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ABSTRACT The dynamics of the Limulus retina may be well described by the
spatiotemporal transfer function, which measures the response of the eye to
moving sinusoidal gratings. We consider a model for this system, which incorpo-
rates an excitatory generator potential, and self- and lateral inhibitory processes.
Procedures are described which allow estimation of parameters for the mode]
consistent with the empirical transfer function data. Transfer functions calculated
from the model show good agreement with laboratory measurements, and may be
used to predict accurately the response of the eye to arbitrary moving stimuli. The
model allows convenient interpretation of the transfer function measurements in
terms of physiological processes which underly the response of the Limulus retina.

INTRODUCTION

We have shown in the preceding paper (Brodie et al., 1978) that the response of
the Limulus lateral eye to arbitrary time-varying patterns of illumination is well
predicted by the methods of linear systems analysis. In the course of such
analysis, the dynamic properties of the eye are incorporated into a function of
spatial and temporal frequency, the eye’s spatiotemporal transfer function. It
follows that much of what can be learned of the eye’s physiological properties
through examination of its responses to light may be deduced from careful
analysis of the measured transfer function.

The methods of systems analysis are indifferent to the nature of the processes
which underly the relations between stimulus and response; it is precisely this
independence of mechanism which gives these methods their great generality.
In order to draw physiological conclusions from systems-analytic data, it is
necessary to interpret the data by comparison with more direct studies of the
underlying physiology. For example, it is reasonable to ascribe a feature of a
measured transfer function to a certain physiological process only after the
existence of the process has been established through direct investigation. In
the context of a model suggested by mechanistic studies, the systems-analytic
data can constitute significant evidence for the evaluation of physiological
hypotheses. We have carried out such an investigation on the lateral eye of
Limulus, a system whose physiology has been studied by both direct and indirect
means for many years (for reviews, see Graham and Ratliff, 1974; Ratliff, 1974).
In the present paper, we present the results of this study in terms of a general
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model for the Limulus eye which has evolved from many separate investigations
in our laboratory and in others.

MATERIALS AND METHODS

The analysis and experimental techniques used to measure the spatiotemporal transfer
function Z(¢, w) of the Limulus eye are described in detail in the preceding paper (Brodie
et al., 1978). Data were obtained from an in situ preparation of the Limulus lateral eye
using cotton wick-silver/silver chloride electrodes to record activity in single optic nerve
fibers (Hartline and Graham, 1932). The temperature of the animals was controlled by
means of a constant-temperature circulator coupled to the animal via a modified ice bag
(Brodie, 1978). Eye temperature was held at 22 = 1/4°C.

In essence, the value of the transfer function at a spatiotemporal frequency pair (£, w)
is determined by the response of the eye to a stimulus consisting of a sinusoidal grating
of spatial frequency ¢, modulated in counterphase fashion according to a sinusoidal
temporal signal of temporal frequency w. By virtue of the linearity of the system, the
temporal sinusoid may be replaced by a signal consisting of a sum of several sinusoids,
each at a different temporal frequency (Victor et al., 1977). This sum-of-sinusoids
temporal signal is used in turn to modulate sinusoidal gratings of each of several spatial
frequencies. The experimental protocol consisted of a periodic rotation through “analy-
sis” episodes at each of eight spatial frequencies. Each episode lasted 150 s (60 s of
illumination followed by 90 s for dark-adaptation); thus, each stimulus cycle of eight
episodes lasted 20 min. The sequence was repeated until the preparation failed, typically
after 6 or more h. (The moving-pattern “synthesis” episodes described in the previous
paper were omitted from the protocol to maximize the number of analysis measurements
obtainable from the preparation. This increased the signal-to-noise ratio of the transfer
function measurements.) For one experiment, the analysis pattern was rotated 90° from
the usual horizontal orientation to measure the distribution of the lateral-inhibitory
coupling constants in the vertical direction.

Calculations were performed on a PDP 11/45 digital computer (Digital Equipment
Corp., Maynard, Mass.) and displayed on a CalComp 565 incremental plotter (California
Computer Products, Inc., Anaheim, Calif.). Calculations based on the measured transfer
functions were implemented with the cubic spline interpolations described in the
preceding paper. Model-based calculations were implemented with a library of FOR-
TRAN complex-arithmetic subroutines.

THEORETICAL BACKGROUND

In this section, we summarize a model for the Limulus retina, which will serve to
provide a context for the analysis of our transfer function measurements. Our
objective is to obtain an explicit expression, in terms of model parameters, for
the Limulus spatiotemporal transfer function, in a form suitable for direct
comparison with our experimental measurements.

The basic organization of the Limulus retina may be summarized by the block
diagram shown in Fig. 1 (Dodge, 1969). Light incident on the retina causes the
production of an intracellular voltage change (the generator potential). Changes
in the intracellular potential are also induced by the processes of self- and lateral
inhibition. These voltages sum to produce a net intracellular potential, which
serves as the input to the impulse-generating mechanism. The impulse genera-
tor produces the train of action potentials which are conveyed along the optic
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nerve as the output of the retina. These nerve impulses themselves serve as
input to the self- and lateral-inhibitory processes, which feed back into the
retina. The steady-state response of this system is summarized by the Hartline-
Ratliff equations (Hartline and Ratliff, 1957, 1958; Stevens, 1964; Knight et al.,
1970):

Tm = €n — Kyrpm — 2 kmen (T = tmen)+s 1)
n¥FEm

where r,, is the response of the m'th ommatidium, €, is the “excitation” of the
m’th ommatidium (a function of the illumination incident on it), K, is the self-
inhibitory coupling constant, k., is the coupling constant for the inhibitory
effect of the n’th ommatidium on the m'th ommatidium, ¢,,.., is the threshold
for this inhibitory effect, and the notation ( ). indicates the piecewise-linear
operator such that (x); = x,x =-0; (), = 0,x < 0. We ignore the nonlinearity
introduced by the dependence of inhibitory coupling on excitation (Lange,
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Figure 1. Block diagram of the Limulus retina. G denotes transduction from
light to generator potential, [ denotes the impulse generating mechanism, T,
denotes the self-inhibitory transduction, T, denotes the lateral inhibitory transduc-
tions. ¥ denotes summing points, where effects combine linearly, with signs as
indicated.

1965; Barlow and Lange, 1974); in our situation, this effect does not appear to
be significant.

The self-inhibitory feedback loop is not accessible to separate analysis in our
input-output experiments. It is thus convenient to combine the impulse gener-
ator together with the self-inhibition into a single transduction, which we will
refer to as the “encoder” (Fig. 2). With this convention, the Hartline-Ratliff
equations take on an apparently simpler form:

Tm = ém — 2 knen ("m = tmen)+, (2)
n#m
wheree,, = €, — Kgn.

In the time-varying situation, the same block diagram applies, but the various
quantities in the equations must be reinterpreted. First, we restrict attention to
stimuli which cause all the ommatidia to fire impulses at a rate which fluctuates
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about some mean operating level. As a rule, we assume that this operating level
be chosen so that all ommatidia fire at a rate above their inhibitory thresholds.
In such a regime, it is convenient to redefine the input and output variables to
indicate the deviation from the mean value (of light intensity on input, of
impulse rate on output), rather than the absolute numerical magnitude, of the
stimulus or response. With these conventions, we may completely ignore the
threshold terms in our equations (Ratliff et al., 1974).

We must also redefine the coupling coefficients so as to incorporate the
dynamic aspects of the neural interactions which they represent. This is most
simply accomplished by considering the response to signals which vary sinusoi-
dally in time (Knight et al., 1970; Knight, 1973 a). By virtue of the linearity of
the system, each portion of the visual transduction (generator potential,
encoder, lateral inhibition) will respond to such an input with a sinusoidal
output, according to its own transfer function. We represent the sinusoidal
signals as (the real parts of) complex exponentials, and treat each stage of the
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Ficure 2. (a) Incorporation of the self-inhibitory feedback loop and impulse-

generating mechanism into a single encoder transduction, E . (¢) Simplified block-
diagram of Limulus retina.

visual transduction in turn. First, we consider the excitatory component of the
generator potential:

em(t) = G(w)lmeiwty (3)

where G(w) is the light-to-generator-potential transfer function, and I ,e®* is the
illumination incident on the m’th ommatidium. The net intracellular potential
V . 1s the sum of this excitation and the total lateral inhibition:

Vm(g) = em({') - TL(Q’)' E kmt—nrn(e)- (4)

This equation has been written so as to incorporate the experimental observation
(Ratliff et al., 1974) that all the inhibiting ommatidia show the same temporal
transfer function for lateral inhibition, which we denote T, (w). (In Eq. 4, V ()
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and 7,(t) are functions of time proportional to ¢%*.) Finally, the impulse-train
output is related to the net potential V,, according to the formula:

rm(t) = E(w)Vm(t), (5)

where E (w) is the transfer function of the encoder, including impulse generation
and self-inhibition. Because, in our experiments, the intracellular potential V,,
is not accessible to direct measurement, it is convenient to use the steady-state
impulse rate of the m'th ommatidium as a measure of this potential. With this
choice of units for V,,, we may treat the encoder transfer function E(w) as a
dimensionless quantity. Egs. 3-5 can be combined to obtain a dynamic equation
analogous to the static Egs. 1 and 2:

rm(t) = E(@)[G(w) It — Ti(0)* 2 kpenra(®)]. (6)
n#m

The relation (Eq. 6) is an explicit inhomogeneous set of simultaneous linear
equations which may be solved for the r,(t) in terms of the stimulus patternl,,.
For our purposes, however, it is more convenient to work instead with a
continuous version of this system (Kirschfeld and Reichardt, 1964). To this end,
we restrict our attention to stimuli which vary in space only along the x-axis (and
thus, at any time ¢, are constant along vertical lines), and assume that each
ommatidium in a given vertical column responds in the same way to such a
stimulus. (This last assumption is made only for reasons of computational
convenience; a more detailed treatment is discussed in the Appendix.) We may
now replace the discrete index m with the continuous variable x, the horizontal
coordinate along the eye. With this notation, Eq. 6 may be replaced by a
corresponding integral equation:

r(x, 1) = E(0)[Glw)(x)e*! — Tp(w) f k(x — w)r(u, H)du], (N

where we have incorporated the experimental observation that, at least away
from the edges of the eye, the inhibitory coupling beiween two (vertical strips
of) ommatidia depends, to a good approximation, only on the distance between
them (Barlow, 1969). In other words, the inhibitory kernel takes the translation-
invariant form k(x, u) = k(x —u).

To obtain the spatiotemporal transfer function from Eq. 7, we take as input a
sinusoidal grating I(x) = ¢%*. The response to such a sinusoidal input must be a
sinusoidal signal of the form r(x, ) = F(¢, w)“ v where F(¢, w) is, by
definition, the spatiotemporal transfer function of the system. We have

F (¢, w)e'€T+od = F(@)[G(w)e¢x+wd
- Tyw) f k(x — u) F(£, w)e€rtendy]
= T (w)[G(w) — Ti(w)F (£, w) f k(w)e~*¥*du] 8)

= (leTroOE(w)[G(w) — To()F (€, wk(£)],
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where k(£) = fk(u)e %*du is the Fourier transform of the inhibitory kernel. Eq.
8 may be solved readily for #(¢, ), yielding the expression:
F(e, w) = — LG ©)
1 + E(@)T(w)k(§)

It is necessary to make one correction to the idealized transfer function of Eq.
9, to account for the limited resolving power of the Limulus optics. The
derivation above assumes that the eye, in effect, is a perfect continuum of visual
receptors, each excited only by illumination at exactly one x-coordinate. The
effect of our imperfect stimulus optics and the finite size of the ommatidial
light-collectors may be accounted for by convolving the stimulus with an
effective “point spread function,” P(x), and using this degraded stimulus as the
input I(x) in Eq. 7. The equivalent correction in the frequency domain is the
multiplication of the spatiotemporal transfer function by the Fourier transform
of the point-spread function, which we denote by P(£).! It is also convenient to
include a real parameter M, to adjust the absolute magnitude of the complete
transfer function. This constant subsumes several proportionality constants
which are implicit in the component transfer functions, but which cannot be
separately determined from our measurements of the response of the whole
eyve. We thus obtain the final form:

_ M-POE@G(w)
1 + E(w)Ty(w)k(€)

The model of the Limulus visual system summarized by Eq. 10 is based, in
essence, on the notion of recurrent mutual lateral inhibitory interaction first
described in the original Hartline-Ratliff equations. Accordingly, we will refer
to Eq. 10 as the Hartline-Ratliff model for the Limulus spatiotemporal transfer
function.

We now consider in turn the various transductions P, E, G, T, and k, which
enter into the Hartline-Ratliff model transfer function (Eq. 10). For each
transduction, we obtain an explicit expression for the corresponding transfer
function, in terms of parameters describing more basic aspects of the underlying
physiology. Our ultimate goal in this paper is to determine values for these
parameters, and thus further refine our physiological description of the Limulus
eye.

We begin with G(w), the transfer function from light to generator potential.
This transduction may be studied directly in excised preparations by impaling
the Limulus eccentric cell with a microelectrode and measuring the changes in
intracellular potential induced by flickering light (Purple, 1964; Pinter, 1966;
Dodge et al., 1968; Knight et al., 1970). Data obtained in this way have been well
accounted for by the “adapting-bump model” (Rushton, 1961; Dodge et al.,
1968; Knight, 1973 ¢; Wong, 1977).2 This model is motivated by the observation
that, at low light levels, the generator potential is clearly resolved into a
sequence of small discrete depolarizations (“bumps”) which increase in fre-

F(¢, w) (10)

! In the field of optics, the function P(¢) is known as the “spatial modulation transfer function.”
? Wong, F., B. W. Knight, and F. A. Dodge. 1978. Dispersion of latencies and the adapting-bump
model in Limulus photoreceptors. Manuscript in preparation.



BRODIE ET AL. Spatiotemporal Transfer Function of the Limulus Eye 173

quency, but which decrease in size (“adapt”) as the incident illumination
increases. On the basis of a few statistical and physiological assumptions, these
considerations lead to an explicit form for the generator potential transfer
function:

1 g 1 ™ R o \P
= g~ lwti. . . —_ . . 11
Glw) = (1 + itdw) (l + it,,w) (1 1+ t,,w) (1 + itacu) (1D

The factor ¢ % is a pure phase-lag introduced by the finite delay (“latency”)
between the absorption of incident photons and the occurrence of the bumps
they produce; t; is the mean delay. The next factor 1/(1 + it;w)™ describes the
effect of stochastic variation of this latency interval about its mean. Here, the
distribution of latencies is approximated by a gamma-density with parameters ¢,
and n4. This corresponds, in the frequency domain, to the factor indicated
(Wong, 1977). The third factor, 1/(1 + it,w)™, expresses the dependence of the
transfer function on the bump shape, which is modelled as a gamma-density
with parameters ¢, and n;.

The last two factors in Eq. 11 describe the adaptation of the generator
potential. As may be seen from direct measurements of the light-to-generator
potential transduction (for example, Dodge et. al., 1968), this adaptation occurs
on two different time scales. At very low frequencies, the dynamics show a
frequency response proportional to (w)” (Biederman-Thorson and Thorson,
1971; Thorson and Biederman-Thorson, 1974). At higher frequencies, there is
a stronger dependence on frequency, which we have modelled, after the
“minimal model” of Knight (1973 ¢), as a high-pass filter (1 — R/[1 + it,w]).
Here, t, is a time constant which specifies the frequency region over which this
adaptation effect occurs, and R describes the magnitude of the adaptation effect
in this frequency region. We have adopted the form (it,w/(1 + it,»)]? to describe
the very low frequency adaptation effect in such a way as to make a gradual
transition to unity, centered around the characteristic frequency o = 1/t,.

We consider next E (w), the transfer function for the encoder, which includes
the impulse-generating mechanism and a self-inhibitory feedback loop. The
precise form of this function depends on the choice made for the variable which
describes the output of the encoder. For reasons of simplicity and compatibility
with experimental data, we shall use the “mean impulse density” function, r(t),
as described in the previous article (Brodie et al., 1978). Such encoders have
been described in great detail (Knight et al, 1970; Barbi et al., 1975; Fohlmeister
et al., 1977 a), but for our purposes, a simplified model will suffice. First, we
assume that the impulse-generating mechanism is adequately described as a
simple “integrate-and-fire” device, which produces a nerve impulse whenever
the running integral of the input voltage reaches a criterion value; the integral
is reset to zero after each impulse is fired (Knight, 1973 ). An important
property of such an encoder is that, if mean impulse density is taken as the
output variable, then the encoder produces an output which is a perfect replica
of the input (Knight, 1972). In other words, the transfer function of the impulse
generator is the constant 1. The transfer function T J(w) for the self-inhibitory
transduction cannot be measured directly, but it may be deduced from measure-
ments of the self-inhibitory impulse response seen in the intracellular potential
after the occurrence of a neural impulse (Purple, 1964; Stevens, 1964; Dodge,
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1969). This inhibitory transient may be modeled accurately as a single exponen-
tial decay of the form ke~ , where x describes the strength of the self-inhibitory
effect, and 7 is the time constant for the decay. This impulse response
corresponds to the transfer function

K

Tyw) = (12)

1+ trw
Note that in Eq. 12 we have incorporated the self-inhibitory coefficient k into
the function T,.

In a neural encoder with self-inhibition, the inhibitory transients occur as
discrete events, phased to the occurrence of impulses in the encoder output.
This discrete aspect of the inhibitory process is reflected in subtle features of
the corresponding transfer function for the encoder (Knight et al., 1970;
Shapley, 1971). As these features occur mainly at frequencies greater than the
mean impulse rate, we may safely ignore them in our analysis. With this
simplification, we may regard the encoder as an ordinary (continuous variable)
linear system with feedback (Fig. 2 a). We thus immediately obtain the relation

E(w) = 1 — E(w) Tyw). (13)
Solving for E(w) yields

K

1 1 1+
E(w) = = -1 (14)

1 + Ty(w) K . T
1+ ——— 1+ w®
1+ trw 1+«

This result is strictly equivalent to the approximation of Shapley (1971), who
obtained it as a limiting case of a more elaborate treatment, and is closely related
to the model of Stevens (1964).

We next turn our attention to T,(w), the transfer function for the lateral
inhibitory transduction from impulse rate (in the population of inhibiting
ommatidia) to inhibitory post-synaptic potential (in the test ommatidium). This
transfer function, like T';, cannot be measured directly, but it can be determined
by two indirect methods, both of which rely on antidromic stimulation of
neighboring ommatidia as a source of inhibition on the test ommatidium
(Knight et al, 1970). Transfer functions can be measured for the voltage-to-
impulse rate transduction in the test ommatidium by passing current through
an intracellular microelectrode, and then for the transduction from the (anti-
dromic) impulse rate in the inhibiting units to the reduction of impulse rate in
the test ommatidium. The quotient of these two transfer functions yields the
transfer function T';(w). Alternatively, one can hyperpolarize the cell to prevent
it from firing impulses, and measure the responses of the intracellular potential
to antidromic stimulation of neighboring ommatidia, either to brief bursts or to
impulse trains with sinusoidally modulated impulse rate. In such hyperpolarized
cells, the impulse response to a short burst of antidromic impulses in the
neighboring units is well predicted by the inverse Fourier transform of the
transfer function describing the response of the same cell to inhibition from
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sinusoidally modulated antidromic stimulation of neighboring cells. There is
satisfactory agreement between the transfer function measured indirectly as a
quotient (with the cell operating at its normal resting potential) and the direct
transfer function measurement on the same cell, hyperpolarized.

The lateral inhibitory impulse response typically takes a biphasic form, with a
small excitatory effect preceding the main inhibitory hyperpolarization (Knight
et al., 1970). We may model this wave form as a combination of four exponential
decays. Such a model yields the following expression for the lateral inhibitory
transduction, T ;(w):

1 1 1 ¢ !
T _ ) . _ . . 15
(@) 1-¢C [1 +inw l1+ime 1+ i'ram] 1 +ino (15

Here, 7,, 72, 73, and 74 are time constants chosen to fit the inhibitory impulse
response, and C describes the relative strength of the brief excitatory feature of
the impulse response. The transfer function here is normalized to unity at =
0. (The strength of lateral inhibition will be reflected in the inhibitory kernel:
see below.)

The remaining transfer functions k(¢) and P(¢) depend only on spatial
frequency. The two-dimensional inhibitory kernel k(x, y) has been studied
extensively, generally by making measurements of inhibitory coupling coeffi-
cients in the steady state as a function of distance along the retina (Barlow, 1967,
1969; Johnston and Wachtel, 1976). The data may be summarized as a difference
of two-dimensional Gaussian distributions:

k(x, y) e—(x’ * 372)/0’ - D-e°(x‘ * %2)/"’. (16)

Here, the main inhibitory feature has a Gaussian distribution whose width is
determined by the parameter @, with iso-inhibitory contours whose shape is
governed by the parameter 7. Barlow’s data suggested a small “crater” in the
inhibitory kernel, which is similarly described by the second term in Eq. 16. In
our one-dimensional situation, we may replace this formula with a simpler
form:

k(x) = N- [Ae-r’m’ - Be-r‘""] , (17)

where N is a normalization constant, and the coefficients A and B describe the
relative strength of the crater (see Appendix). We may fix the constant N by
stipulating that

jwk(x)dx = K. (18)

In the case where the stimulus illuminates the entire vertical extent of the eye, K
is equal to the total inhibition exerted by the entire eye on any one ommatidium.
If the stimulus does not cover the entire eye, K is the total inhibitory strength of
the portion of the eye which is illuminated. From Egs. 17 and 18 we have

K = N-(AaeV'7 — Bb\V/7), (19)
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or

= __.__K__.___ —x%a% _ —x2b?
k(x) (A = Bom (Ae=="! Be==1%%), (20)

Taking the Fourier transform of Eq. 20 yields the effective one-dimensional
transfer function k(£):

k(E) = [k(x)e~%2dx = (Aae™¢"0"1t — Bbe¢"0"14), (21)

K
(Aa — Bb)
We note that £(0) = K, as required by Eq. 18.

The point-spread function P(x) describes the distribution on the retina of the
image of a “point” stimulus (here, a vertical line). For convenience, we model
this function as a normalized Gaussian distribution. This model yields the
transfer function

P(¢) = f P(x)e"3dx = ¢~¢*'14, (22)
where s is a parameter describing the width of the point spread function.
Specifically, s is the distance from the center of the image of a point light source
to the position where the intensity of the image drops to 1/e of its intensity at the
center,

A summary of the equations of the Hartline-Ratliff model appears in Table I.
This description of the dynamics of the Limulus lateral eye contains some 20

TABLE I

SUMMARY OF EQUATIONS FOR THE HARTLINE-RATLIFF MODEL FOR
THE Limulus LATERAL EYE

Description Equation no. Equation
Spatiotemporal trans- M-P(§)-E(w) G(w)
. 10 = TS/ A X
fer function FE @) 1+E(w) - Tr(w)- k()
Generator potential 11 G(w)=e“"‘“~( 1 )M-( l )"b- ( 1- R ) ( oo ),,
141t g 1+ityw, 1+it,w, 1+t,w
_ 1 _ . &k/(1+k)
Encoder 14 Elw) LK ! 1+i
TN+itw T+k
g e 1 1 1 C 1
h 1 T = . . .
Lateral inhibition 5 R [1+i7,w 1+it,w 1+mw] 1+irw
Two-dimensional in- A,
hibitory kernel 16 k(x, y) « eh(f)rn_") /#~D- e—(h%) ”
One-dimensional in- K ( _stad gt :)
= | Agzta® _ g-xtib
hibitory kernel 20 k) (Aa—BbN/m ¢ ¢
Fourier transform of i K ( T ens )
=2 . Age~ t20%4 —Bpe- €04
inhibitory kernel 21 MO=apn) "\ A% ¢

Point-spread 22 P(g)=et st
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nominal parameters. These are constrained, not only to model the overall
spatiotemporal transfer function, but also to model each component transduc-
tion so as to agree, within reasonable limits, with direct measurements of the
corresponding physiological process. For comparison, it may be noted that the
empirical spatiotemporal transfer functions, with which the model calculations
are to be compared, are obtained by interpolation from 128 independent
measurements (amplitude and phase at 64 spatiotemporal frequency pairs).

RESULTS

The results of a typical analysis experiment are shown in Fig. 3. We note the
following features: the transfer function shows a marked attenuation of the
response to flickering light at very high spatial frequency. Careful inspection of
the data indicates that this high frequency cutoff affects the response equally at
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Ficure 3. Spatiotemporal transfer function for the Limulus lateral eye. Bode
plots (log amplitude vs. log frequency; phase vs. log frequency) of measured
response at seven spatial frequencies (0.1, 1, 2, 4, 8, 16, and 32 cycles/eye width).
(A) The amplitude curves are superimposed on one set of axes for comparison (at
the peak, near 6 Hz, the amplitudes decrease monotonically with increasing spatial
frequency). Data points indicated (O) are direct measurements; the remainder of
the curves are interpolated and extrapolated as described in the previous paper
(Brodie et al., 1978). Small undulations of the amplitude curves at low frequency
are an artifact of the extrapolation procedure. (B) Phase curves are shown on
separate axes, modulo 27r; they are extrapolated at the same frequencies as the
amplitudes, above. Spatial frequencies increase from bottom to top.
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all temporal frequencies; the amplitude is diminished with little change in
phase. The behavior at low spatial frequency is more complex, and depends on
temporal frequency. At low temporal frequencies, the response to flicker is
diminished at low spatial frequency. Conversely, at intermediate temporal
frequency, the response to flicker at low spadal frequency is enhanced, as
compared to the response at intermediate spatial frequency. At high temporal
frequency, there is little dependence on spatial frequency in the low-to-moder-
ate range. The net result is an effective narrowing at low spatial frequency of
the “tuning” of the transfer function to a band of intermediate temporal
frequency (Rathiff et al., 1967; Ratliff et al., 1969). The general features of the
dependence on temporal frequency are a sharp cutoff at high frequency and a
broader attenuation of the response to low frequency flicker. Under our
conditions, the peak response is at approximately 6 Hz. This is somewhat higher
than has been reported previously (Knight et al., 1970), and reflects the elevated
temperature of our preparation (Brodie, 1978).

These features may be interpreted as follows: The cutoff at high spatial
frequency, which affects all temporal frequencies equally, is presumably due to
the degradation of the sinusoidal grating stimulus by the point-spread charac-
teristic of the system optics. At such high spatial frequencies, lateral inhibition is
canceled out (see below); thus, the only effect of the optical system is to average
the sine-wave grating stimulus so as to reduce its effective contrast at the test
ommatidium, reducing the response amplitude equally at all temporal frequen-
cles. The tuning of the frequency response at lower spatial frequencies is
presumed to be a consequence of lateral inhibition. The nature of the transition
from attenuation (at low temporal frequencies) to enhancement (at intermediate
temporal frequencies) to little effect (at high temporal frequencies) is a function
of the temporal properties of the lateral inhibitory transduction, T;. The lateral
inhibition increasingly lags in phase with increasing temporal frequency, until,
at ~6 Hz, the phase lags by one-half cycle, and the inhibition appears as
excitation (Ratliff et al., 1970). The general high temporal frequency cutotf and
low frequency attenuation reflect the temporal structure of the generator
potential transduction G. The low frequency structure is the result of the
“adaptation” process, whereas the high frequency structure depends mainly on
the “bump shape.”

DATA ANALYSIS AND PARAMETER DETERMINATION
Point-Spread

We now describe a quantitative treatment of some of these features of the
spatiotemporal transfer function, in terms of the parameters of the Hardine-
Ratliff model. We begin with the attenuation at high spatial frequency. In this
regime, the stimulus grating oscillates several times over distances in which the
inhibitory kernel presumably varies only slightly. As a result of the linearity of
the system, this results in effective cancellation of the time-varying component
of the inhibitory action of the retina on the test ommatidium. We therefore may
ascribe any dependence of the transfer function on spatial frequency in this
regime to the effect of the point-spread transfer function, P(£). Since this
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function enters the full spatiotemporal transfer function only as a real multipli-
cative factor, we expect this effect to operate equally at all temporal frequencies,
and to produce no phase shift. Hence, for ¢ large, Eq. 10 reduces to the simpler
approximate form

F(¢, 0) = M-P(¢)E(w)G(w), (¢large). (23)

Thus (at high spatial frequencies) for fixed temporal frequency, the transfer
function is directly proportional to the point-spread function P(£). Accordingly,
we may determine the point-spread parameter s in Eq. 22 by plotting, for any
fixed temporal frequency o, the quantity log | F(¢, w)| vs. £; the slope of this
line is proportional to s?. The internal consistency of this determination may be
assessed by comparing the s-parameter values obtained from data at several
different temporal frequencies from the same preparation. Such an analysis of
the high spatial frequency cutoff is shown in Fig. 4. For the preparation of Fig.
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Ficure 4. Estimation of the point-spread parameter s. For each tixed temporal
frequency w, log | %(¢, w)| is plotted vs. £2, the square of the spatial frequency. At
high spatial frequency, slope of this locus is s*/4 (see text). Data from the
preparation of Fig. 3. Temporal frequencies were 0.5 Hz (O), 1.03 Hz (@), 2.1 Hz
(A), and 4.23 Hz (A). Values for the parameter s were 0.0085, 0.0085, 0.0085, and
0.0078 eye widths, respectively (mean 0.0083 eye widths).

3, we obtain the point-spread parameter values = 0.0083 eye widths. In general,
the oberved, point-spread parameter values are comparable to the radius of a
Limulus ommatidium (0.0125 eye widths), and are thus in good agreement with
the estimate of the effective optical point-spread obtained in the preceding
article by direct inspection of the crystalline cones (Brodie et al., 1978).

Lateral Inhibitory Kernel

According to our model, the remainder of the dependence of the spatiotem-
poral transfer function on spatial frequency is due to the structure of the
inhibitory kernel k(x), as reflected in its Fourier transform k(®. In order to
determine this function from the experimental data, we have found it expedient
to work with plots of the locus, on the complex plane, of 1/F(£, w) as a function
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of spatial frequency (¢), with temporal frequency (w) fixed. From Eq. 10 we
have

1 =[ 11 +_k(i).TL(w)]'i ©4)
F( o) | PE) E@Gw P G| M

This function has an extremely convenient form: it is a sum of two terms, each
of which is a (complex) function of temporal frequency multiplied by a real
function of spatial frequency. For fixed w, we may regard the complex numbers
1/E (w)G (w) and T (w)/G(w) as fixed vectors in the complex plane. As ¢ varies,
this reciprocal locus traces out a weighted sum of these two vectors (Fig. 5).
Interpretation of these loci is considerably simplified by the fact that the spatial
transfer functions P(£) and k(¢) vary strongly with ¢ in different regions of
spatial frequency. Thus, for low and intermediate values of ¢, where k is of

—*L1

\

Ficure 5. Reciprocal locus. The locus of the reciprocal ot the measured spati-
otemporal transfer function is plotted on the complex plane as a function of spatial
frequency, with temporal frequency held fixed. Data from Fig. 3, with temporal
frequency held at 1.03 Hz. Points at which measurements were made are indicated
(O). The arrows indicate the direction of increasing spatial frequency along the
locus. The loop at the low frequency end of the locus is an artifact of the spline
interpolation procedure used to generate the curve.

interest, the function P(£) is nearly constant; conversely, at high spatial fre-
quency, where P shows structure of interest, £ has fallen essentially to zero.
Thus, the reciprocal loci have a basic V-shaped form, first moving toward the
origin along a vector parallel to T ;(w)/G(w), then moving away from the origin
along the vector 1/E (w)-G(w). This separation of the scales of the functions P(¢)
and k(&) corresponds to the fact that the point-spread function P(x) is consider-
ably narrower than the narrowest feature of the inhibitory kernel k(x).

We may further isolate the role of the inhibitory kernel by multiplying Eq. 24
by the point-spread transfer function P(£):

P 1 L Tw)] 1
FE o [E(w)G(m) + k) G(w)] o (25)
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The quantity on the left of this equation may be thought of as the reciprocal of
the spatiotemporal transfer function, “corrected” for the effect of the point-
spread function. If we now hold o fixed and plot on the complex plane the
locus of Eq. 25 as a function of £, we obtain a corrected reciprocal locus, which
traverses a line parallel to the vector T (w)/G(w), according to the function k(£)
(Fig. 6). We may fix a reference point on this locus by considering the limit of
high spatial frequency. In this limit, £(¢) approaches zero, as described above,
and we have the asymptotic result:

PO 1 1
F(¢, 0 EwG(w) M

Equivalently, we may fix this reference point as the intersection of the high
frequency asymptote of the reciprocal locus (Eq. 24) with the low frequency arm

—-’11

(& large). (26)

N

Ficure 6. Corrected reciprocal locus. The locus of the product of the reciprocal
of the measured transfer function (data of Fig. 3, 1.03 Hz) and the estimated point-
spread transfer function (Eq. 22, s-parameter determined from data of Fig. 4) is
plotted as a function of spatial frequency, with temporal frequency held fixed.
Points at which measurements were made are indicated (O); the point of reference
for the measurement of the inhibitory kernel transform £(¢) is indicated by the
large arrowhead. Arrow indicates direction of increasing spatial frequency.

of the locus. This point presumably describes the phase of the system’s response
in the complete absence of lateral inhibition (Fig. 6).

Once this reference point is located on the corrected reciprocal locus, we may
then directly measure the signed distances of the points P(£)/F(£, w) of the locus
from this reference point. These distances, as a function of £, are proportional
to k(¢), the Fourier transform of the inhibitory kernel.

Typical results of this procedure are shown in Fig. 7. The measured values
for k(£) have been interpolated linearly. Though the data are somewhat noisy at
high spatial frequency, where the attenuation of the response reduces the
signal-to-noise ratio, the basic form of the function is clear. The transform %
falls rapidly from its initial value, overshoots the reference point where k£ = 0,
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and, at high spatial frequency, slowly returns to zero from below. This
overshoot corresponds to the slight offset of the vertex of the V-shaped
reciprocal locus to the opposite side of the high frequency asymptote from the
low frequency end of the locus (Fig. 5). This overshoot may be considered as
evidence, in the spatial frequency domain, for a small “crater” in the inhibitory
kernel k(x).? In essence, at intermediate spatial frequency, the broad inhibitory
portion of the kernel is cancelled by the oscillation of the grating stimulus, but
the narrower, oppositely signed component can still resolve the grating, and
results in a reversal in the sign of the time-dependent inhibitory effect. This
qualitative indication of the presence of a crater in the inhibitory kernel
represents an important advantage of sinusoidal gratings over single bars of
varying width as a test stimulus for the analysis of the spatial organization of
such a system. The inhibitory kernel k(x) may be obtained from these data by
taking the inverse Fourier transform of the measured function k(¢) (Fig. 7). In
both the space and spatial frequency domains, there is essential agreement
between the inhibitory kernel measurements at the different temporal frequen-
cies. This verifies the internal consistency of these measurements, and the
applicability of the Hartline-Radliff model (Eq. 10).

The inhibitory kernel data at the various temporal frequencies were averaged
together (Fig. 8). This averaged kernel was then fitted by eye with a difference
of two Gaussian distributions, according to Eq. 17. The parameters of this
model kernel specify the geometry of the inhibitory field. For the preparation
of Fig. 3, we obtained the following values: A = 2.06,a = 0.17 eye widths; B =
1.2, b = 0.025 eye widths. Similar data obtained in this way from several
preparations all strongly imply the existence of a small crater in the inhibitory
kernel.

This fitting procedure was also used for one experiment in which the usual
stimulus was rotated 90°, so as to produce a vertical band of light whose intensity
varied sinusoidally as a function of y, the vertical coordinate. The inhibitory
kernel in the vertical direction was found to be similar to that in the horizontal
direction, with a large Gaussian inhibitory lobe, and a small crater surrounding
the test ommatidium. (Parameters A = 3.7, a = 0.09 eye widths, B = 0.9,5 =
0.02 eye widths.)

Total Inhibitory Strength

The total inhibitory strength K is best determined at very low temporal
frequencies, where there is no significant phase lag between excitation and
inhibition, and where we may treat the response amplitude as a simple scalar
sum of excitation and inhibition. As @ approaches zero, we obtain the following
limiting form for Eq. 10:

M-b-1 = Ry ()

F(¢ o) = (w small), @7

1+ k(&)/(1 + k) ’

3 Such an overshoot can also correspond to a slight flattening ot the peak ot the inhibitory kernel,
rather than an actual crater, depending on the strength of the overshoot. In general, the overshoot

corresponds to a crater whenever f ER(E)dE < 0.
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Because the scales of P(£) and k(£) are well separated (see above), we may ignore
the point-spread function P(£) for low and moderate spatial frequencies, where
P(¢) = 1. With this approximation, we may attribute all of the dependence of
the response amplitude in this regime of spatial frequency to the effect of lateral
inhibition. The total extent of this dependence directly reflects the total
inhibitory strength K as follows: we define &, as that spatial frequency at which
the inhibitory transfer function £(¢) first crosses the ¢-axis (Fig. 9). At this spatial
frequency, the effect of the crater in the inhibitory kernel exactly cancels the
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FiGure 7. Inhibitory kernel measurements. For each of six temporal frequencies,
the inhibitory transfer function £(£) and the corresponding inhibitory kernel k(x)
are shown. Inhibitory transfer functions obtained from measurements of corrected
reciprocal loci, as in Fig. 6; each inhibitory kernel is the inverse Fourier transform
of the corresponding inhibitory transfer function. Data from Fig. 3; temporal
frequencies are (A) 0.1 Hz, (B) 0.23 Hz, (C) 0.5 Hz, (D) 1.03 Hz, (E) 2.1 Hz, (F) 4.23
Hz.

effect of the main inhibitory part of the kernel, and the test ommatidium sees
no time-dependent inhibition: thus,

F(éo, w) = M-(1 —R)-(,’w)p.(l —

) , (w small). (28)

On the other hand, we have £(0) = K, whence
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M-(1 - R)(iw)”(l i K)
F0, w) =

TFK/1+ 0 , (w small). (29)

We thus obtain the following expression for the (observable) quotient

Qo = F(éo, w)/FO, w):

MQ - R)(iw)”( )
1+« K
Qo = =1+—-) (30)

M(1~R)(iw)"(lj_K>/(l+]I:K) I+

k(€)
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FiGURe 8. (A) Averaged inhibitory transfer function, from data of Figure 7. (B)
Averaged inhibitory kernel, obtained as inverse Fourler transform of (A). (C)
Model inhibitory kernel (Eq. 17), fitted by eye to measured kernel of (B).
Parameters are A = 2.2,a = 0.17 eye widths, B = 1.2, 4 = 0.025 eye widths.

or

K - 1 31)

1+xk Q ) (
Alternatively, we may define £, as that spatial frequency at which the inhibitory
transfer function k(€) takes on its most negative value (Fig. 9). Near this spatial
frequency (for low temporal frequency), the effect of the lateral (“inhibitory”)
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interaction is to enhance the response of the test ommatidium; at ¢ = £, the

response is maximal. If we set k(&) = —6k(0) = —6-K, we have
. 1
Fley o) = — : (32)
1+«

We may thus form the (observable) quotient Q, = F(£,, w)/%(0, w):

K
- mr (15)/(1+%5) 1

Ql:M(l—R)(iw)”- 1 /1+ K - K
1+« 1+« 1+«

’ (33)

«k(0)
v
1l
3
NRANA]
N

Ficure 9. Determination of total inhibitory strength. Characteristic spatial fre-
quencies & and ¢, are defined from the measured spatial inhibitory transfer
function k() as shown. The parameter 8 is determined as the ratio —k(¢,)/k(0). For
the data of Fig. 3, this procedure produced quotients Q, = 2.545, Q, = 2.63 (8 =
0.069), yielding estimates of K/(1 + k) = 1.545 and 1.380, respectively (see text).

or

K _ Ql—l
1+ 1+6:-Q

34)

These two estimates depend on observation of somewhat different features of
the low frequency transfer function, and provide a check on each other (Fig. 9).
For the preparation of Fig. 3, we obtained the values Q, = 2.545, Q; = 2.63 (6
= 0.069), yielding estimates of K/(1 + «) = 1.545 and 1.380, respectively. (Our
model transfer function (Fig. 12) was calculated with K/(1 + x) = 1.3, which fit
the data slightly better.) The occurrence of the quotient K/(1 + «) on the left of
Eq. 31 and 34 reflects the fact that the lateral inhibitory transduction follows the
encoder transduction, and cannot be studied in isolation by our methods.

The transfer functions which remain to be determined are those that depend
only on temporal frequency: E (w), G(w), and T (w). These functions determine
the directions and lengths of the “arms” of the reciprocal loci at the different
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temporal frequencies (Fig. 10), but because they occur as products or quotients
in Eq. 25 it is difficult to extract the model parameters for these functions
directly from measurements of these loci, as was done for the spatial transfer
functions. Instead, we have found it convenient to adjust these parameters so as
to match the Bode plots of the complete spatiotemporal transfer function (Fig.
11); the reciprocal loci calculated for the model transfer function then serve to
check the accuracy of the model. Below, we discuss the extent to which the
individual parameters can be associated with specific features of the measured
transfer function.

Generator Potential

We begin with the generator potential transfer function G (w) (Eq. 11). The most
prominent feature of the generator potential transfer function is the severe

. ;
—f—1 +1

E

s <

N

Ficure 10. Reciprocal loci, as in Fig. 5, are plotted for six temporal frequencies:
(A) 0.1 Hz, (B) 0.23 Hz, (C) 0.5 Hz, (D) 1.03 Hz, (E) 2.1 Hz, and (F) 4.23 Hz. The
loci have been magnified by factors of 1, 2, 3, 4, 6, and 8, respectively. Arrows
indicate direction of increasing spatial frequency.

cutoff at high frequencies. This is a consequence of the two factors of the form

1+ it
cies exceeding 1/t. Thus, the time constants in these factors can be estimated by
noting the frequency at which the high-frequency cutoff begins. In practice, the
two factors of this form are not separable in terms of their effect on the overall
transfer function. However, they have been independently measured in excised
preparations by Wong, who measured the intracellular voltage directly by

1 n .
( ) . In general, such a factor produces a severe attenuation at frequen-
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means of intracellular microelectrodes (Wong, 1977).2 Such measurements
provide starting points for estimates of the parameters for our data. For
example, Wong’s values for ¢4, the time constant for dispersion of bump
latencies, were approximately one-half of his values for ¢,, the time constant for

Relative amplitude

Phase (radians)

L 1 ! 1 | b 1

o0t 0.1 I ) 100
Temporal frequency {Hz)

Ficure 11. Estimation of temporal transfer function parameters. The features
indicated depend most strongly on particular transfer function parameters, as
shown, and were used to fit these parameters, as discussed in the text. (@) High-
frequency cut-off determines generator potential time constants tq and ¢,. ()
Steepness of phase lag determines exponents n, and n,; low-frequency phase lead
determines time-constant ¢,. (¢) Frequency range of adaptation effect determines
time constant ¢,. (d) Magnitude of adaptation effect determines adaptation coeffi-
cient R. (¢) Low spatial frequency tuning amplitude peak and phase dependence
fitted by strength k and time constant 7 for encoder transfer function E(w). (f)
Lateral inhibitory transfer function T (w) adjusted to fit fine structure of spatial
dependence at intermediate temporal frequencies. Data from Brodie et al. (1978),
Fig.4 A, B.

the bump shape; we have preserved this relationship in our choice of parameters
to describe the preparation of Fig. 3:t4, = 0.0091 s, ¢, = 0.019s.

The exponents ny and n, control the steepness of the high-frequency
amplitude cutoff (as opposed to the frequency at which it occurs), and also the
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rate of increase of the high-frequency phase lag of the generator potential
transfer function with increasing frequency. For our data, the phase effect
proved very dramatic, and unambiguously determined our choice of ny + n, =
8. This choice of exponents is consistent with Wong’s more direct measure-
ments. The time constant¢;, the mean latency of the voltage bumps, produces a
small adjustment in the phase of the response, with no effect on amplitude. For
the data of Fig. 3, we used ¢; = 0.023 s.

Adaptation Parameters

We consider next those parameters of the generator potential transfer function
which describe the adaptation process. For the exponent in the factor
[itaw/(1 + it ,w)]7,
we chose the value p = 0.25, as suggested by the measurements of low-frequency
transfer function data by Biederman-Thorson and Thorson (1971). This choice
of exponent is consistent with our measurements below 1 Hz, and, as described
in the preceding article, it correctly accounts for the response of the eye to
slowly moving stimuli (Brodie et al., 1978). The adaptation time constant ¢,
determines the frequency above which adaptation ceases to significantly affect
the response of the eye; it may be estimated from the position (relative to the
frequency axis) of the increasing portion of the amplitude data (see Fig. 11). For
the data of Fig. 3, the value t, = 0.020 s was chosen.
There remains to be determined the parameter R in the factor

(1 — R/{1 +it,w)),

which governs the magnitude of the adaptation effect. In the absence of lateral
inhibition, the effect of this factor cannot be formally distinguished from the
effect of self-inhibition, which is described by a factor of similar form. On the
other hand, unlike light adaptation, self-inhibition modifies the effect of lateral
inhibition. This allows the independent determination of the parameters of self-
inhibition (see below). Once these are estimated, the parameter R may then be
adjusted to account for the residual attenuation of the response at low frequen-
cies. (The ratio of the response at low frequencies to that at intermediate
frequencies is proportional to 1 — R.) For the preparation of Fig. 3, this
procedure resulted in the value R = 0.89.

Lateral Inhibition

The lateral inhibition transfer function 7';(w) is described by four time constants
and the ratio of the initial excitatory component to the main inhibitory
component (Eq. 15). This transfer function controls the transition from atten-
uation to enhancement of the response to low spatial frequency gratings as
temporal frequency increases; it also controls the high-frequency cutoff of
lateral inhibition, which sets in at somewhat lower frequencies than the cutoff of
the generator potential. The calculated transfer function is most sensitive to
these parameters in the region of the “inversion” of the sign of the lateral
“inhibitory” interaction (see Fig. 11), though it is difficult to systematically
describe the effects of the individual time constants. For the data of Fig. 3, the
best fit was obtained with the magnitude C of the excitatory component set
equal to zero; the corresponding time constant 73 becomes undefined. The
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other time constants, which then become formally equivalent, were given values
of 0.0415, 0.0415, and 0.010 s.

Self-Inhibition

The effects of self-inhibition are contained in the transfer function of the
encoder mechanism, E (w). This transfer function occurs twice in the Hartline-
Ratliff model (Eq. 10): in the numerator, where it describes a high-pass
characteristic of the excitatory process, and in the denominator, where it
represents a similar feature of the lateral inhibitory process. As mentioned
above, it is difficult to separate the effect of self-inhibition on the excitatory
process from that of light adaptation, though direct measurements of self-
inhibition suggest it is a much slower process. We therefore relied mostly on the
modulation of lateral inhibiton by self-inhibition to determine the self-inhibitory
parameters.

It may be recalled that the ratio K/(1 + «) was dirertly determined from the
transfer function data at low frequency. With this parameter regarded as fixed,
the effect of self-inhibition is to adjust the magnitude of the “inhibitory” tuning
effect seen in the intermediate temporal frequency range at low spatial frequen-
cies.* Thus, the size of this tuning peak effectively fixes the strength of self-
inhibition. For the data of Fig. 3, the value k = 1.0 was obtained. The time
constant 7 was then selected to best fit the overall width of the transfer function
peaks. For the data of Fig. 3, the value + = 0.125 s was chosen. This confirms
our assumptions that self-inhibition is considerably slower than light adaptation
(t, = 0.020 s). After the parameters for self-inhibition were estimated, the
adaptation parameters were readjusted as described above. No further improve-
ment in the fit of the model was obtained by further iterating the procedure.

Once all these parameters have been estimated, the complete model transfer
function can be compared with the data in several ways. A Bode plot of the
Hartline-Ratliff transfer function is shown in Fig. 12; it is to be compared
directly with Fig. 3. All of the qualitative features discussed above are well
modeled, as are most of the quantitative features.® The reciprocal loci offer
another comparison between the model and the data: Fig. 13 shows the locus
for a temporal frequency of 1.03 Hz, and should be compared with Fig. 5. Loci
for several temporal frequencies are shown in Fig. 14 (compare with Fig. 10).
The reciprocal loci are well modeled over a broad range of temporal frequen-

¢ This may be demonstrated as follows: as above, define &, such that k(&) = 0, and set
K
Qo = F(&, 0)/F(0,0)=1+ Tre (Eq.30)
K

We regard Q,, and hence K/(1 + «) as known. Define o, as the frequency such that | F(0, w;)| is
maximal, and set W = F(0, w,)/F(&, wy). W is very nearly real, and measures the magnitude of the
tuning effect. As we may safely assume that E{w,) = 1, we have (0, w;) = G(w,)/(1 + KT ;(w,)), and
F(&, wy) = G(wy). This yields

W = 1/(1 + KTy(ap)) = 1/(1