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A B s a- R A c T The dynamics of the Limulus retina may be well described by the 
spatiotemporal transfer function, which measures the response of the eye to 
moving sinusoidal gratings. We consider a model for this system, which incorpo- 
rates an excitatory generator potential, and self- and lateral inhibitory processes. 
Procedures are described which allow estimation of parameters for the model 
consistent with the empirical transfer function data. Transfer functions calculated 
from the model show good agreement with laboratory measurements, and may be 
used to predict accurately the response of the eye to arbitrary moving stimuli. The 
model allows convenient interpretation of the transfer function measurements in 
terms of physiological processes which underly the response of the Limulus retina. 

I N T R O D U C T I O N  

We have shown in the p reced ing  p a p e r  (Brodie  et al., 1978) that  the response  o f  
the Limulus lateral eye to a rb i t ra ry  t ime-vary ing  pa t te rns  o f  i l lumination is well 
predic ted  by the me thods  o f  l inear systems analysis. In the course  o f  such 
analysis, the dynamic  p roper t i es  o f  the eye are incorpora ted  into a funct ion o f  
spatial and  t empora l  f requency,  the eye's spa t io tempora l  t ransfer  funct ion.  I t  
follows that  m u c h  o f  what  can be learned  o f  the eye's physiological p roper t i e s  
t h rough  examina t ion  o f  its responses  to light may  be deduced  f r o m  careful  
analysis o f  the m eas u red  t rans fe r  funct ion.  

T h e  me thods  o f  systems analysis are ind i f fe ren t  to the na ture  o f  the processes 
which under ly  the relat ions between stimulus and  response;  it is precisely this 
i n d e p e n d e n c e  of  mechan i sm which gives these methods  their  grea t  general i ty.  
In  o rde r  to draw physiological conclusions f r o m  systems-analytic data ,  it is 
necessary to in te rp re t  the data by compar i son  with more  direct  studies o f  the 
under ly ing  physiology.  For example ,  it is reasonable  to ascribe a fea tu re  o f  a 
measu red  t rans fe r  funct ion to a cer tain physiological process only a f te r  the 
existence o f  the process has been  established t h rough  direct  investigation.  In 
the context  o f  a mode l  suggested by mechanist ic  studies, the systems-analytic 
data  can const i tute significant evidence for  the evaluat ion o f  physiological 
hypotheses .  We have carr ied out  such an  investigation on the lateral eye o f  
Limulus, a system whose physiology has been  studied by bo th  direct  and  indirect  
means  for  m a n y  years (for reviews, see G r a h a m  and Ratliff, 1974; Ratliff, 1974). 
In  the presen t  pape r ,  we present  the results o f  this s tudy in te rms  o f  a genera l  
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model  for the Limulus eye which has evolved f rom many separate investigations 
in our  laboratory and in others. 

M A T E R I A L S  A N D  M E T H O D S  

The analysis and experimental techniques used to measure the spatiotemporal transfer 
function ~(~:, co) of the Limulus eye are described in detail in the preceding paper (Brodie 
et al., 1978). Data were obtained from an in situ preparation of the Limulus lateral eye 
using cotton wick-silver/silver chloride electrodes to record activity in single optic nerve 
fibers (Hartline and Graham, 1932). The temperature of the animals was controlled by 
means of a constant-temperature circulator coupled to the animal via a modified ice bag 
(Brodie, 1978). Eye temperature was held at 22 +- 1/4~ 

In essence, the value of the transfer function at a spatiotemporal frequency pair (~:, co) 
is determined by the response of the eye to a stimulus consisting of a sinusoidal grating 
of spatial frequency ~, modulated in counterphase fashion according to a sinusoidal 
temporal signal of temporal frequency ~0. By virtue of the linearity of the system, the 
temporal sinusoid may be replaced by a signal consisting of a sum of several sinusoids, 
each at a different temporal frequency (Victor et al., 1977), This sum-of-sinusoids 
temporal signal is used in turn to modulate sinusoidal gratings of each of several spatial 
frequencies. The experimental protocol consisted of a periodic rotation through "analy- 
sis" episodes at each of eight spatial frequencies. Each episode lasted 150 s (60 s of 
illumination followed by 90 s for dark-adaptation); thus, each stimulus cycle of eight 
episodes lasted 20 min. The sequence was repeated until the preparation failed, typically 
after 6 or more h. (The moving-pattern "synthesis" episodes described in the previous 
paper were omitted from the protocol to maximize the number of analysis measurements 
obtainable from the preparation. This increased the signal-to-noise ratio of the transfer 
function measurements.) For one experiment, the analysis pattern was rotated 90 ~ from 
the usual horizontal orientation to measure the distribution of the lateral-inhibitory 
coupling constants in the vertical direction. 

Calculations were performed on a PDP 11/45 digital computer (Digital Equipment 
Corp., Maynard, Mass.) and displayed on a CalComp 565 incremental plotter (California 
Computer Products, Inc., Anaheim, Calif.). Calculations based on the measured transfer 
functions were implemented with the cubic spline interpolations described in the 
preceding paper. Model-based calculations were implemented with a library of FOR- 
TRAN complex-arithmetic subroutines. 

T H E O R E T I C A L  B A C K G R O U N D  

In  this section, we summarize a model for theLimulus retina, which will serve to 
provide a context  for the analysis of  our  t ransfer  function measurements .  O u r  
objective is to obtain an explicit expression, in terms of  model  parameters ,  for 
the Limulus spatiotemporal  transfer  function,  in a form suitable for direct 
compar ison with our  experimental  measurements .  

The  basic organizat ion o f  the Limulus retina may be summarized by the block 
diagram shown in Fig. 1 (Dodge, 1969). Light incident on the retina causes the 
product ion  o f  an intracellular voltage change (the genera tor  potential). Changes  
in the intracellular potential are also induced by the processes o f  self- and lateral 
inhibition. These  voltages sum to produce  a net intracellular potential, which 
serves as the input  to the impulse-generat ing mechanism. The  impulse genera-  
tor produces  the train o f  action potentials which are conveyed along the optic 
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nerve as the ou tpu t  of  the retina. These nerve impulses themselves serve as 
input  to the self- and lateral-inhibitory processes, which feed back into the 
retina. The  steady-state response of  this system is summarized by the Hartline- 
Ratliff  equations (Hartline and Ratliff, 1957, 1958; Stevens, 1964; Knight  et al., 
1970): 

rm = e m  - K s r m  - ~, kra.__." ( r .  - tin.--.)+, (1) 
n~m 

where rra is the response of  the m'th ommat id ium,  em is the "excitation" o f  the 
m'th ommat id ium (a function of  the illumination incident on it), Ks is the self- 
inhibitory coupling constant, km.-- ,  is the coupling constant for the inhibitory 
effect of  the n ' th  ommat id ium on the m'th ommat id ium,  tm.--n is the threshold 
for this inhibitory effect, and the notation ( )+ indicates the piecewise-linear 
operator  such that (x)+ = x, x ->0; (x)+ = 0, x < 0. We ignore the nonlinearity 
introduced by the dependence of  inhibitory coupling on excitation (Lange, 

light voltage t i t I I ]~ . ~ ' ~ j  ~ +] JL oaera pexus 
, ~  --J voitoge ~ impulses | to optic 
I ~ - - t T ' ~ ' ~  J j 1 ~ I nerve ~ 

J ~- voltage 

I voltage r /+ 

L + k . - - I I  [ J J from lateral plexus 

FIGURE 1. Block diagram of the L i m u l u s  retina. G denotes transduction from 
light to generator potential, f denotes the impulse generating mechanism, T s  

denotes the self-inhibitory transduction, TL denotes the lateral inhibitory transduc- 
tions. ~ denotes summing points, where effects combine linearly, with signs as 
indicated. 

1965; Barlow and Lange,  1974); in our  situation, this effect does not appear  to 
be significant. 

The  self-inhibitory feedback loop is not accessible to separate analysis in our  
input-output  experiments.  It is thus convenient to combine the impulse gener- 
ator together with the self-inhibition into a single transduction,  which we will 
refer  to as the "encoder"  (Fig. 2), With this convention, the Hartl ine-Ratliff  
equations take on an apparently simpler form: 

rm = e m  - y kin*--n" (rm - tr.,--n)+, (2) 
nC=m 

where era = Era --  K s r m .  

In the t ime-varying situation, the same block diagram applies, but the various 
quantities in the equations must be re interpreted.  First, we restrict at tention to 
stimuli which cause all the ommatidia  to fire impulses at a rate which fluctuates 
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about some mean operat ing level. As a rule, we assume that this operat ing level 
be chosen so that all ommatidia  fire at a rate above their inhibitory thresholds. 
In such a regime, it is convenient to redefine the input and output  variables to 
indicate the deviation from the mean value (of light intensity on input,  of  
impulse rate on output) ,  rather than the absolute numerical magnitude,  of  the 
stimulus or response. With these conventions, we may completely ignore the 
threshold terms in our  equations (Ratliff et al., 1974). 

We must also redefine the coupling coefficients so as to incorporate the 
dynamic aspects of  the neural interactions which they represent.  This is most 
simply accomplished by considering the response to signals which vary sinusoi- 
dally in time (Knight et al., 1970; Knight,  1973 a). By virtue of  the linearity of  
the system, each portion of  the visual transduction (generator potential,  
encoder,  lateral inhibition) will respond to such an input with a sinusoidal 
output ,  according to its own transfer function. We represent the sinusoidal 
signals as (the real parts of) complex exponentials,  and treat each stage of  the 

voltoge 

+ } ~ " ~  _ voltage ~ - ~ j  impulses 
i-- voltoqe 

(o) 

FIGURE 2. (a) Incorporation of the self-inhibitory feedback loop and impulse- 
generating mechanism into a single encoder transduction, E. (b) Simplified block- 
diagram o f  Limulus retina. 

visual transduction in turn.  First, we consider the excitatory component  of  the 
generator  potential: 

•m(t) = G ( m ) Im e  ~~ (3) 

where G(c0) is the light-to-generator-potential t ransfer  function,  and l ine ~~ is the 
illumination incident on the m'th ommat id ium.  The  net intracellular potential 
V,. is the sum of  this excitation and the total lateral inhibition: 

V,,( t )  = era(t) - TL(oa)" ~ km,--,r,(t). (4) 
n-~m 

This equation has been written so as to incorporate the experimental  observation 
(Ratliff et al., 1974) that all the inhibiting ommatidia  show the same temporal  
t ransfer  function for lateral inhibition, which we denote TL(0J). (In Eq. 4, V, , ( t )  
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and rn(t) are functions of time proportional to e~t . )  Finally, the impulse-train 
output is related to the net potential Vm according to the formula: 

rm(t) = E(co)Vrn(t), (5) 

whereE(r is the transfer function of the encoder, including impulse generation 
and self-inhibition. Because, in our experiments, the intracellular potential Vm 
is not accessible to direct measurement, it is convenient to use the steady-state 
impulse rate of the m'th ommatidium as a measure of this potential. With this 
choice of units for Vm, we may treat the encoder transfer function E(co) as a 
dimensionless quantity. Eqs. 3-5 can be combined to obtain a dynamic equation 
analogous to the static Eqs. 1 and 2: 

rm(t) = E(c0)[G(w)'Ime ~~ - TL(OJ) " ~s krn-nrn(t) ]. (6) 
n ~ m  

The relation (Eq. 6) is an explicit inhomogeneous set of simultaneous linear 
equations which may be solved for the rm(t) in terms of  the stimulus pattern Im.  
For our purposes, however, it is more convenient to work instead with a 
continuous version of this system (Kirschfeld and Reichardt, 1964). To this end, 
we restrict our attention to stimuli which vary in space only along the x-axis (and 
thus, at any time t, are constant along vertical lines), and assume that each 
ommatidium in a given vertical column responds in the same way to such a 
stimulus. (This last assumption is made only for reasons of  computational 
convenience; a more detailed treatment is discussed in the Appendix.) We may 
now replace the discrete index m with the continuous variable x, the horizontal 
coordinate along the eye. With this notation, Eq. 6 may be replaced by a 
corresponding integral equation: 

= E(oJ)[G(oJ)l(x)e ~~ - TL(O~)fk(x - u)r(u,  t )du],  (7) r(x~ t) 

where we have incorporated the experimental observation that, at least away 
from the edges of the eye, the inhibitory coupling between two (vertical strips 
of) ommatidia depends, to a good approximation, only on the distance between 
them (Barlow, 1969). In other words, the inhibitory kernel takes the translation- 
invariant form k(x, u)  = k(x - u ) .  

To obtain the spatiotemporal transfer function from Eq. 7, we take as input a 
sinusoidal g r a t i n g I ( x )  = e ~ .  The response to such a sinusoidal input must be a 
sinusoidal signal of the form r(x, 0 = ~ ( s  r os)e l~x+'ot), where ~(s r oJ) is, by 
definition, the spatiotemporal transfer function of  the system. We have 

o~(~, os)e ~x+c~ = E(co)[G(m)ei(~ ~176 

- ~ L ( o ~ ) f k ( x  - u)  ~ ( ~ ,  co)e~(eu'~~ 

= e"eX'~t)E(oJ)[G(oJ) - TL(OJ)~(~, 

= e"eX+,OOE(os)[G(oJ) - TL(O).~(se, ~)k(~e)], 

(8) 



172 T H E  J O U R N A L  OF G E N E R A L  P H Y S I O L O G Y  " V O L U M E  72 �9 1978 

where/~(~:) = fk(u)e-~Udu is the Fourier transform of the inhibitory kernel. Eq. 
8 may be solved readily for ~(~:, to), yielding the expression: 

E(to)G(to) 
~(r to) = 1 + E(to)TL(to)]c(r (9) 

It is necessary to make one correction to the idealized transfer function of Eq. 
9, to account for the limited resolving power of  the Limutus optics. The 
derivation above assumes that the eye, in effect, is a perfect continuum of visual 
receptors, each excited only by illumination at exactly one x-coordinate. The 
effect of our imperfect stimulus optics and the finite size of the ommatidial 
light-collectors may be accounted for by convolving the stimulus with an 
effective "point spread function," P(x), and using this degraded stimulus as the 
input I(x) in Eq. 7. The equivalent correction in the frequency domain is the 
multiplication of the spatiotemporal transfer function by the Fourier transform 
of the point-spread function, which we denote by/5(~:).1 It is also convenient to 
include a real parameter M, to adjust the absolute magnitude of the complete 
transfer function. This constant subsumes several proportionality constants 
which are implicit in the component transfer functions, but which cannot be 
separately determined from our measurements of the response of the whole 
eye. We thus obtain the final form: 

M . P( ~)E ( to)G( to) 
~r(~, to) = 1 + E(to)TL(CO)[c(r (10) 

The model of the Limulus visual system summarized by Eq. 10 is based, in 
essence, on the notion of recurrent mutual lateral inhibitory interaction first 
described in the original Hartline-Ratliff equations. Accordingly, we will refer 
to Eq. 10 as the Hartline-Ratliff model for the Limulus spatiotemporal transfer 
function. 

We now consider in turn the various transductions P, E, G, TL, and/~, which 
enter into the Hartline-Ratliff model transfer function (Eq. 10). For each 
transduction, we obtain an explicit expression for the corresponding transfer 
function, in terms of  parameters describing more basic aspects of the underlying 
physiology. Our ultimate goal in this paper is to determine values for these 
parameters, and thus further refine our physiological description of the Limulus 
eye. 

We begin with G(to), the transfer function from light to generator potential. 
This transduction may be studied directly in excised preparations by impaling 
the Limulus eccentric cell with a microelectrode and measuring the changes in 
intracellular potential induced by flickering light (Purple, 1964; Pinter, 1966; 
Dodge et al., 1968; Knight et al., 1970). Data obtained in this way have been well 
accounted for by the "adapting-bump model" (Rushton, 1961; Dodge et al., 
1968; Knight, 1973 c; Wong, 1977). 2 This model is motivated by the observation 
that, at low light levels, the generator potential is clearly resolved into a 
sequence of small discrete depolarizations ("bumps") which increase in fre- 

1 In the field of optics, the function P(~:) is known as the "spatial modulation transfer function ," 
z Wong, F., B. W. Knight, and F. A. Dodge. 1978. Dispersion of latencies and the adapting-bump 
model in Limulus photoreceptors. Manuscript in preparation. 
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quency, but which decrease in size ("adapt") as the incident illumination 
increases. On the basis of  a few statistical and physiological assumptions, these 
considerations lead to an explicit form for the generator potential transfer 
function: 

( 
G(w) = e - "~  + i t ~ ]  \ 1  + i t ~ ]  1 + ta " \1  +-~aoJ] 

(11) 

The factor e -~t~ is a pure phase-lag introduced by the finite delay ("latency") 
between the absorption of  incident photons and the occurrence of the bumps 
they produce; tz is the mean delay. The next factor 1/(1 + itdco) TM describes the 
effect of  stochastic variation of  this latency interval about its mean. Here, the 
distribution of  latencies is approximated by a. gamma-density with parameters ta 
and nd. This corresponds, in the frequency domain, to the factor indicated 
(Wong, 1977). The third factor, 1/(1 + itbCO) '~, expresses the dependence of  the 
transfer function on the bump shape, which is modelled as a gamma-density 
with parameters tb and nb. 

The last two factors in Eq. 11 describe the adaptation of  the generator 
potential. As may be seen from direct measurements of  the light-to-generator 
potential transduction (for example, Dodge et. al., 1968), this adaptation occurs 
on two different time scales. At very low frequencies, the dynamics show a 
frequency response proportional to (/co) p (Biederman-Thorson and Thorson,  
1971; Thorson and Biederman-Thorson, 1974). At higher frequencies, there is 
a stronger dependence on frequency, which we have modelled, after the 
"minimal model" of  Knight (1973 c), as a high-pass filter (1 - R/[1 + itaco]). 
Here,  ta is a time constant which specifies the frequency region over which this 
adaptation effect occurs, and R describes the magnitude of  the adaptation effect 
in this frequency region. We have adopted the form [itaoo/(1 + itaoJ)] p to describe 
the very low frequency adaptation effect in such a way as to make a gradual 
transition to unity, centered around the characteristic frequency co -- 1/ta. 

We consider next E(co), the transfer function for the encoder, which includes 
the impulse-generating mechanism and a self-inhibitory feedback loop. The 
precise form of this function depends on the choice made for the variable which 
describes the output  of  the encoder. For reasons of  simplicity and compatibility 
with experimental data, we shall use the "mean impulse density" function, r(t), 
as described in the previous article (Brodie et al., 1978). Such encoders have 
been described in great detail (Knight et al, 1970; Barbi et al., 1975; Fohlmeister 
et al., 1977 a), but for our purposes, a simplified model will suffice. First, we 
assume that the impulse-generating mechanism is adequately described as a 
simple "integrate-and-fire" device, which produces a nerve impulse whenever 
the running integral of  the input voltage reaches a criterion value; the integral 
is reset to zero after each impulse is fired (Knight, 1973 b). An important 
property of  such an encoder is that, if mean impulse density is taken as the 
output  variable, then the encoder produces an output which is a perfect replica 
of  the input (Knight, 1972). In other words, the transfer function of  the impulse 
generator is the constant 1. The transfer function Ts(co) for the self-inhibitory 
transduction cannot be measured directly, but it may be deduced from measure- 
ments of  the self-inhibitory impulse response seen in the intracellular potential 
after the occurrence of a neural impulse (Purple, 1964; Stevens, 1964; Dodge, 
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1969). This inhibitory transient may be modeled accurately as a single exponen-  
tial decay of  the form ~-tl", where K describes the strength of  the self-inhibitory 
effect, and r is the time constant for the decay. This impulse response 
corresponds to the transfer function 

Note that in Eq. 12 we have incorporated the self-inhibitory coefficient K into 
the function Te. 

In a neural  encoder  with self-inhibition, the inhibitory transients occur as 
discrete events, phased to the occurrence of  impulses in the encoder  output .  
This discrete aspect of  the inhibitory process is reflected in subtle features of  
the corresponding transfer function for the encoder  (Knight et al., 1970; 
Shapley, 1971). As these features occur mainly at frequencies greater than  the 
mean impulse rate, we may safely ignore them in our  analysis. With this 
simplification, we may regard the encoder  as an ordinary (continuous variable) 
linear system with feedback (Fig. 2 a). We thus immediately obtain the relation 

E(co) = 1 - E(oJ)" Ts(oa). (13) 

K 

1 1 I + K  
E(co) = - - 1 (14) 

1 + Ts(oJ) K r 
1 + - -  1 + i  oJ 

1 + iroJ 1 + K 

This result is strictly equivalent to the approximation of  Shapley (1971), who 
obtained it as a limiting case of  a more elaborate t reatment,  and is closely related 
to the model of  Stevens (1964). 

We next turn  our  attention to TL(tn),  the transfer  function for the lateral 
inhibitory transduction from impulse rate (in the population of  inhibiting 
ommatidia) to inhibitory post-synaptic potential (in the test ommatidium).  This 
transfer  function,  like Ts ,  cannot be measured directly, but it can be de termined 
by two indirect methods,  both of  which rely on antidromic stimulation of  
neighboring ommatidia  as a source of  inhibition on the test ommat id ium 
(Knight et al, 1970). Transfer  functions can be measured for the voltage-to- 
impulse rate transduction in the test ommat id ium by passing current  th rough 
an intracellular microelectrode, and then for the transduction from the (anti- 
dromic) impulse rate in the inhibiting units to the reduction of  impulse rate in 
the test ommat id ium.  The  quotient of  these two transfer  functions yields the 
transfer  function TL(r Alternatively, one can hyperpolarize the cell to prevent 
it f rom firing impulses, and measure the responses of  the intracellular potential 
to antidromic stimulation of  neighboring ommatidia,  either to brief bursts or to 
impulse trains with sinusoidally modulated impulse rate. In such hyperpolarized 
cells, the impulse response to a short burst of  antidromic impulses in the 
neighboring units is well predicted by the inverse Fourier  t ransform of  the 
transfer function describing the response of  the same cell to inhibition f rom 

K 

Ts(o) = 1 +---~ro" (12) 

Solving for E(oJ) yields 



BRODIE ET AL. Spatiotemporal Transfer Function of the Limulus Eye 175 

sinusoidally modulated antidromic stimulation of  neighboring cells. There is 
satisfactory agreement between the transfer function measured indirectly as a 
quotient (with the cell operating at its normal resting potential) and the direct 
transfer function measurement on the same cell, hyperpolarized. 

The lateral inhibitory impulse response typically takes a biphasic form, with a 
small excitatory effect preceding the main inhibitory hyperpolarization (Knight 
et al., 1970). We may model this wave form as a combination of four exponential 
decays. Such a model yields the following expression for the lateral inhibitory 
transduction, Tz(0J): 

1 1 1  1 C ] 1 (15) 
TL(OJ) = 1--~C" 1 + iz, oJ" 1 + ir2co 1 + irs~ " 1 + i"g4o9" 

Here, T1, ~'2, T3, and ~'4 are time constants chosen to fit the inhibitory impulse 
response, and C describes the relative strength of the brief excitatory feature of 
the impulse response. The transfer function here is normalized to unity at co = 
0. (The strength of lateral inhibition will be reflected in the inhibitory kernel: 
see below.) 

The remaining transfer functions /~(~:) and P(~:) depend only on spatial 
frequency. The two-dimensional inhibitory kernel k(x, y) has been studied 
extensively, generally by making measurements of inhibitory coupling coeffi- 
cients in the steady state as a function of distance along the retina (Barlow, 1967, 
1969; Johnston and Wachtel, 1976). The data may be summarized as a difference 
of two-dimensional Gaussian distributions: 

k(x, ,) e-(  x~ + ~)/a'  D.e-(X~ + '~)/b ~. 0c -- (16) 

Here, the main inhibitory feature has a Gaussian distribution whose width is 
determined by the parameter a, with iso-inhibitory contours whose shape is 
governed by the parameter ~q. Barlow's data suggested a small "crater" in the 
inhibitory kernel, which is similarly described by the second term in Eq. 16. In 
our one-dimensional situation, we may replace this formula with a simpler 
form: 

k(x) = N. [Ae-Z' la '-  Be-Z"~ (17) 

where N is a normalization constant, and the coefficients A and B describe the 
relative strength of  the crater (see Appendix). We may fix the constant N by 
stipulating that 

f :k(x)dx=_ K. (18) 

In the case where the stimulus illuminates the entire vertical extent of the eye, K 
is equal to the total inhibition exerted by the entire eye on any one ommatidium. 
If  the stimulus does not cover the entire eye, K is the total inhibitory strength of  
the portion of the eye which is illuminated. From Eqs. 17 and 18 we have 

K = N. (aax /~  - BbX/~r), (19) 
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K 
k(x) = (Aa - Bb)v/-~ (Ae-~ala~ - Be-~al~)" (20) 

Taking the Fourier transform of Eq. 20 yields the effective one-dimensional 
transfer function/~(sr): 

]~(~) = fk(x)e_~Xd x = K (aae -~'a'/4 - Bbe-~'~/*). (21) 
(Aa - Bb) 

We note that/~(0) = K, as required by Eq. 18. 
The point-spread function P(x) describes the distribution on the retina of the 

image of a "point" stimulus (here, a vertical line). For convenience, we model 
this function as a normalized Gaussian distribution�9 This model yields the 
transfer function 

/ i  

P(~) = J~ P(x)e-~Xdx = e-e*,al*, (22) 

where s is a parameter describing the width of the point spread function. 
Specifically, s is the distance from the center of the image of a point light source 
to the position where the intensity of the image drops to 1/e of its intensity at the 
center. 

A s u m m a r y  o f  the equa t i ons  of  the H a r t l i n e - R a t l i f f  m o d e l  a p p e a r s  in  T a b l e  I.  

T h i s  de sc r i p t i on  of  the  d y n a m i c s  of  the  Limuhts la tera l  eye con t a in s  some  20 

TABLE I 

SUMMARY OF EQUATIONS FOR TH E HARTLINE-RATLIFF MODEL FOR 
THE Limulus LATERAL EYE 

Descr ipt ion Equat ion  no.  Equat ion  

Spatiotemporal trans- 10 
fer function 

Generator potential 11 

Encoder 14 

Lateral inhibition 15 

Two-dimensional in- 16 
hibitory kernel 

One-dimensional in- 20 
hibitory kernel 

Fourier transform of 
21 inhibitory kernel 

Point-spread 22 
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nominal  pa rame te r s .  These  are cons t ra ined ,  not  only to model  the overall  
spa t io tempora l  t r ans fe r  funct ion,  but  also to model  each c o m p o n e n t  t ransduc-  
tion so as to agree ,  within reasonable  limits, with direct  m e a s u r e m e n t s  o f  the 
c o r r e s p o n d i n g  physiological process.  For  compar i son ,  it may  be noted that  the 
empir ical  spa t io tempora l  t ransfer  functions,  with which the model  calculations 
are  to be c o m p a r e d ,  are obta ined  by interpolat ion f r o m  128 i n d e p e n d e n t  
m e a s u r e m e n t s  (ampl i tude  and  phase  at 64 spa t io tempora l  f requency  pairs). 

R E S U L T S  

T h e  results o f  a typical analysis e x p e r i m e n t  are shown in Fig. 3. We note the 
following features:  the t ransfer  funct ion shows a m a r k e d  a t tenuat ion  o f  the 
response  to f l ickering light at very high spatial f requency.  Careful  inspect ion o f  
the data  indicates that  this high f requency  cu to f f  affects the response  equally at 
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FIGURE 3. Spatiotemporal transfer function for the Limulus lateral eye. Bode 
plots (log amplitude vs. log frequency; phase vs. log frequency) of measured 
response at seven spatial frequencies (0.1, 1, 2, 4, 8, 16, and 32 cycles/eye width). 
(A) The amplitude curves are superimposed on one set of axes for comparison (at 
the peak, near 6 Hz, the amplitudes decrease monotonically with increasing spatial 
frequency). Data points indicated (O) are direct measurements; the remainder of 
the curves are interpolated and extrapolated as described in the previous paper 
(Brodie et al., 1978). Small undulations of the amplitude curves at low frequency 
are an artifact of the extrapolation procedure. (B) Phase curves are shown on 
separate axes, modulo 2~'; they are extrapolated at the same frequencies as the 
amplitudes, above. Spatial frequencies increase from bottom to top. 
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all temporal frequencies; the amplitude is diminished with little change in 
phase. The behavior at low spatial frequency is more complex, and depends on 
temporal frequency. At low temporal frequencies, the response to flicker is 
diminished at low spatial frequency. Conversely, at intermediate temporal 
frequency, the response to flicker at low spatial frequency is enhanced, as 
compared to the response at intermediate spatial frequency. At high temporal 
frequency, there is little dependence on spatial frequency in the low-to-moder- 
ate range. The net result is an effective narrowing at low spatial frequency of 
the "tuning" of the transfer function to a band of intermediate temporal 
frequency (Ratliff et al., 1967; Ratliff et al., 1969). The general features of the 
dependence on temporal frequency are a sharp cutoff at high frequency and a 
broader attenuation of  the response to low frequency flicker. Under  our 
conditions, the peak response is at approximately 6 Hz. This is somewhat higher 
than has been reported previously (Knight et al,, 1970), and reflects the elevated 
temperature of our preparation (Brodie, 1978). 

These features may be interpreted as follows: The cutoff at high spatial 
frequency, which affects all temporal frequencies equally, is presumably due to 
the degradation of the sinusoidal grating stimulus by the point-spread charac- 
teristic of the system optics. At such high spatial frequencies, lateral inhibition is 
canceled out (see below); thus, the only effect of the optical system is to average 
the sine-wave grating stimulus so as to reduce its effective contrast at the test 
ommatidium, reducing the response amplitude equally at all temporal frequen- 
cies. The tuning of the frequency response at lower spatial frequencies is 
presumed to be a consequence of  lateral inhibition. The nature of  the transition 
from attenuation (at low temporal frequencies) to enhancement (at intermediate 
temporal frequencies) to little effect (at high temporal frequencies) is a function 
of the temporal properties of the lateral inhibitory transduction, TL. The lateral 
inhibition increasingly lags in phase with increasing temporal frequency, until, 
at ~6 Hz, the phase lags by one-half cycle, and the inhibition appears as 
excitation (Ratliff et al., 1970). The general high temporal frequency cutoff and 
low frequency attenuation reflect the temporal structure of the generator 
potential transduction G. The low frequency structure is the result of the 
"adaptation" process, whereas the high frequency structure depends mainly on 
the "bump shape." 

D A T A  A N A L Y S I S  A N D  P A R A M E T E R  D E T E R M I N A T I O N  

Point-Spread 

We now describe a quantitative treatment of some of these features of  the 
spatiotemporal transfer function, in terms of the parameters of the Hartline- 
Ratliff model. We begin with the attenuation at high spatial frequency. In this 
regime, the stimulus grating oscillates several times over distances in which the 
inhibitory kernel presumably varies only slightly. As a result of the linearity of 
the system, this results in effective cancellation of  the time-varying component  
of  the inhibitory action of the retina on the test ommatidium. We therefore may 
ascribe any dependence of the transfer function on spatial frequency in this 
regime to the effect of  the point-spread transfer function, /5(~:). Since this 
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function enters the full spatiotemporal transfer function only as a real multipli- 
cative factor, we expect this effect to operate equally at all temporal frequencies, 
and to produce no phase shift. Hence, for ( large, Eq. 10 reduces to the simpler 
approximate form 

~(~, to) = M.P(().E(to)G(to), (~: large). (23) 

Thus (at high spatial frequencies) for fixed temporal frequency, the transfer 
function is directly proportional to the point-spread function/5(sr Accordingly, 
we may determine the point-spread parameter s in Eq. 22 by plotting, for any 
fixed temporal frequency tn, the quantity log ]~(s r to)l vs. ~ ;  the slope of this 
line is proportional to s 2. The internal consistency of this determination may be 
assessed by comparing the s-parameter values obtained from data at several 
different temporal frequencies from the same preparation. Such an analysis of 
the high spatial frequency cutoff is shown in Fig. 4. For the preparation of  Fig. 
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FICtJRE 4. Estimation of" the point-spread parameter s. l~'or each tlxed temporal 
frequency t0, log I.~(s r r I is plotted vs. s r the square of the spatial frequency. At 
high spatial frequency, slope of this locus is s*/4 (see text). Data from the 
preparation of Fig. 3. Temporal frequencies were 0.5 Hz (O), 1.03 Hz (O), 2.1 Hz 
(A), and 4.23 Hz (&). Values for the parameters were 0.0085, 0.0085, 0.0085, and 
0.0078 eye widths, respectively (mean 0.0083 eye widths). 

3, we obtain the point-spread parameter value s = 0.0083 eye widths. In general, 
the oberved, point-spread parameter values are comparable to the radius of  a 
Limulus ommatidium (0.0125 eye widths), and are thus in good agreement with 
the estimate of  the effective optical point-spread obtained in the preceding 
article by direct inspection of  the crystalline cones (Brodie et al., 1978). 

Lateral Inhibitory Kernel 

According to our model, the remainder of the dependence of the spatiotem- 
poral transfer function on spatial frequency is due to the structure of the 
inhibitory kernel k(x), as reflected in its Fourier transform /~(se). In order to 
determine this function from the experimental data, we have found it expedient 
to work with plots of  the locus, on the complex plane, of 1/~(~:, to) as a function 
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of  spatial f requency (~:), with temporal  f requency (o) fixed. From Eq. 10 we 
have 

1 [ 1 1 ]~(~) TL(oJ)] 1 
,~(~, co) = /5-(~)"E(oo)G(oJ) + ~5(~) G(oJ)J M" (24) 

This function has an extremely convenient  form: it is a sum of  two terms, each 
of  which is a (complex) function of  temporal  f requency multiplied by a real 
function of  spatial frequency.  For fixed co, we may regard  the complex numbers  
1/E(oJ)G((o) and TL(ra)/G(oo) as fixed vectors in the complex plane. As ~: varies, 
this reciprocal locus traces out  a weighted sum of  these two vectors (Fig. 5). 
Interpretat ion of  these loci is considerably simplified by the fact that the spatial 
t ransfer  functions/5(~) and ]~(~) vary strongly with ~ in di f ferent  regions of  
spatial f requency.  Thus ,  for low and intermediate values of  ~, where l~ is o f  

FIGURE 5. Reciprocal locus. The locus of the reciprocal of the measured spati- 
otemporal transfer function is plotted on the complex plane as a function of spatial 
frequency, with temporal frequency held fixed. Data from Fig. 3, with temporal 
frequency held at 1.03 Hz. Points at which measurements were made are indicated 
(�9 The arrows indicate the direction of increasing spatial frequency along the 
locus. The loop at the low frequency end of the locus is an artifact of the spline 
interpolation procedure used to generate the curve. 

interest, the function/5(~:) is nearly constant; conversely, at high spatial fre- 
quency,  where /5  shows structure of  interest,/~ has fallen essentially to zero. 
Thus ,  the reciprocal loci have a basic V-shaped form,  first moving toward the 
origin along a vector parallel to TL(o~)/G(oJ), then moving away f rom the origin 
along_ the vector lIE (to).G (r This  separation of  the scales of  the functions/5(~:) 
and k(r corresponds  to the fact that the point-spread function P(x) is consider- 
ably nar rower  than the narrowest  feature of  the inhibitory kernel k(x). 

We may fur ther  isolate the role of  the inhibitory kernel by multiplying Eq. 24 
by the point-spread transfer function/5(~:): 

/5(s r [ 1 ; , . ,  T/.(oJ)-I 1 
"~--~,, ~) - C E(oo)C(o~) + ~(r "G---~J "M" (25) 
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The  quantity on the left of  this equation may be thought  of  as the reciprocal of  
the spatiotemporal t ransfer  function,  "corrected" for the effect of  the point- 
spread function.  I f  we now hold oJ fixed and plot on the complex plane the 
locus o f  Eq. 25 as a function of  ~:, we obtain a corrected reciprocal locus, which 
traverses a line parallel to the vector TL(OJ)/G(o~), according to the function/~(() 
(Fig. 6). We may fix a reference point on this locus by considering the limit of  
high spatial frequency.  In this limit,/~(~:) approaches zero, as described above, 
and we have the asymptotic result: 

P(~:) 1 1 
~(~,  o~) - E(o~)G(oJ) M'  (~ large). (26) 

Equivalently, we may fix this reference point as the intersection of  the high 
frequency asymptote o f  the reciprocal locus (Eq. 24) with the low frequency arm 

FIGURE 6. Corrected reciprocal locus. The locus of the product of the reciprocal 
of the measured transfer function (data of Fig. 3, 1.03 Hz) and the estimated point- 
spread transfer function (Eq. 22, s-parameter determined from data of Fig. 4) is 
plotted as a function of spatial frequency, with temporal frequency held fixed. 
Points at which measurements were made are indicated (�9 the point of reference 
for the measurement of the inhibitory kernel transform ~(~:) is indicated by the 
large arrowhead. Arrow indicates direction of increasing spatial frequency. 

of  the locus. This point presumably describes the phase of  the system's response 
in the complete absence o f  lateral inhibition (Fig. 6). 

Once this reference point is located on the corrected reciprocal locus, we may 
then directly measure the signed distances o f  the points/5(~:)/,~(~ :, 0J) o f  the locus 
f rom this reference point. These distances, as a function of  ~, are proport ional  
to k(~:), the Fourier  t ransform of  the inhibitory kernel. 

Typical results of  this procedure are shown in Fig. 7. The  measured values 
for k(~) have been interpolated linearly. Th o u g h  the data are somewhat noisy at 
high spatial frequency,  where the at tenuat ion of  the response reduces the 
signal-to-noise ratio, the basic form of  the function is clear. The  transform/~ 
falls rapidly f rom its initial value, overshoots the reference point where/~ -- 0, 
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and,  at high spatial f requency,  slowly re turns  to zero f rom below. This  
overshoot  cor responds  to the slight offset  of  the vertex o f  the V-shaped 
reciprocal locus to the opposite side o f  the high f requency asymptote f rom the 
low frequency end of  the locus (Fig. 5). This  overshoot  may be considered as 
evidence, in the spatial f requency domain ,  for  a small "crater"  in the inhibitory 
kernel  k(x). 3 In essence, at intermediate  spatial f requency,  the broad inhibitory 
por t ion o f  the kernel  is cancelled by the oscillation o f  the grat ing stimulus, but  
the nar rower ,  oppositely signed componen t  can still resolve the grating,  and 
results in a reversal in the sign of  the t ime-dependent  inhibitory effect.  This  
qualitative indication of  the presence of  a crater  in the inhibitory kernel  
represents  an impor tan t  advantage of  sinusoidal gratings over  single bars of  
varying width as a test stimulus for  the analysis of  the spatial organizat ion of  
such a system. T h e  inhibitory kernel k(x) may be obtained f rom these data by 
taking the inverse Fourier  t ransform of  the measured  function/~(~:) (Fig. 7). In 
both the space and spatial f requency domains,  there  is essential agreement  
between the inhibitory kernel measurements  at the d i f fe ren t  temporal  f requen-  
cies. This  verifies the internal  consistency of  these measurements ,  and the 
applicability o f  the Hartl ine-Ratl iff  model  (Eq. 10). 

T h e  inhibitory kernel  data at the various temporal  frequencies were averaged 
together  (Fig. 8). This  averaged kernel  was then  fitted by eye with a d i f ference  
o f  two Gaussian distributions, according to Eq. 17. T h e  parameters  o f  this 
model  kernel  specify the geometry  o f  the inhibitory field. For the prepara t ion  
o f  Fig. 3, we obtained the following values: A = 2.06, a = 0.17 eye widths; B = 
1.2, b = 0.025 eye widths. Similar data obtained in this way f rom several 
preparat ions  all strongly imply the existence of  a small crater  in the inhibitory 
kernel.  

This  fitting p rocedure  was also used for one exper imen t  in which the usual 
stimulus was rota ted 90 ~ so as to p roduce  a vertical band o f  light whose intensity 
varied sinusoidally as a function of  y, the vertical coordinate .  T h e  inhibitory 
kernel  in the vertical direction was found  to be similar to that  in the horizontal  
direction,  with a large Gaussian inhibitory lobe, and a small crater  su r round ing  
the test ommat id ium.  (Parameters A = 3.7, a = 0.09 eye widths, B = 0.9, b = 
0.02 eye widths.) 

Total Inhibitory Strength 
T h e  total inhibitory s trength K is best de te rmined  at very low tempora l  
frequencies,  where there  is no significant phase lag between excitation and 
inhibition, and where we may treat  the response ampl i tude  as a simple scalar 
sum of  excitation and inhibition. As co approaches  zero, we obtain the following 
limiting fo rm for  Eq. 10: 

M . P ( , ) - ( 1 -  R)'(ito)P'(]---~-K) 

o%(~:, co) = 1 + k(~:)/(1 + K) , (to small). (27) 

3 Such an overshoot can also correspond to a slight flattening of the peak ot the mlalbltory kernel, 
rather than an actual crater, depending on the strength of the overshoot. In general, the overshoot 

corresponds to a crater whenever k(~)d~ < 0. 
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Because the scales of/~(~ :) and/~(s r) are well separated (see above), we may ignore 
the point-spread function P(~:) for low and modera te  spatial frequencies,  where  
fi(~:) -= 1. With this approximat ion,  we may attribute all o f  the dependence  of  
the response ampl i tude  in this regime o f  spatial f requency to the effect o f  lateral 
inhibition. Th e  total extent o f  this dependence  directly reflects the total 
inhibitory strength K as follows: we define st0 as that spatial f requency at which 
the inhibitory transfer function/~(s r first crosses the ~:-axis (Fig. 9). At this spatial 
f requency,  the effect o f  the crater  in the inhibitory kernel exactly cancels the 
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FIGURE 7. Inhibitory kernel measurements. For each of six temporal frequencies, 
the inhibitory transfer function ~(s r and the corresponding inhibitory kernel k(x) 
are shown. Inhibitory transfer functions obtained from measurements of corrected 
reciprocal loci, as in Fig. 6; each inhibitory kernel is the inverse Fourier transform 
of the corresponding inhibitory transfer function. Data from Fig. 3; temporal 
frequencies are (A) 0.1 Hz, (B) 0.23 Hz, (C) 0.5 Hz, (D) 1.03 Hz, (E) 2.1 Hz, (F) 4.23 
Hz. 

effect o f  the main inhibitory part  o f  the kernel,  and the test ommat id ium sees 
no t ime-dependent  inhibition: thus, 

~(~:0, to)-- M . ( 1 - R ) . ( i t 0 ) P .  ( f  + r ) ,  (to small). (28) 

On the o ther  hand,  we have/~(0) = K, whence 
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3(0,  oD = 

We thus obtain the 
Qo = ~(~o ,  to)/~-(O, ~o): 

T H E  J O U R N A L  O F  G E N E R A L  P H Y S I O L O G Y  �9 V O L U M E  7 2  - 1 9 7 8  

1 + K / O  + K) ' 

following express ion for  

(co small). (29) 

the (observable) quot ient  

M(1-R)(io~)P(1--~K ) l 

M(1 -R)( ioJ)  p 1 + 1 + 

(30) 
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FIGURE 8, (A) Averaged inhibitory transfer function, from data of Figure 7. (B) 
Averaged inhibitory kernel, obtained as inverse Fourier transform of (A). (C) 
Model inhibitory kernel (Eq. 17), fitted by eye to measured kernel of (B). 
Parameters are A = 2.2, a = 0.17 eye widths, B = 1.2, b = 0.025 eye widths. 

o r  

K 
- Q 0 -  1. (31) 

I + K  

Alternatively,  we may define ~ as that  spatial f requency at which the inhibitory 
t ransfer  function/~(r takes on its most  negative value (Fig. 9). Near  this spatial 
f requency  (for low t empora l  f requency) ,  the effect  o f  the lateral ("inhibitory") 



BRODm z ' r  AL. Spatiotemporal Transfer Function of the Limulus Eye 1 8 5  

interact ion is to enhance  the response o f  the test ommat id ium;  at ~ = ~1, the 
response is maximal.  I f  we set/~(~t) = - ~ ( 0 )  = - 0 . K ,  we have 

M ( 1 - R ) .  ( ~ ) P . ( ~ )  

~(~,,  o~) = (32) 
OK 

1 - - -  
I + K  

We may thus fo rm the (observable) quot ient  Q~ = ~(~:a, 00)/~(0, oJ): 

M(1 - R)(ioJ) p .  1 1 T _ 1 -+ K 

Q1 = OK (33) 

\ 1  + K ] / \  1 + K 

--~(0) 

I - ~  

FIGURE 9. Determination of total inhibitory strength. Characteristic spatial fre- 
quencies ~0 and ~ are defined from the measured spatial inhibitory transfer 
function k(~:) as shown. The parameter 0 is determined as the ratio -~(~1)///(0). For 
the data of Fig. 3, this procedure produced quotients Q0 = 2.545, Qt = 2.63 (0 = 
0.069), yielding estimates of K/(1 + K) = 1.545 and 1.380, respectively (see text). 

o r  

K Q1 - 1 
1 +--'~ = 1 + 0 .  O.a" (34) 

These  two estimates depend  on  observat ion o f  somewhat  d i f fe ren t  features  o f  
the low f requency  t ransfer  funct ion,  and provide a check on  each o ther  (Fig. 9). 
For  the p repara t ion  o f  Fig. 3, we obta ined the values Q0 = 2.545, Q~ = 2.63 (0 
= 0.069), yielding estimates o f  K/(1 + K) = 1.545 and 1.380, respectively. (Our  
model  t ransfer  funct ion (Fig. 12) was calculated with K/(1 + K) = 1.3, which fit 
the data slightly bet ter .)  T h e  occurrence  o f  the quot ient  K/(1 + g) on the left o f  
Eq. 31 and 34 reflects the fact that the lateral inhibitory t ransduct ion follows the 
encoder  t ransduct ion,  and cannot  be studied in isolation by o u r  methods .  

T h e  t ransfer  functions which remain  to be de t e rmined  are those that d e p e n d  
only on tempora l  f requency:  E(,0), G((a), and TL(OO). These  functions de te rmine  
the directions and lengths of  the "arms" o f  the reciprocal loci at the d i f fe ren t  
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temporal frequencies (Fig. 10), but because they occur as products or quotients 
in Eq. 25 it is difficult to extract the model parameters for these functions 
directly from measurements of these loci, as was done for the spatial transfer 
functions. Instead, we have found it convenient to adjust these parameters so as 
to match the Bode plots of  the complete spatiotemporal transfer function (Fig. 
11); the reciprocal loci calculated for the model transfer function then serve to 
check the accuracy of  the model. Below, we discuss the extent to which the 
individual parameters can be associated with specific features of the measured 
transfer function. 

Generator Potential 

We begin with the generator potential transfer function G(to) (Eq. 11). The most 
prominent feature of the generator potential transfer function is the severe 
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FIGURE 10. Reciprocal loci, as in Fig. 5, are plotted for six temporal frequencies: 
(A) 0.1 Hz, (B) 0.23 Hz, (C) 0.5 Hz, (D) 1.03 Hz, (E) 2.1 Hz, and (F) 4.23 Hz. The 
loci have been magnified by factors of 1, 2, 3, 4, 6, and 8, respectively. Arrows 
indicate direction of increasing spatial frequency�9 

cutoff at high frequencies. This is a consequence of the two factors of  the form 

( f - ~ - ~ )  general, a produces a severe at frequen- 
n, 

In such factor attenuation 

cies exceeding 1/t. Thus, the time constants in these factors can be estimated by 
noting the frequency at which the high-frequency cutoff begins. In practice, the 
two factors of  this form are not separable in terms of their effect on the overall 
transfer function. However, they have been independently measured in excised 
preparations by Wong, who measured the intracellular voltage directly by 
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means  o f  intracel lular  microelec t rodes  (Wong,  1977). 2 Such m e a s u r e m e n t s  
p rov ide  s tar t ing points  for  est imates o f  the p a r a m e t e r s  for  o u r  data.  For  
example ,  Wong 's  values for  td, the t ime constant  for  dispers ion o f  b u m p  
latencies, were  approx ima te ly  one -ha l f  o f  his values for  tb, the t ime constant  for  
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FIGURE 11. Estimation of temporal transfer function parameters. The features 
indicated depend most strongly on particular transfer function parameters, as 
shown, and were used to fit these parameters, as discussed in the text. (a) High- 
frequency cut-off determines generator potential time constants ta and tb. (b) 
Steepness of  phase lag determines exponents nd and nb; low-frequency phase lead 
determines time-constant tt. (c) Frequency range of adaptation effect determines 
time constant ta. (d) Magnitude of adaptation effect determines adaptation coeffi- 
cient R. (e) Low spatial frequency tuning amplitude peak and phase dependence 
fitted by strength x and time constant ~" for encoder transfer function E(t0). 0 c) 
Lateral inhibitory transfer function Tz(tO) adjusted to fit fine structure of spatial 
dependence at intermediate temporal frequencies. Data from Brodie et al. (1978), 
Fig. 4 A, B. 

the b u m p  shape;  we have preserved  this re la t ionship in ou r  choice o f  p a r a m e t e r s  
to describe the p r e p a r a t i o n  o f  Fig. 3: td = 0.0091 S, tb = 0.019 S. 

T h e  exponen t s  na and nb control  the steepness o f  the h igh- f requency  
ampl i tude  cu to f f  (as opposed  to the f requency  at which it occurs),  and  also the 
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rate of increase of the high-frequency phase lag of the generator potential 
transfer function with increasing frequency. For our data, the phase effect 
proved very dramatic, and unambiguously determined our choice of  ha + n b  = 
8. This choice of exponents is consistent with Wong's more direct measure- 
ments. The time constant fi, the mean latency of the voltage bumps, produces a 
small adjustment in the phase of the response, with no effect on amplitude. For 
the data of  Fig. 3, we used tt = 0.023 s. 

Adaptation Parameters 

We consider next those parameters of the generator potential transfer function 
which describe the adaptation process. For the exponent in the factor 

[itaO~/(1 + itaca)] ~, 

we chose the value p = 0.25, as suggested by the measurements of low-frequency 
transfer function data by Biederman-Thorson and Thorson (1971). This choice 
of exponent is consistent with our measurements below 1 Hz, and, as described 
in the preceding article, it correctly accounts for the response of the eye to 
slowly moving stimuli (Brodie et al., 1978). The adaptation time constant ta 
determines the frequency above which adaptation ceases to significantly affect 
the response of the eye; it may be estimated from the position (relative to the 
frequency axis) of  the increasing portion of the amplitude data (see Fig. 11). For 
the data of Fig. 3, the value ta = 0.020 s was chosen. 

There remains to be determined the parameter R in the factor 

( 1  - R/[1 + itaOa]), 

which governs the magnitude of the adaptation effect. In the absence of lateral 
inhibition, the effect of this factor cannot be formally distinguished from the 
effect of self-inhibition, which is described by a factor of similar form. On the 
other hand, unlike light adaptation, self-inhibition modifies the effect of lateral 
inhibition. This allows the independent determination of the parameters of self- 
inhibition (see below). Once these are estimated, the parameter R may then be 
adjusted to account for the residual attenuation of  the response at low frequen- 
cies. (The ratio of the response at low frequencies to that at intermediate 
frequencies is proportional to 1 - R.) For the preparation of Fig. 3, this 
procedure resulted in the value R = 0.89. 

Lateral Inhibition 

The lateral inhibition transfer function TL(Oa) is described by four time constants 
and the ratio of the initial excitatory component to the main inhibitory 
component (Eq. 15). This transfer function controls the transition from atten- 
uation to enhancement of the response to low spatial frequency gratings as 
temporal frequency increases; it also controls the high-frequency cutoff of 
lateral inhibition, which sets in at somewhat lower frequencies than the cutoff of 
the generator potential. The calculated transfer function is most sensitive to 
these parameters in the region of the "inversion" of the sign of the lateral 
"inhibitory" interaction (see Fig. 11), though it is difficult to systematically 
describe the effects of the individual time constants. For the data of Fig. 3, the 
best fit was obtained with the magnitude C of the excitatory component set 
equal to zero; the corresponding time constant ~'a becomes undefined. The 
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o the r  t ime constants ,  which then  become  formal ly  equivalent ,  were given values 
o f  0.0415, 0.0415, and  0.010 s. 

Self-Inhibition 

T h e  effects o f  self-inhibition are conta ined  in the t rans fe r  funct ion o f  the 
encode r  mechan i sm,  E(0J). Th is  t r ans fe r  funct ion occurs twice in the Hart l ine-  
Ratl iff  model  (Eq. 10): in the n u m e r a t o r ,  where  it describes a high-pass 
characterist ic o f  the excitatory process,  and  in the denomina to r ,  where  it 
r epresen t s  a similar fea ture  o f  the lateral inhibitory process.  As men t ioned  
above,  it is difficult  to separa te  the effect  o f  self-inhibition on  the exci tatory 
process f r o m  that  o f  light adapta t ion ,  though  direct  m e a s u r e m e n t s  o f  self- 
inhibition suggest  it is a much  slower process.  We the re fo re  relied mostly on the 
modula t ion  o f  lateral inhibiton by self-inhibition to de t e rmine  the self-inhibitory 
pa rame te r s .  

I t  may be recalled that  the ratio K/(1 + K) was directly d e t e r m i n e d  f r o m  the 
t rans fe r  funct ion data at low f requency.  With this p a r a m e t e r  r ega rded  as f ixed,  
the effect  o f  self-inhibition is to adjust  the magn i tude  o f  the "inhibi tory" tun ing  
effect  seen in the in te rmedia te  t empora l  f requency range  at low spatial f requen-  
cies. 4 T h u s ,  the size o f  this tun ing  peak  effectively fixes the s t rength  o f  self- 
inhibition. For  the data  o f  Fig. 3, the value x = 1.0 was obtained.  T h e  t ime 
constant  ~" was then  selected to best fit the overall  width o f  the t ransfer  funct ion 
peaks.  For  the data  of  Fig. 3, the value ~" = 0.125 s was chosen.  This  conf i rms  
ou r  assumpt ions  that  self-inhibition is considerably slower than  light adap ta t ion  
(ta = 0.020 s). Af ter  the p a r a m e t e r s  for  self-inhibition were es t imated,  the 
adapta t ion  p a r a m e t e r s  were readjus ted  as descr ibed above.  No fu r t he r  improve -  
men t  in the fit o f  the model  was obta ined  by fu r t he r  i terating the p rocedure .  

Once  all these p a r a m e t e r s  have been  es t imated,  the comple te  model  t r ans fe r  
funct ion can be c o m p a r e d  with the da ta  in several  ways. A Bode plot o f  the 
Har t l ine-Rat l i f f  t r ans fe r  funct ion is shown in Fig. 12; it is to be c o m p a r e d  
directly with Fig. 3. All o f  the qualitative fea tures  discussed above are  well 
mode led ,  as are  most  o f  the quant i ta t ive features.  5 T h e  reciprocal  loci o f fe r  
a n o t h e r  compar i son  between the mode l  and  the data: Fig. 13 shows the locus 
for  a t empora l  f requency  o f  1.03 Hz,  and  should be c o m p a r e d  with Fig. 5. Loci 
for  several t em pora l  f requencies  are shown in Fig. 14 (compare  with Fig. 10). 
T h e  reciprocal  loci are well mode led  over  a b road  range  o f  t empora l  f requen-  

4 This may be demonstrated as follows: as above, define ~:0 such that k(r = 0, and set 
K 

Qo = ~(~o, 0)/~(0, 0) = 1 + I+K' (Eq.30) 

We regard Qo, and hence K/(1 + K) as known. Define r as the frequency such that I~;(0, r is 
maximal, and set W = ~ ( 0 ,  r wp). W is very nearly real, and measures  the magnitude of the 
tuning effect. As we may safely assume thatE(oJp) ~ 1, we have ~:(0, ~op) = G(oJ~)/(1 + KTL(~p)), and 
~:(~:o, ~p) = G(oa~). This yields 

W = l / ( l  4- K T L ( ~ p ) )  = I / ( l  4- (1 4- K)(Q0 - 1)TL(0J~)). 

As Q0 and TL have been determined, we now fit W by adjusting g. (Here, TL(oJn) is a complex 
number whose phase is typically such that increasing • actually increases [ W [.) 
5 A somewhat similar model transfer function, based on nominal parameters for excised Limulus 
eyes ,  is described by Leung and Freeman (1977). 
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FIGURE 12. Hartline-Ratliff model spatiotemporal transfer function for the Lim- 
ulus lateral eye. Bode plots (as in Fig. 3) of  predicted response at seven spatial 
frequencies. Curves are obtained from the equations given in the text (see Table 
I), with parameters chosen to fit empirical transfer function of  Fig. 3 (see Table 
II). 

4-, 

FIGURE 13. Reciprocal locus for temporal frequency of  1.0S Hz, as predicted by 
Hartline-Ratliff model, with parameters as in Fig. 12. Compare with Fig. 5. 
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cies. T h e  parameters  for  the t ransfer  funct ion o f  Figs. 12, 13, and 14 are 
summar ized  in Table  II .  

An alternative strategy for  evaluating the accuracy o f  the Hart l ine-Ratl i ff  
model  is to use the empirical and model  t ransfer  functions to p roduce  Four ie r  
syntheses o f  the response o f  the eye to a moving stimulus, as described in the 
preceding  article. Such predict ions are ext remely  accurate,  and can be relied 
upon  to character ize the eye, even when such moving stimuli were not  included 
in the exper imenta l  protocol  (Brodie et al., 1978). Predictions for the response 
to a square-wave stimulus moving at several d i f fe ren t  velocities are shown in 
Fig. 15. T h e r e  is excellent ag reement  between the predict ions der ived f rom the 

§ A 

§ B 

1 C 

�9 D 

E 

F 

§ 
FIGURE 14. Reciprocal loci for six temporal frequencies, as predicted by Hartline- 
Ratliff model, with parameters as in Fig. 12 (Table II). Compare with Fig. 10. 
Temporal frequencies are (A) 0.1 Hz, (B) 0.23 Hz, (C) 0.5 Hz, (D) 1.03 Hz, (E) 2.1 
Hz, (F) 4.23 Hz. Loci are magnified by reladve factors of 1, 2, 3, 4, 6, and 8, 
respectively. 

measured  t ransfer  funct ion and the Hart l ine-Ratl i ff  model .  T h e  few small 
discrepancies are comparable  to those typically seen between actual measured  
responses to moving  stimuli and the Four ier  synthesis predictions o f  these 
responses f r om measured  t ransfer  funct ion data. 

A complete  l inear systems-analysis t rea tment  o f  the Limu lus  eye is r ep resen ted  
in Fig. 16, which allows compar ison  o f  measured  responses to moving square- 
wave stimuli with the Four ier  synthesis predict ions obtained f rom the empiri-  
cally measured  t ransfer  funct ion (Brodie et al., 1978) and a t ransfer  funct ion 
calculated f rom the Hart l ine-Ratl i ff  model  (parameters  are given in Table  II). 
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T h e  principal features  of  these square-wave responses may be readily inter- 
pre ted  in terms o f  the Hart l ine-Ratl i ff  model .  At low velocities, lateral inhibition 
precedes the arrival o f  the step at the test ommat id ium,  result ing in an 
anticipatory "Mach band" in the impulse ra te , jus t  before  the on-transient .  Also, 
at low drif t  velocities, the on-transient  itself is much a t tenuated.  This  is due  to 
the p redominance  o f  low-frequency componen ts  (to which the eye is relatively 
insensitive) in the low-velocity stimuli. This  p redominance  is fu r the r  enhanced  
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FIGURE 15. Fourier synthesis of the response to a moving square-wave stimulus 
at several velocities. For each velocity, E denotes response calculated from 
empirically measured transfer function (Fig. 3), and HR denotes response calcu- 
lated from Hartline-Ratliff model transfer function, with parameters as in Table II 
(Fig. 12). Drift velocities: (A) 0.01, (B) 0.03, (C) 0.06, (D) 0.12, (E) 0.24, (F) 0.48, (G) 
0.96 eye widths/s. Scale marker: horizontal, 10 s; vertical, 10 impulses/s. 

by the optical point-spread effect,  which filters out  the high (spatial) f requency  
componen ts  f rom the moving stimuli. At h igher  velocities, the on- t ransient  
becomes very p r o n o u n c e d  as the stimulus contains greater  spectral power  at 
f requencies  near  the peak o f  the spat iotemporal  t ransfer  function.  Due to the 
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FIGURE 16. Four ier  synthesis of  the response to moving square-wave stimuli: 
comparison with measured response. (A) Hartl ine-Ratl iff  model spat iotemporal  
t ransfer  function, with parameters  chosen to fit empirical t ransfer  function o f  Fig. 
11 (see Table  II) .  (B-E) Comparison o f  measured response to moving square wave, 
response calculated from empirically measured transfer  function (E), and response 
calculated from Hartl ine-Ratl iff  model  transfer function with parameters  as in (A) 
above (HR). Drift velocities: (B) 0.03, (C) 0.06, (D) 0.12, and (E) 0.24 eye widths/s. 
Response records from Brodie et al., 1978, Fig. 7. 
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T A B L E  I I  

P A R A M E T E R S  F O R  T H E  H A R T L I N E - R A T L I F F  M O D E L  

Param- Preparation Preparation 
eter Description Dimension of Fig. 3 of Fig. 11 

M Normal izat ion cons tan t  * * 

t t m e a n  b u m p  latency s 
t a  latency d ispers ion  t ime cons tant  s 
n a  dispers ion e x p o n e n t  
tb b u m p  shape  t ime cons tan t  s 
nb b u m p  shape  e x p o n e n t  
R adapta t ion  s t r eng th  
t o adapta t ion  t ime cons tan t  s 
# low-frequency adapta t ion  e x p o n e n t  

0.023 0.023 
0.0091 0.0076 
4 4 
0.0019 0.0017 
4 4 
0.89 0.96 
0.020 0.013 
0.25 0.25 

K self- inhibitory s t r eng th  
r self-inhibitory t ime cons tant  

1.0 0.5 
0.125 0,125 

rl lateral inhibi tory t ime cons tan t  s 
~'2 lateral inhibitory t ime cons tant  s 
z3 lateral inhibitory t ime cons tan t  s 
T4 lateral inhibi tory t ime cons tan t  s 
C lateral inhibit ion s t ruc ture  cons tan t  

0.0415 0.033 
0.0415 0.050 

0.033 
0.010 0.017 
0 0.1 

K total lateral inhibitory s t reng th  
A inhibitory s t r eng th  (relative) 
a inhibi tory space cons tan t  
B crater  s t r eng th  (relative) 
b crater  space cons tan t  

2.60 1.60 
2.06 1.00 

eye widths 0.17 0.182 
1.20 1.92 

eye widths 0.025 0.027 

s poin t -spread  space cons tan t  eye widths 0.0083 0.016 

* M is a scale p a r a m e t e r  tha t  canno t  be directly related to the  physiology o f  the  eye on  the  basis o f  
o u r  m e a s u r e m e n t s .  It has  been set to d i f fe ren t  values in the  var ious  model  calculations, as 
convenient .  
* T i m e  cons tan t  u n d e f i n e d  when  C = 0. 

nature of a step-transient stimulus, the on-transient of the response remains 
large even at very great velocities .6 

D I S C U S S I O N  

The data presented above clearly demonstrate the adequacy of the Hartline- 
Ratliff model to explain the dynamic properties of the Limulus lateral eye, at 
least those properties concerned with its responses to small and moderate 
changes in light intensity around a mean operating level. Conversely, the 
success of this analytic program demonstrates the suitability of our analysis 

e It shou ld  be noted  that  the  computa t ions  (similar to those  o f  Fig. 15) o f  Knigh t  (1973 a),  conta in  a 
systematic e r ro r  in velocity. T h e  velocities given in Fig. 38 the re  should  be mult ipl ied by 27r, T h o s e  
calculations did not  allow for the  poin t -spread  effect.  T h e  mode l  t r ans fe r  func t ion  used  for the  
calculations was based on pa rame te r s  for excised eyes at r o o m  t e m p e r a t u r e  (Knight  et al., 1970). 
O u r  hea ted ,  intact  p repara t ions  show a considerably faster  r esponse  (see Appendix) ;  we calculate 
that ,  in ou r  p repara t ions ,  only steps mov ing  at speeds  o f  at least 2 eye widths/s will p roduce  
responses  with little or  no inhibitory "Mach band"  precursor .  
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stimuli, which consist of sinusoidal gratings in space modulated according to a 
sum-of-sinusoids signal in time, for the characterization of  this sensory trans- 
ducer. 

Although the overall performance of the model is excellent, we are not in a 
position to assess the goodness-of-fit in quantitative terms, as there is no well- 
established estimator of the "distance" between two spatiotemporal transfer 
functions. Nevertheless, we can state that, except as noted below, the parameters 
given above are "correct" to within a few percent, in the sense that alteration of 
any individual parameter by more than that amount produces a demonstrably 
inferior fit of the model transfer function to the data. We have also considered 
the possibility of trade-offs between certain parameters (such as those of light 
adaptation and self-inhibition). While such trade-offs do occur, the fits obtained 
with the parameters given above are in general at least as good as those obtained 
with alternative choices. 

Our characterization of the point-spread phenomenon is simple and reliable. 
The measurements of the inhibitory kernel are more complex. This determi- 
nation depends strongly on the phase information at high spatial frequency, in 
order to determine a reference point for the measurement of k from the 
corrected reciprocal locus. Such phase data are least reliable at these high spatial 
frequencies, because the point-spread effect substantially attenuates the re- 
sponse to the high-frequency gratings. Nonetheless, at least for data taken 
below 5 Hz, the consistency of  the measurements is very good. (At higher 
frequencies, there is sufficient noise in the phase data to render impossible 
measurements of the inhibitory kernel from data at these frequencies.) Our 
estimates of the size and strength of the main inhibitory lobe of the kernel are 
strongly confirmed by the Fourier synthesis calculation at low velocity, which is 
very sensitive to this feature. Although the data consistently indicate, by the 
characteristic offset of the vertex of the reciprocal locus, the presence of  a small 
crater in the inhibitory kernel, our estimates of  its width and strength are 
somewhat crude (see Appendix). 

The bump-shape parameters of  the generator potential transfer function are 
strongly reflected in the high-frequency amplitude and phase data, and are 
therefore reliably determined, at least to the extent that they are in principle 
separable from one another. The strength and time constant for light adaptation 
are also well determined. It is not possible to model the data in such a way that 
adaptation and self-inhibition have similar time constants, or are combined into 
a single process. 

The parameters for the temporal structure of lateral inhibition are buried 
rather deeply in the model. In particular, the structure constant describing the 
strength of the initial excitatory feature has little effect on the computed 
transfer functions; most of the effective delay of the inhibitory transient is 
accounted for by the three low-pass filter stages. Nonetheless, even those slight 
variations among the time constants which preserve their sum, but which alter 
the fastest time constant, result in considerable worsening of  the fit of the model 
to the peaks in the transfer function data. 

The determination of the strength of  the self-inhibitory process is quite 
straightforward, and the parameter is thus fixed with considerable accuracy. 
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T h e  t ime constant  is less strongly ref lected in the computa t ions ,  and  is thus less 
rigidly de t e rmined .  I t  may also be noted  that  we have de t e rmined  the effective 
pa rame te r s  o f  the combined  effect  o f  self-inhibitory transients and the encoder  
t ransduct ion.  T h u s ,  ou r  values for  these pa r ame te r s  are,  to some extent ,  also a 
funct ion of  ou r  choice o f  encoder  model  (see Appendix) .  

T h e  Four ier  synthesis compar i sons  fu r the r  enhance  ou r  conf idence in the 
model .  However ,  in general ,  they are less sensitive to the choice of  p a r a m e t e r s  
than  are the Bode plots or  reciprocal  loci, because they consti tute,  in effect ,  
averages over  a large n u m b e r  o f  spa t io tempora l  frequencies.  

O u r  choice for  the pa rame te r s  o f  the Har t l ine-Rat l i f f  model  may be c o m p a r e d  
with those d e t e r m i n e d  by more  direct  means  in o ther  studies (see Append ix ) .  In  
general ,  the a g r e e m e n t  is very good,  consider ing ou r  indirect  methods ,  and  the 
elevated t e m p e r a t u r e  o f  ou r  p repa ra t ion ,  which considerably "speeds  up"  the 
t ime scale o f  the eye. Compar i son  o f  ou r  m e a s u r e m e n t s  o f  the inhibi tory kernel  
with o the r  m e a s u r e m e n t s  is r a the r  complex ,  and  is discussed separately in the 
Append ix .  

We thus conclude that  the spa t io tempora l  t ransfer  funct ion provides a 
convenient  and  concise character izat ion o f  the dynamics  of  the Limulus ret ina.  
This  character izat ion can be readily in te rp re ted  in te rms o f  c o m p o n e n t  proc-  
esses o f  the visual t ransduct ion,  and  quanti tat ive descript ions o f  these compo-  
nent  t ransduct ions  can be obta ined  f r o m  the t ransfer  funct ion data.  T h e  
Har t l ine-Rat l i f f  model  summar izes  this analysis, and  provides good quanti ta t ive 
predict ions o f  the in tegra ted  response  o f  the eye. Similar analyses may be useful  
in the s tudy o f  o the r  l inear biological systems. 

A P P E N D I X  

Compar i son  o f  T r a n s f e r  Funct ion Paramete r s  with Direct Measu remen t  

Most of the parameters of the Hartline-Ratliff model correspond to quantities which can 
be determined directly, or inferred, from more invasive measurements of  Limulus retinal 
physiology than were performed for this study. While those experiments, by their 
nature, effectively preclude the simultaneous determination of all the parameters for a 
single preparation, as was possible in this study, and have rarely been performed on the 
eye in situ, it is nevertheless instructive to compare our parameter values with those 
obtained by other methods. 

The major systematic difference between our parameters and those obtained previ- 
ously is that most of our time constants are faster, often by a factor of 2 or more. This is 
most likely a consequence of the fact that our data were obtained from in situ eyes at a 
temperature of approximately 22~ At such an elevated temperature, most processes 
within the eye appear to run faster than they do at lower temperatures (Brodie, 1978). 
For example, our data show a peak response to flickering light at about 6 Hz, in contrast 
to values around 3 Hz previously reported in colder, excised eyes (Knight, 1973 a). 

We consider first the parameters for the generator potential. These describe proper- 
ties of the discrete bumps which sum to form the observed potential. 

The most complete measurements of these parameters, from intracellular votlage 
data, are those of Wong (1977). (Many other measurements of bump parameters have 
been made at much lower light levels than the present experiments. Such conditions 
facilitate the study of individual bumps, but they also obscure the adaptation effect and 
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lengthen the latency between photon  absorption and the consequent bump.)  His 
paramete r  values (for excised eyes) were tl = 0.025 s, 20~ Q10 = 4; td ---- 0.016 S, 20~ Q10 
= 4; n d =  3; tb = 0.03 s, 20~ Q~o = 2.5; nn = 3; R = 0.59; ta = 0.074 s ( tempera ture  
dependence  not measured) .  Comparison with Table II  shows reasonable agreement ,  
though comparison of  the time constants is somewhat complicated by the difference in 
the exponents  na and nb. Wong did not measure the tempera ture  dependence  of  the 
adapta t ion parameters .  Nonetheless,  even if we assume that the time constant t a varies 
with t empera tu re  in a manner  similar to the other  time constants, our  data show an 
adaptat ion process considerably faster, and slightly stronger,  than that described by his 
measurements .  

It may also be noted that our  value of  eight for the number  of  factors of  the form 1/ 
(1 + itnt) in our  model  for the generator  potential  is in good agreement  with the original 
estimates of  Fuortes and Hodgkin  (1964). Under  conditions of  strong light adaptat ion,  
their  estimates of  the number  apparen t  of  "stages" of  fil tering in the genera tor  potential  
ranged  from 7 to 13, with a mean of  10.1. 

The  encoder  parameters  describe the strength and time scale of  the self-inhibitory 
process. This process has been studied in excised eyes (Stevens, 1964; Purple,  1964; 
Lange, 1965; Knight et al., 1970; Fohlmeister  et al., 1977 b) and in in situ prepara t ions  
(Biederman-Thorson  and Thorson,  1971). These  numerous  studies give self-inhibitory 
parameters  which vary widely: r = 1. to K = 6.; T = 0.250 to ~- = 1.0 s. Our  data (Table II) 
are compatible with the faster and weaker ends of  this range.  Our  rapid  time constant  
may be due to the elevated tempera ture  of  our  preparat ions .  It should also be noted that 
our  t reatment  assigns an effective time constant only to the combined processes of  self- 
inhibition and impulse generat ion.  I t  is possible that the impulse-generat ing process 
(which is in fact bet ter  described by a "forgetful" integrate-and-f ire  mechanism than by 
the simple model  given above) contributes a high-pass characteristic of  its own to the 
dynamic response of  the eye. As "forgetting" time constants for the Limulus eccentric cell 
have been repor ted  ranging from 0.04 s to < 0.01 s (Barbi et al., 1975; Fohlmeister  et al., 
1977 b), our  apparen t  time constant for the complete encoder  might well be faster than 
the actual time constant of  the intracellular self-inhibitory hyperpolar izat ion.  In  any 
event,  except for the slow component  of  light adaptat ion,  self-inhibition is clearly the 
slowest process in our  model  of  the Limulus eye. 

The  parameters  for the temporal  dependence  of  lateral inhibition seldom have been 
measured directly. The  impulse responses measured by Knight et. al. (1970) were 
approximated  by them with the following (unpublished) paramete r  values: 71 = 0.1 s, 72 
= 0.15 s, ~'3 -- 0.1 s, ~'4 = 0.05 s, C -- 0.1. Our  time constants (Table II)  are faster by a 
factor of  3, but  are still reasonable.  The  vanishing of  the constant C for one of  our  
preparat ions  is consistent with results observed in nonhyperpolar ized  cells. Clearly, most 
of  the effective "delay" of  the inhibitory t reatment  is accounted for by the three low-pass 
filter stages. 

Previous measurements  of  the inhibitory kernel  have been made in excised eyes (using 
steady-state data) by Kirschfeld and Reichardt  (1964); Barlow (1967, 1969); and Johns ton  
and Wachtel (1976), all using very dif ferent  methods.  Kirschfeld and Reichardt  measured  
steady-state Mach bands,  and modeled their  data with kernels given by the forms k(x) = 
Ae -I~lta and k(x) = Ae -~1~2. They assumed a priori  that the kernel  decreased monotoni-  
cally away from the origin. They were able to rule out the simple exponential  kernel ,  
and found that their  data were adequately described by the Gaussian kernel,  with a space 
constant a = 0.22 eye widths. This is in good agreement  with our  measured value. It 
should be noted,  however,  that the observed Mach band pat terns are in fact ra ther  
insensitive to the details of  the inhibitory kernel,  especially as regards  detection of  a small 
crater  in the inhibitory field (Barlow and Quarles,  1975). 
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Barlow directly measured the point-to-point inhibitory coupling of single units to small 
clusters of inhibiting ommatidia. He obtained a two-dimensional inhibitory field with a 
marked central crater. Johnston and Wachters measurements were performed on eyes 
with the cornea and crystalline cones removed. They obtained a monotonically decreas- 
ing inhibitory kernel extending to about 0.25 eye widths from the test ommatidium. 

Dodge and Kaplan (1975) 7 measured the inhibitory fields of the in-situ Limulus eye by 
measuring the response to flashing bars as viewed on a screen 10. cm from the eye by the 
Limulus using its natural optics in air. Their  data were basically in agreement with 
previous investigators; they found a narrow crater in one-third of their units. 

In order to compare our  one-dimensional data with these various measurements,  it is 
necessary to consider the relationship between the two-dimensional kernel and our one- 
dimensional treatment.  If one illuminates the entire eye, and assumes that, for a centrally 
located ommatidium, the top and bottom edges of the eyes are (effectively) infinitely far 
away, then the two-dimensional Hartline-Ratliff equations (Eq. 6) may be replaced by a 
one-dimensional analog in which the inhibitory kernel is simply related to its two- 
dimensional counterpart:  

k(x) = f ~| k(x,y)dy. (AI) 

If  the il lumination pattern covers only a finite strip of the eye, the simple relation (Eq. 
A1) will no longer hold. Instead we have 

k(x) = f ;v  k(x,y)g(y)dy/g(O), (A2) 

where the illumination strip spans the region from -Y  to Y, and gO') is the steady-state 
response of an ommatidium at the distance y from the x-axis to the analysis stimulus 
consisting of a uniform bar of light (~: = 0). (We have not attempted to measure the 
weighting function g(y), but the edge effects measured elsewhere (Barlow and Quarles, 
1975; Kirschfeld and Reichardt, 1964) suggest that taking g to be a constant function ofy 
should be an adequate approximation.) When the two-dimensional kernel of Eq. 16 is 
inserted in Eq. A2, we may observe several facts. First, the integral takes the form of a 
sum of two terms, each of which is a function ofx times the integral of  a function ofy.  
This implies that the space-constants a and b determined for the one-dimensional kernel 
are the same as the space constants of the two-dimensional kernel. Second, the ratio B/A 
of the two components  of the one-dimensional kernel is related to the analogous ratio (D 
in Eq. 16) of the two-dimensional kernel by the relation: 

B = D �9 ~b. erf(Y/~b) (A3) 
A ~a erf(Y/~a)' 

where erf  (u) ---- e-V2dv. 

We distinguish two limiting cases: ifY is large (compared to "qa) then the error function 
quotient is approximately unity, and we see that the "apparent" crater strength B/A is 
less than the actual s trengthD by a factor of ~b/r/a; in other words, the crater is "filled in" 
by the integration overy. IfY is small (compared to 0~), then erf(Y/~) ~ Y/~(and likewise 
for erf[Y/~ga]), and the observed quotient B/A is equal to the true crater strength D. Our  
experiment  falls between these two limits, with Y = 0.0666 eye widths, "oa = 0.09 eye 
widths and ~b -- 0.02 eye widths. This givesD = (B/A).3.1 = 1.8. Although this number ,  
if taken at face value, suggests that the two-dimensional kernel actually takes on negative 

7 Dodge, F. A., and E. Kaplan. Personal communication. 
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values, it must be remembered that this value for D results from the product of the 
observed ratio A/B and the square of the ratio (~b/~a) of two very small and somewhat 
crudely estimated parameters. It is also to be noted that, for such small features of the 
inhibitory kernel as the crater, the continuous model of the Limulus retina breaks down, 
in that it tries to describe features whose scale is comparable to the size of a single 
ommatidium. Nonetheless, similar observations from several preparations allow us to 
conclude that the crater depth parameter D is approximately unity, a value compatible 
with Barlow's data. 

Our  value for the space constant, a, of the main feature in the inhibitory kernel in the 
horizontal direction is in good agreement with all the previous measurements,  in which 
the kernel falls to zero at around 0.25 eye widths from the test ommatidium. Our  value 
for the space constant, b, of the crater corresponds to a feature about one-half as wide as 
that described by Barlow. Such a narrow feature would be difficult to detect with 
methods which produce a wider point-spread effect than our fiber-optic taper arrange- 
ment.  In the vertical direction, our  space constant, a, was about one-half of that in the 
horizontal direction, a ratio comparable to Barlow's measurements.  Our  value for the 
space constant of the crater in the vertical direction was only slightly less than the value 
in the horizontal direction, though, as mentioned above, the width of the crater is one of 
our  least well determined parameters. These ratios must also be evaluated in light of the 
fact that they derive from measurements of different Limulus specimens. 

The width of the stimulus stripe also enters into the comparison of our  value for K 
with previous measurements.  (Actually, the relevant parameter is the quotient K/(1 + K), 
which is equivalent to the sum of the inhibitory coefficients in steady-state experiments.) 
We have 

f;? K = (x)dx = (x, y )gO)dydx /g (O) .  (A4) 

For our  present purposes, we set g equal to a constant; furthermore,  we may ignore the 
crater in this comparison, as it alters the total inhibitory strength by only - 2%. With 
these approximations, inserting our  values for Y and ~a in Eq. A4 yields the conclusion 
that our value for K/(1 + K) is - 70% of the total steady-state inhibitory strength of the 
whole eye. 

Barlow (1967) stated that the sum of the coefficients in his inhibitory kernel was 7, 
though this is a considerable extrapolation which probably overrepresents the ommatidia 
with atypically strong inhibitory coupling. Lange (1965) gave values as large as 2. In their 
subsequent paper Barlow and Lange (1974) emphasized the dependence of the total 
inhibitory strength on the level of excitation of the ommatidium being inhibited. They 
reported values for this parameter which varied (in different preparations) from 0.4 to 
2.3, all for an excitation of 25 impulses/s; in one preparation, they measured a total 
inhibition of 0.6 at an excitation of 5 impulses/s, rising linearly to 1.7 at an excitation of 
20 impulses/s. 

Our  experimental  design does not permit direct measurement  of the excitation level 
of our test ommatidium, but we may estimate the excitation from the steady-state relation 

Insert ing the observed mean impulse rate r = 10 impulses/s, and inhibitory strength K/ 
(1 + K) = 1.3, we recover the estimate e = 23 impulses/s. Thus,  our  corrected value for 
the inhibitory strength of the entire eye, K/(I + K) (whole eye) = 1.3/0.7 = 1.9, is in 
excellent agreement  with the measurements of Barlow and Lange. Kirschfeld and 
Reichardt (1964) found a total inhibitory strength of 1.111, at an excitation of over 30 
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impulses/s. Recently, Bariow and Fraioli (1978) have obtained values for K/(1 + K) 
ranging from 1.5 to 3.7, for excitations comparable  to ours. They repor t  that the strength 
of  lateral inhibition appears  greatest in those animals in the best physiological condit ion.  

Finally, though the effective point-spread characteristic of  our  optical system has little 
consequence for the natural  optics of  the Limulus eye, it compares  favorably with the 
point-spread functions measured for a Limulus ommat id ium in air and in water by 
Kirschfeld and Reichardt  (1964), whose data were summarized by Gaussian distributions 
with s-parameters  of  approximately 0.019. 
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