incubated for 2 hours at 37◦C
with the HO inhibitor stannous mesoporphyrin (SnMP,
20 mM), CoPP (10 mM), or both SnMP and CoPP (n =
4/group). Glomerular NADPH activity was determined by
lucigenin method, and glomerular P-ERK/ERK ratio was
also assessed by Western blotting using antibodies from cell-
signaling technology (Beverly, MA).

2.6. Data Analyses. Statistical analyses were performed using
Prism software (GraphPad, San Diego, CA, USA). Data were
reported as means ± SEM and were analyzed using one-way
analysis of variance (ANOVA) followed by Tukey’s post-hoc
test (P < 0.05 was considered significant).

3. Results

As shown in Figures 1(a) and 1(b), induction of diabetes
with streptozotocin did not significantly change renal HO-
1 activity or expression in SHR. However, CoPP treatment
significantly elevated renal HO-1 expression and activity in
both control and diabetic SHR (P < 0.05). There was no
difference in renal HO-2 expression among all rat groups
(Figure 1(c)). Induction of diabetes did not significantly
change systolic blood pressure in SHR (209 ± 4 versus 200
± 4 mmHg) although blood glucose levels were significantly
elevated compared to control SHR (507 ± 43 versus 205 ±
15 mg/dL). CoPP treatment reduced blood pressure (187 ±
2 mmHg) and blood glucose (425 ± 47 mg/dL) in diabetic
SHR; however, blood glucose and blood pressure remained
significantly higher than control SHR.

3.1. Renal Injury. We assessed urinary albumin and crea-
tinine excretion levels as markers of renal injury. Control

SHR had a significantly higher level of albuminuria than
normotensive WKY (1.0 ± 0.2 versus 0.35 ± 0.05 mg/day,
P < 0.05). As shown in Figure 2(a), diabetic SHR exhibited a
significant increase in albuminuria after 6 weeks of induction
of diabetes compared to control SHR (6.5± 0.6 versus 1.0±
0.2 mg/day, resp., P < 0.05). CoPP treatment lowered albu-
minuria in control SHR (0.6± 0.1 mg/day) and significantly
attenuated the elevation in albuminuria in diabetic SHR
(2.2 ± 0.6, P < 0.05). Similarly, creatinine excretion was
significantly elevated in diabetic SHR compared to control
and was reduced with CoPP treatment (Figure 2(b)).

The progression of renal injury in diabetic SHR was
associated with renal vascular remodeling and increased
extracellular matrix deposition and fibrosis as manifested by
greater collagen deposition (blue staining, Figure 3(a)) and
enhanced TGF-β levels (red staining, Figure 3(b)) in diabetic
SHR. The increase in collagen deposition was also associated
with an elevation in urinary collagen excretion in diabetic
SHR compared to control SHR (Figure 3(c)). Induction of
HO-1 with CoPP reduced collagen deposition and TGF-β
staining and significantly lowered urinary collagen excretion
in diabetic SHR (Figure 3).

3.2. NADPH Oxidase and Oxidative Stress. Oxidative stress
has been shown to play a role in the pathogenesis of
diabetic-induced renal injury, and NADPH oxidase is the
main source of superoxide production in diabetes [10, 11].
Consistent with these observations, renal cortical NADPH
oxidase activity was significantly elevated in diabetic SHR
compared to control SHR (Figure 4(a)). The increase in
NADPH oxidase activity was also associated with elevation
in the oxidative stress markers TBARs and 8-OHdG excretion
levels in diabetic versus control SHR (Figures 4(b) and
4(c)). Induction of HO-1 with CoPP inhibited NADPH
oxidase activity and reduced excretion levels of oxidative
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Figure 2: Urinary albuminuria (a) and creatinine excretion (b) in control and diabetic SHR with or without CoPP (n = 8, ∗indicates
significant difference from control SHR and #indicates significant difference from diabetic SHR).

stress markers in diabetic SHR (Figure 4). Plasma TBARs
were also elevated in diabetic versus control SHR (39 ± 8
versus 26 ± 4 μM) and were reduced with CoPP treatment
in diabetic and control SHR (26 ± 5 & 13 ± 4 μM, resp.)
suggesting that induction of HO-1 lowers renal as well as
systemic oxidative stress levels.

3.3. Renal Inflammation. Because diabetic renal injury is
characterized by leukocyte infiltration at every stage of
the disease progression [14, 18], kidneys were processed
for immunohistochemical quantification of macrophage
(CD68) and T-cell (CD3) infiltration. Macrophage infiltra-
tion was significantly greater in diabetic versus control SHR
and induction of HO-1 with CoPP significantly attenuated
the increase in macrophage infiltration in diabetic SHR
(Figure 5(a)). There was no difference in T-cell infiltration
between all groups (Figure 5(b)).

We have recently shown that the NFκB inflammatory
signaling pathway plays a crucial role in the progression of
diabetic renal injury via the activation of proinflammatory
molecules such as MCP-1 [31]. Consistent with this observa-
tion, renal cortical MCP-1 levels were significantly elevated
in diabetic SHR compared to control SHR (129 ± 10 versus
101 ± 3 pg/mg protein, P < 0.05), and levels were reduced
with CoPP treatment in diabetic SHR (90 ± 10 pg/mg
protein, Figure 6(a)). Similarly, renal sICAM-1 levels were
significantly elevated in diabetic SHR compared to control
SHR and reduced with CoPP treatment (Figure 6(b)).

3.4. In Vitro Inhibition of HO in Isolated Glomeruli. Glomer-
ular NADPH oxidase was significantly elevated in diabetic
versus control SHR and incubation of isolated glomeruli

from diabetic SHR with CoPP reduced NADPH oxidase
activity (Figure 7(a)). Treatment of isolated glomeruli from
diabetic SHR with the HO inhibitor SnMP further increased
NADPH oxidase and prevented the ability of CoPP to
reduce NADPH oxidase activity (Figure 7(a)). Previous
studies demonstrated that MAPK activation is involved in
the secretion of proinflammatory cytokines [32, 33] and
increased ERK phoshorylation could be an indicative of renal
inflammation during diabetes [34]. In our study, CoPP treat-
ment significantly inhibited hyperglycemia-induced ERK
phosphorylation in glomeruli isolated from diabetic SHR,
and this effect was also prevented with SnMP treatment
(Figure 7(b)).

4. Discussion

The current study provides evidence that HO-1 induction
mitigates renal injury and inflammation in type 1 diabetic
SHR as a model in which diabetes coexists with hypertension
to exaggerate the progression of renal injury. Induction of
HO-1 attenuated the elevation in albuminuria and creatinine
excretion in diabetic SHR and decreased renal fibrosis and
extracellular matrix deposition in the kidney of diabetic SHR
as evidence by decreased kidney TGF-β and collagen and
decreased collagen excretion in diabetic SHR. It is now widely
acceptable that oxidative stress and inflammatory cytokines
play a crucial role in the progression of diabetic renal injury.
Interestingly, HO-1 induction inhibited NADPH oxidase
activation and reduced markers of oxidative stress in diabetic
SHR. HO-1 induction also reduced kidney macrophage
infiltration and attenuated renal MCP-1 and sICAM-1 levels
in diabetic SHR. Inhibition of HO with SnMP negated the



International Journal of Hypertension 5

SHR/D/CoPPSHR/CoPPSHR SHR/D

Masson 
trichrome

50 μm

(a)

SHR/D/ CoPPSHR/ CoPPSHR SHR/D

TGF-β

50 μm

(b)

SHR SHR/CoPP SHR/D SHR/D/CoPP
0

15

60

75

30

45

∗

U
ri

n
ar

y 
co

lla
ge

n
 e

xc
re

ti
on

 (
μ

g/
da

y)

#

(c)

Figure 3: Representative images of Masson’s trichrome staining (a) and immunohistochemical staining of TGF-β (b) in kidney sections
from control and diabetic SHR with or without CoPP treatment (n = 5). (c) is urinary collagen excretion in control and diabetic SHR with
or without CoPP treatment (n = 8, ∗indicates significant difference from control SHR and #indicates significant difference from diabetic
SHR).

protective effect of CoPP on NADPH oxidase activation and
ERK phosphorylation in isolated glomeruli from diabetic
SHR. These findings suggest that induction of HO-1 could
function to protect the kidney from diabetes-induced renal
injury. We postulate that the renoprotective effects of HO-
1 induction could be linked to inhibition of renal NADPH
oxidase-derived oxidative stress and inflammation in dia-
betic SHR.

The potential renoprotective mechanisms of HO-1
induction remain to be explored. Induction of HO-1 has

been shown to decrease blood pressure in experimental
hypertensive and diabetic animal models including SHR [24–
26]. Consistent with the previous findings, HO-1 induction
lowered blood pressure in control and diabetic SHR; how-
ever, this is unlikely to be the sole renoprotective mechanism
as the blood pressure of CoPP-treated SHR remained very
high. Besides, a blood pressure lowering effect, induction of
HO-1 with CoPP has also previously been shown to reduce
fasting blood glucose and plasma levels of inflammatory
cytokines in obese male and female mice suggesting the
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Figure 4: Cortical NADPH oxidase activity (a), urinary thiobarbituric acid reactive substances (TBARs) and urinary 8-hydroxy
deoxyguanosine (8-OHdG) excretion levels (b) and (c), respectively, in control and diabetic SHR with or without CoPP treatment (n = 8,
∗indicates significant difference from control SHR, #indicates significant difference from diabetic SHR).

potential beneficial effects of HO-1 in treating not only
hypertension, but also the metabolic consequences of obesity
such as insulin resistance and dyslipidemia [23]. In support
of this hypothesis, HO-1 upregulation has been shown
to improve insulin sensitivity and glucose metabolism in
SHR [35] which could be another potential renoprotective
mechanism in diabetes. Consistent with these findings,
induction of HO-1 with CoPP in this current study decreased
blood glucose levels in control and diabetic SHR; however,
it is unlikely to be the only mechanism of CoPP-induced
kidney protection as blood glucose levels in CoPP-treated
diabetic SHR remained significantly higher than control
SHR. Overall, the hypotensive and hypoglycemic effects of
HO-1 induction could contribute, in part, to the renal
protection against diabetic insult.

HO-1 has been implicated in the modulation of renal
injury in hypertensive animal models. For example, induc-
tion of HO-1 with hemin has also been shown by others to

attenuate proteinuria and tubular atrophy in salt-sensitive
angiotensin II hypertension [36]. Hemin also ameliorated
renal injury in angiotensin II hypertension as it prevented
the decrease in glomerular filtration rate and reduced
proteinuria [37]. In SHR, we have recently shown that
induction of HO-1 with CoPP reduced proteinuria when
compared to Wistar Kyoto rats (WKY), whereas inhibition
of HO with stannous mesoporphyrin further increased blood
pressure and proteinuria and blocked the ability of CoPP to
reduce blood pressure and proteinuria in SHR. In diabetes,
HO-1 could also play a role in preserving renal function
and morphology. For example, induction of diabetes with
streptozotocin produced a marked degree of renal impair-
ment in HO-2 knockout mice compared to control [38].
Furthermore, induction of HO-1 with CoPP prevented the
elevation in plasma creatinine levels and acute tubular
damage in diabetic HO-2 knockout mice whereas inhibition
of HO with tin mesoporphyrin exacerbated the increase
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Figure 5: Representative images and average number of CD68-positive and CD3-positive cells (C) to assess monocytes/macrophages and T-
cell infiltration, respectively, per 1 mm2 in the kidney cortex of control and diabetic SHR with or without CoPP treatment (n = 5, ∗indicates
significant difference from control SHR, #indicates significant difference from diabetic SHR).

in plasma creatinine and tubular damage in diabetic HO-
2 knockout mice [38]. Consistent with these observations,
the coexistence of hypertension and diabetes in diabetic
SHR exaggerated the degree of renal injury as manifested by
increased albumin and creatinine excretion and induction of
HO-1 with CoPP reduced these changes.

Although induction of diabetes with streptozotocin in
Sprague Dawley rats does not have extensive fibrosis as
detected by histological staining [28], Saleh et al. recently
demonstrated that glomerular TGF-β, an early marker

of fibrosis increased in streptozotocin-induced diabetic
rats [39]. Others have shown that that overexpression of
glomerular TGF-β1 in diabetes contributes to glomerular
basement membrane thickening and fibrosis [40], and
inhibition of TGF-β prevents kidney fibrosis in experimental
diabetes [41] suggesting an important role of TGF-β in
the progression of kidney fibrosis during diabetes. Previous
studies have demonstrated that induction of HO-1 with
hemin reduced the overexpression of osteopontin and TGF-
β, the hallmarks of tubulointerstitial injury in salt-sensitive
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Figure 6: Renal cortical MCP-1 (a) and sICAM-1 (b) levels in control and diabetic SHR with or without CoPP treatment (n = 8, ∗indicates
significant difference from control SHR, #indicates significant difference from diabetic SHR).

angiotensin II hypertension suggesting a role of HO-1 induc-
tion against renal fibrosis in hypertension [36]. In our study,
the coexistence of hypertension and diabetes in diabetic SHR
also exaggerated the degree of renal fibrosis as reflected by
increased renal TGF-β1 staining, collagen IV deposition, and
urinary collagen excretion compared to control SHR. The
incidence of renal fibrosis was significantly reduced with
CoPP treatment suggesting that HO-1 induction protects the
kidney from diabetic-induced renal damage and fibrosis.

Increased oxidative stress is involved in the development
of diabetic renal injury, and overexpression of HO-1 has
previously been shown to decrease oxidative stress in diabetic
animals [38, 42, 43]. Thus, the induction of HO-1 could
provide cellular protection against oxidative insult during
diabetes. In SHR, elevated oxidative stress and inflammatory
markers not only accentuate oxidative damage but also
impair the insulin signaling [35]. In streptozotocin-induced
diabetic SHR, upregulation of HO-1 with stannous chloride
was associated with a concomitant decrease in renal super-
oxide levels [24]. HO-1 upregulation by CoPP attenuated
diabetic injury in nonobese diabetic (NOD) mice, an animal
model for type 1 diabetes, and this was associated with
decreases in blood glucose and pancreatic superoxide [44].
HO-1 induction also reduces aortic superoxide generation
via decreased NADPH oxidase activation in apolipoprotein
E-deficient mice [45]. Consistent with previous reports,
our study showed that induction of HO-1 decreased renal
cortical NADPH oxidase activity and urinary TBARs and 8-
OHdG excretion levels in diabetic SHR. These data support
the conclusion that HO-1 induction inhibits renal NADPH
oxidase activity and reduces markers of oxidative stress,
which could be a mechanism to protect the kidney against
diabetic-induced renal injury.

Clinically, inflammatory processes contribute to the
progression of renal injury in patients with type 1 diabetes
[14, 46]. MCP-1 and ICAM-1 have been identified as key
players in monocyte/macrophage infiltration and leukocyte
adhesion in diabetic animal models [47, 48]. Many factors
contribute to the increase in ICAM-1 production during
diabetes including hyperglycemia, shear stress, advanced
glycation end products, and oxidative stress [46]. Blocking
ICAM-1 signaling abrogated the infiltration of macrophages
in kidneys from diabetic rats and decreased glomerular
hypertrophy and interstitial fibrosis in ICAM-1-deficient
mice [48, 49] indicating a potential role of ICAM-1 in
the progression of renal injury during diabetes. MCP-1 is
also a potent chemoattractant for monocytes/macrophages
and increased MCP-1 production was associated with
macrophage infiltration in the kidney of diabetic patients
[50]. MCP-1 is involved in the progression of kidney
injury in response to many factors such as high glu-
cose, oxidative stress, and interleukin-1 [27, 51]. MCP-1-
deficiency or blocking MCP-1 receptor in mice reduced
kidney macrophage accumulation and decreased renal injury
in diabetes [16, 52] underscoring the importance of this
pathway in the pathogenesis of diabetic renal injury. We
have previously shown that induction of HO-1 with CoPP
decreased MCP-1 excretion, whereas inhibition of HO with
stannous mesoporphyrin blocked the ability of CoPP to
decrease MCP-1 in SHR [25]. In our current study, induction
of HO-1 with CoPP decreased the activation of renal MCP-
1 and sICAM-1 together with decreased kidney macrophage,
but not T-cell infiltration in diabetic SHR. Similarly, isolated
glomeruli from diabetic SHR had a significant elevation
in NADPH oxidase activity and ERK phosphorylation,
and these effects were reduced with CoPP treatment and
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Figure 7: NADPH oxidase activity (a) and P-ERK/ERK ratio (b) in glomeruli isolated from control and diabetic SHR and incubated with or
without CoPP and/or SnMP for 2 hours at 37◦C (n = 4, Cont is an abbreviation for control SHR and D is an abbreviation for diabetic SHR,
∗indicates significant difference from control SHR, #indicates significant difference from diabetic SHR).

prevented by HO inhibition with SnMP. These data suggest
that HO-1 upregulation reduces renal inflammation in
diabetic SHR which could be an additional mechanism
protecting the kidneys from diabetic insults.

In summary, HO-1 induction improves renal damage
and decreases fibrosis in diabetic SHR. Based on data
in the literature and our own studies, we postulate that
hyperglycemia increases NADPH oxidase-induced oxidative
stress which enhances the activation of proinflammatory
cytokines stimulating immune cell infiltration and further
increasing oxidative stress thereby exacerbating renal injury
and fibrosis. The study highlights the potential therapeutic
benefit of HO-1 induction to protect the kidney from
diabetic renal injury via antioxidant and anti-inflammatory
properties.
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F. Navarro-González, “Pathogenic perspectives for the role of
inflammation in diabetic nephropathy,” Clinical Science, vol.
116, no. 6, pp. 479–492, 2009.

[20] G. H. Tesch and A. K.H. Lim, “Recent insights into diabetic
renal injury from the db/db mouse model of type 2 diabetic
nephropathy,” American Journal of Physiology, vol. 300, no. 2,
pp. F301–F310, 2011.

[21] N. G. Abraham, J. Cao, D. Sacerdoti, X. Li, and G. Drummond,
“Heme oxygenase: the key to renal function regulation,”
American Journal of Physiology, vol. 297, no. 5, pp. F1137–
F1152, 2009.

[22] K. A. Nath, “Heme oxygenase-1: a provenance for cytopro-
tective pathways in the kidney and other tissues,” Kidney
International, vol. 70, no. 3, pp. 432–443, 2006.

[23] A. Burgess, M. Li, L. Vanella et al., “Adipocyte heme
oxygenase-1 induction attenuates metabolic syndrome in both
male and female obese mice,” Hypertension, vol. 56, no. 6, pp.
1124–1130, 2010.

[24] J. Cao, G. Drummond, K. Inoue, K. Sodhi, X. Y. Li, and S.
Omura, “Upregulation of heme oxygenase-1 combined with
increased adiponectin lowers blood pressure in diabetic spon-
taneously hypertensive rats through a reduction in endothelial
cell dysfunction, apoptosis and oxidative stress,” International
Journal of Molecular Sciences, vol. 9, no. 12, pp. 2388–2406,
2008.

[25] A. A. Elmarakby, J. Faulkner, S. P. Posey, and J. C. Sullivan,
“Induction of hemeoxygenase-1 attenuates the hypertension
and renal inflammation in spontaneously hypertensive rats,”
Pharmacological Research, vol. 62, no. 5, pp. 400–407, 2010.

[26] A. Jadhav, E. Torlakovic, and J. F. Ndisang, “Hemin therapy
attenuates kidney injury in deoxycorticosterone acetate-salt
hypertensive rats,” American Journal of Physiology, vol. 296, no.
3, pp. F521–F534, 2009.

[27] M. A. Saleh, E. I. Boesen, J. S. Pollock, V. J. Savin, and
D. M. Pollock, “Endothelin receptor A-specific stimulation
of glomerular inflammation and injury in a streptozotocin-
induced rat model of diabetes,” Diabetologia, vol. 54, pp. 979–
988, 2011.

[28] J. M. Sasser, J. C. Sullivan, J. L. Hobbs et al., “Endothelin A
receptor blockade reduces diabetic renal injury via an anti-
inflammatory mechanism,” Journal of the American Society of
Nephrology, vol. 18, no. 1, pp. 143–154, 2007.

[29] M. S. Mozaffari, B. Baban, J. Y. Liu, W. Abebe, J. C. Sullivan,
and A. El-Marakby, “Mitochondrial complex I and NAD(P)H
oxidase are major sources of exacerbated oxidative stress
in pressure-overloaded ischemic-reperfused hearts,” Basic
Research in Cardiology, vol. 106, no. 2, pp. 287–297, 2011.

[30] J. C. Sullivan, K. Bhatia, T. Yamamoto, and A. A. Elmarakby,
“Angiotensin (1-7) receptor antagonism equalizes angiotensin
II-induced hypertension in male and female spontaneously
hypertensive rats,” Hypertension, vol. 56, no. 4, pp. 658–666,
2010.

[31] A. A. Elmarakby, J. Faulkner, M. Al-Shabrawey, M.-H. Wang,
K. R. Maddipati, and J. D. Imig, “Deletion of soluble
epoxide hydrolase gene improves renal endothelial function
and reduces renal inflammation and injury in streptozotocin-
induced type 1 diabetes,” American Journal of Physiology, vol.
301, no. 5, pp. R1307–R1317, 2011.

[32] K. Nakajima, Y. Tohyama, S. Kohsaka, and T. Kurihara,
“Protein kinase Cα requirement in the activation of p38
mitogen-activated protein kinase, which is linked to the
induction of tumor necrosis factor α in lipopolysaccharide-
stimulated microglia,” Neurochemistry International, vol. 44,
no. 4, pp. 205–214, 2004.

[33] C. H. Yeh, L. Sturgis, J. Haidacher et al., “Requirement for
p38 and p44/p42 mitogen-activated protein kinases in RAGE-
mediated nuclear factor-κB transcriptional activation and
cytokine secretion,” Diabetes, vol. 50, no. 6, pp. 1495–1504,
2001.



International Journal of Hypertension 11

[34] A. A. Elmarakby, A. S. Ibrahim, J. Faulkner, M. S. Mozaffari, G.
I. Liou, and R. Abdelsayed, “Tyrosine kinase inhibitor, genis-
tein, reduces renal inflammation and injury in streptozotocin-
induced diabetic mice,” Vascular Pharmacology, vol. 55, no. 5-
6, pp. 149–156, 2011.

[35] J. F. Ndisang, N. Lane, N. Syed, and A. Jadhav, “Up-regulating
the heme oxygenase system with hemin improves insulin
sensitivity and glucose metabolism in adult spontaneously
hypertensive rats,” Endocrinology, vol. 151, no. 2, pp. 549–560,
2010.

[36] A. Pradhan, M. Umezu, and M. Fukagawa, “Heme-oxygenase
upregulation ameliorates angiotensin II-induced tubuloin-
terstitial injury and salt-sensitive hypertension,” American
Journal of Nephrology, vol. 26, no. 6, pp. 552–561, 2007.

[37] T. Aizawa, N. Ishizaka, J. I. Taguchi et al., “Heme oxygenase-1
is upregulated in the kidney of angiotensin II-induced hyper-
tensive rats: possible role in renoprotection,” Hypertension,
vol. 35, no. 3, pp. 800–806, 2000.

[38] A. I. Goodman, P. N. Chander, R. Rezzani et al., “Heme
oxygenase-2 deficiency contributes to diabetes-mediated
increase in superoxide anion and renal dysfunction,” Journal
of the American Society of Nephrology, vol. 17, no. 4, pp. 1073–
1081, 2006.

[39] M. A. Saleh, J. S. Pollock, and D. M. Pollock, “Distinct actions
of endothelin A-selective versus combined endothelin A/B
receptor antagonists in early diabetic kidney disease,” Journal
of Pharmacology and Experimental Therapeutics, vol. 338, no.
1, pp. 263–270, 2011.

[40] S. Krag, J. R. Nyengaard, and L. Wogensen, “Combined effects
of moderately elevated blood glucose and locally produced
TGF-β1 on glomerular morphology and renal collagen pro-
duction,” Nephrology Dialysis Transplantation, vol. 22, no. 9,
pp. 2485–2496, 2007.

[41] S. Chen, M. C. Iglesias-de la Cruz, B. Jim, S. W. Hong, M.
Isono, and F. N. Ziyadeh, “Reversibility of established diabetic
glomerulopathy by anti-TGF-β antibodies in db/db mice,”
Biochemical and Biophysical Research Communications, vol.
300, no. 1, pp. 16–22, 2003.

[42] D. Koya, K. Hayashi, M. Kitada, A. Kashiwagi, R. Kikkawa,
and M. Haneda, “Effects of antioxidants in diabetes-induced
oxidative stress in the glomeruli of diabetic rats,” Journal of the
American Society of Nephrology, vol. 14, no. 3, pp. S250–S253,
2003.

[43] S. C. Lee, S. H. Han, J. J. Li et al., “Induction of heme
oxygenase-1 protects against podocyte apoptosis under dia-
betic conditions,” Kidney International, vol. 76, no. 8, pp. 838–
848, 2009.

[44] M. Li, S. Peterson, D. Husney et al., “Long-lasting expression
of HO-1 delays progression of type I diabetes in NOD mice,”
Cell Cycle, vol. 6, no. 5, pp. 567–571, 2007.

[45] S. R. Datla, G. J. Dusting, T. A. Mori, C. J. Taylor, K.
D. Croft, and F. Jiang, “Induction of heme oxygenase-1 in
vivo suppresses NADPH oxidase-derived oxidative stress,”
Hypertension, vol. 50, no. 4, pp. 636–642, 2007.

[46] E. Galkina and K. Ley, “Leukocyte recruitment and vascular
injury in diabetic nephropathy,” Journal of the American
Society of Nephrology, vol. 17, no. 2, pp. 368–377, 2006.

[47] J. L. Jin, H. L. Sun, K. K. Dong et al., “Colchicine atten-
uates inflammatory cell infiltration and extracellular matrix
accumulation in diabetic nephropathy,” American Journal of
Physiology, vol. 297, no. 1, pp. F200–F209, 2009.

[48] S. Okada, K. Shikata, M. Matsuda et al., “Intercellular
adhesion molecule-1-deficient mice are resistant against renal

injury after induction of diabetes,” Diabetes, vol. 52, no. 10, pp.
2586–2593, 2003.

[49] H. Sugimoto, K. Shikata, K. Hirata et al., “Increased expression
of intercellular adhesion molecule-1 (ICAM-1) in diabetic rat
glomeruli: glomerular hyperfiltration is a potential mecha-
nism of ICAM-1 upregulation,” Diabetes, vol. 46, no. 12, pp.
2075–2081, 1997.

[50] T. Wada, K. Furuichi, N. Sakai et al., “Up-regulation of mono-
cyte chemoattractant protein-1 in tubulointerstitial lesions of
human diabetic nephropathy,” Kidney International, vol. 58,
no. 4, pp. 1492–1499, 2000.

[51] C. G. Ihm, J. K. Park, S. P. Hong et al., “A high glucose con-
centration stimulates the expression of monocyte chemotactic
peptide 1 in human mesangial cells,” Nephron, vol. 79, no. 1,
pp. 33–37, 1998.

[52] H. Kanamori, T. Matsubara, A. Mima et al., “Inhibition
of MCP-1/CCR2 pathway ameliorates the development of
diabetic nephropathy,” Biochemical and Biophysical Research
Communications, vol. 360, no. 4, pp. 772–777, 2007.


	Introduction
	Materials and Methods
	Homogenization of the Renal Cortex for Protein Expression Using Western Blotting Analysis
	Renal NADPH Oxidase Activity
	Renal MCP-1, HO-1, and sICAM-1 Assays
	Renal Histopathology
	Isolation of Glomeruli
	Data Analyses

	Results
	Renal Injury
	NADPH Oxidase and Oxidative Stress
	Renal Inflammation
	In Vitro Inhibition of HO in Isolated Glomeruli

	Discussion
	Acknowledgments
	References

