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Abstract: The problem of diffusion-controlled growth following an instantaneous nucleation event
was studied within the framework of a new numerical model, considering the spatial distribution
of hemispherical nuclei on the electrode surface and the mutual influence of growing nuclei via the
collision of 3D diffusion fields. The simulation of the diffusion-controlled growth of hexagonal and
random ensembles was performed at the overpotential-dependent number density of nuclei. The
diffusion flow to each nucleus within a random ensemble was simulated by the finite difference
method using the derived analytical expressions for the surface areas and the volumes formed at
the intersection of 3D diffusion fields with the side faces of a virtual right prism with a Voronoi
polygon base. The implementation of this approach provides an accurate calculation of concentration
profiles, time dependences of the size of nuclei, and current transients. The results, including total
current density transients, growth exponents, and nucleus size distribution, were compared with
models developed within the concept of planar diffusion zones, the mean-field approximation and
the Brownian dynamics simulation method, as well as with experimental data from the literature.
The prospects of the model for studying the initial stages of electrocrystallization were discussed.

Keywords: electrocrystallization; computer simulation; Voronoi tessellation; diffusion; kinetics

1. Introduction

The initial stages of electrocrystallization are one of the key moments, both for fun-
damental studies of phase formation and for the development of electrochemical nan-
otechnologies [1–3]. The simplest way to obtain data on the mechanism and kinetics of
the process is to study the nucleation/growth regularities at constant supersaturation
(overpotential), i.e., under potentiostatic conditions. However, an exact mathematical
description of the diffusion-controlled growth of new-phase nuclei formed on the electrode
surface remains an insoluble problem, even in this case. The main difficulty arises from the
development of diffusion fields around growing nuclei, which affect the nucleation and
growth rates in their vicinity [4].

Analytical expressions for potentiostatic current transients can be derived only using
certain assumptions, e.g., within the framework of the so-called “concept of planar diffusion
zones” [5–12]. In this approach, the gradual overlap of 3D diffusion fields of growing
hemispherical nuclei is replaced by the overlap of 2D equivalent diffusion zones on the
electrode surface, and this problem is solved using Kolmogorov–Johnson–Mehl–Avrami
(KJMA) theory [13–15]. Thus, the current density is proportional to θ = 1− exp(−θex),
where θ and θex are the fractions of the area covered by diffusion zones with and without
considering the overlap, respectively. The radius of each zone is determined from the
condition that the amount of material diffusing towards it by linear diffusion is equal
to that transferred to the hemispherical growing center through spherical diffusion. The
nuances associated with the zone growth rate and the nucleation rate led to several solutions
for progressive nucleation. Equations for the limiting case of instantaneous nucleation
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(site-saturation nucleation), when nuclei are formed at all active centers of the electrode
surface at t = 0, were also given in [5,6]:

i = zec0

(
D
πt

)1/2[
1− exp

(
−πk̃DN0t

)]
, (1)

(
i

im

)2
=

1.9542
t/tm

{1− exp[−1.2564(t/tm)]}2, (2)

im = 0.6382zec0D(k̃N0)
1/2

, tm = 1.2564/πk̃DN0, (3)

where i (A·cm−2) is the current density, z is the valency of depositing ions, e (C) is the ele-
mentary electric charge, c0 (cm−3) is the bulk concentration of depositing ions, D (cm2 c−1)
is diffusion coefficient, t (s) is time, k̃ = (8πc0υ)1/2, υ (cm3) is the volume of one atom
of the deposit, N0 (cm−2) is the number density of sites, and im and tm are the coor-
dinates of the maximum. Despite significant approximations, the above models pro-
vide a qualitatively correct prediction of the shape of the experimental current transients.
In addition, the Scharifker–Hills (SH) model [5,6] describes adequately the current at
θ→ θex and θ→ 1, i.e., spherical diffusion to independent nuclei and planar diffusion to
the electrode, respectively. The Scharifker–Mostany (SM) model [7] gives underestimated
values of the current up to the transition to the Cottrellian behavior [12,16,17]. Sufficiently
simple procedures for extracting quantitative information about the nucleation and growth
parameters from experimental current transients using models [6,7] determine their wide
practical application. However, the analysis based on dimensionless dependences [6] is
criticized for masking the actual discrepancies between the experimental and theoretical
curves [11]. Moreover, values of the number density of active sites and/or the nucleation
rate constant calculated from the maximum coordinates [6] or by fitting [7] often differ
by several orders of magnitude from the values found using microscopic (SEM, AFM,
TEM, etc.) observations [18–21].

The validity of this approach and the reliability of the results obtained using the
above models are still being discussed. Abyaneh believes [22] that Equation (1) and other
equations of current transients in models [4–10] describe the growth of right-circular cones,
and not of hemispheres, since they “fail to mathematically address the effects of the overlap
of diffusion zones on the overall rate of electrocrystallisation”. On the contrary, according
to Politi and Tomellini [23], the “planar diffusion zones” approach actually provides a good
approximate solution to the complex problem of diffusion-controlled growth due to the
interference between diffusion fields, at least for simultaneous nucleation. Moreover, the
application of this approximation to modify the stochastic approach, which considers the
processes of 3D nucleation and growth without the interaction of diffusion fields [23–25], is
useful for determining the nucleus growth law, mean film thickness, and surface coverage
of the electrode [23].

More complex approaches were proposed in [26–31] to describe the kinetics of diffusion-
controlled growth following instantaneous nucleation within the framework of various
approximations. Di Biagio and Tomellini [26] studied the effect of the correlation between
diffusion fields on the growth of semicircular nuclei by numerical integration of the diffu-
sion equation by the finite difference method, adapted the Voronoi cell method [32] and the
linear diffusion approximation for modeling the kinetics of 3D electrodeposition, and ex-
plained the change in the growth rate of hemispherical nuclei. Tomellini and Fanfoni [27,28]
considered the relationship between the KJMA kinetics and Voronoi diagrams.

Bobbert [29] solved the problem of diffusion to an ensemble of slowly growing hemi-
spherical nuclei on a substrate using the mean field approximation: the nuclei were consid-
ered to be point sinks and the inhomogeneous diffusion equation was solved by means of
the Green function. In numerical simulation, the random spatial distribution of nuclei was
additionally taken into account and a correction was introduced for microscopic fluctua-
tions of the concentration field. As a result, the reduced current transients deviated from
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the SH model at t/τ > 2.5, where τ = πk̃DN0, and dispersion in the sizes of the nuclei was
about 5%. Tokuyama [30,31] used a similar approach and showed that the static many-body
(screening) effect leads to a change in the growth exponent for the average nucleus radius
from 1/2 to 1/6, the dynamic many-body (correlation) effect causes dispersion of the
average size of the nuclei, and the behavior of the average current transient depends on the
volume fraction of the nuclei.

Cao et al. [33] performed direct numerical simulations using the boundary integral
method to study instantaneous and progressive nucleation followed by diffusion-controlled
growth. The Monte Carlo method was used to simulate nucleation, and a Green’s function
based on spherical sources was used to calculate the concentration of depositing ions
at any point in space and time. The application of this method was limited to the case
when the distance between nuclei is 5–10 times greater than the radius of the nucleus. For
instantaneous nucleation, dimensionless transients i/im SH vs. t/tm SH (im SH and tm SH
were calculated from Equation (3)) were identical to those obtained in [29–31].

Nagy et al. [34,35] proposed a model of diffusion-controlled electrodeposition process
using a 3D random walk algorithm. During simulation, the authors determined the current
associated with the growth of one hemispherical nucleus placed at the bottom of a prism
with a square base. The effect of neighboring domains was taken into account when the
diffusion layer reached the side walls of the simulation box [35]. At a low concentration of
depositing ions, the simulated current transients for nuclei located on a square lattice were
close to the SH model.

Fransaer and Penner [36,37] applied the Brownian dynamics simulation method to
study the diffusion-controlled growth of random and hexagonal ensembles of nanosized
silver hemispheres following an instantaneous nucleation event on the surface of a graphite
end electrode during the electrodeposition from solution. For a random ensemble, a
qualitatively good agreement was found with the dependences calculated by Equation (1).
The main distinction was the lower im value compared to the SH model (especially at
large N0). The difference in the size of nuclei increased as the electrodeposition time
increased and the distance to the nearest neighbor decreased. For hexagonal ensembles,
noticeable deviations of i(t) from the theoretical dependences [38,39] and an insignificant
size dispersion were observed.

Numerical simulation is certainly a powerful tool for the quantitative description
of complex processes [40–45], including nucleation and diffusion-controlled growth of
randomly distributed nuclei. However, simulating the diffusion process as collisions
among multiple random walkers using the standard kinetic Monte Carlo method (KMC)
is associated with serious computational limitations, when the concentration of diffusing
particles is low. To address this issue, Oppelstrup et al. [42] proposed an algorithm based
on the theory of first-passage processes and time dependent Green’s functions to propagate
the walkers over long distances in a single KMC step. The finite difference method is
another suitable option. For example, Zargarnezhad and Dolati [43] applied a finite-
difference method of 3D Crank-Nicholson scheme over non-uniform grid distribution with
an adaptive time-step in the vertical direction to a substrate to simulate mass transfer in
solution. Pricer et al. [44] and Saedi [45] successfully used a 1D finite difference model for
the mass transfer of electroactive species in the electrolyte.

In this work, we propose an approach for numerical simulation of the diffusion-
controlled growth following an instantaneous nucleation event. We use the usual approxi-
mations of the classical theory of nucleation and the finite difference method to simulate
the fluxes of depositing ions to each hemispherical nucleus growing by the direct attach-
ment mechanism under potentiostatic conditions. The results for random and hexagonal
ensembles are compared with the SH model and literature data.



Materials 2022, 15, 3603 4 of 16

2. Model and Calculation Method
2.1. Hexagonal Ensemble

In the case of a uniform distribution of identical nuclei over the electrode surface,
mass transfer to each nucleus (extreme nuclei are not considered in this work) will occur
through spherical diffusion inside a virtual right prism with a base in the form of a regular
hexagon (Figure 1). A good approximation in this case is to replace the prism with a
cylinder with base radius R (cm), provided that the base area of the cylinder is equal to the
area of this hexagon.

Figure 1. (a) Part of a hexagonal ensemble (a top view); (b) Cross section of the virtual diffusion
cylinder of the nucleus equidistant from six similar neighbors. The scheme illustrates the change in
the concentration of depositing ions (via a color gradient) and the mass transfer conditions inside a
virtual cylinder with a base radius R due to the growth of a nucleus within the ensemble.

When the number density of nuclei is low and/or the electrodeposition time is short,
the nuclei will not affect each other’s growth. Then the radius of any nucleus, r (cm), and
the growth current, Ig (A), can be easily found using the well-known expressions [46–48]:

r = (2Dυc0)
1/2[1− exp(− f η)]1/2t1/2, (4)

Ig = πzeυ1/2(2Dc0)
3/2[1− exp(− f η)]3/2t1/2, (5)

where f = ze/kBT, kB (J K−1) is the Boltzmann constant, T (K) is the absolute temperature,
and η (V) is the overpotential.

Otherwise, the growth rate of nuclei will gradually decrease due to the collision of
their 3D diffusion fields. To solve this problem, let us consider the growth of one nucleus
equidistant from six nearest neighbors that affect the kinetics of its growth (Figure 1a). To
simulate the mass transfer to the nucleus, we divide the volume of the virtual cylinder
into k small volumes bounded from above and below by hemispherical surfaces or sur-
faces formed by the intersection of cylindrical walls with hemispheres of different radius
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(Figure 1b). The radii, Rk (cm), surface areas, Sk (cm2), and volumes, Vk (cm3), can be found
as follows:

Rk = γkr, (6)

Sk =

{
2πR2

k, ξ < R
2πRk[Rk − (R2

k − R2)
1/2

] , ξ ≥ R
, (7)

Vk =

{
2πR2

k/3, ξ < R
2π [R3

k+1 − R3
k − (R2

k+1 − R2)
3/2

+ (R2
k − R2)

3/2
]/3, ξ ≥ R

, (8)

where k = 1, 2, etc., ξ (cm) is the distance from the center of the nucleus, and γ is a coefficient
whose value is slightly greater than 1. The growth of the nucleus leads to a gradual change
in the concentration of depositing ions in each of the Vk volumes. The change in the
concentration profile c(ξ,t) for a small interval, ∆t (s), is associated with a change in the
number of depositing ions, ∆nk, in each small volume due to flows through the upper and
lower boundaries (i.e., the influx from Vk+1 and the outflow in Vk–1). Then

∆ck = ck(t + ∆t)− ck(t) = (∆nk+1 − ∆nk)/Vk, (9)

∆nk = −DSk(ck − ck−1)∆t/∆ξ, k > 1, (10)

where ∆ξ (cm) is the distance between the centers of adjacent volumes. Equation (10) was
obtained using the equations of Fick’s first law and the particle flux density, j = ∆n/S∆t.
For the volume V1 adjacent to the nucleus of radius r, we have:

∆n1 = −2πr2 j1∆t, (11)

j1 = −D(∂c/∂ξ)ξ=r. (12)

This approach is suitable for calculating the current density spent on the growth of
the nucleus,

ig = zeD(∂c/∂ξ)ξ=r, (13)

and the time dependence of nucleus radius (taking into account the mass balance on the
electrolyte/nucleus interface):

d r
d t

=
igυ

ze
. (14)

Finally, the total current for the hexagonal ensemble is found as

I = 2πr2igN0 (15)

because the growth current densities and sizes of all nuclei are the same in this case.

2.2. Random Distribution of Nuclei

The same approach was applied, but Voronoi tessellation was used to determine the
area of the electrode surface related to each nucleus (Figure 2a). Accordingly, the mass
transfer to any nucleus occurs through spherical diffusion inside a virtual right prism with
a Voronoi polygon as a base. To find Sk and Vk in the case of a random spatial distribution
of nuclei, each polygon was divided into rectangular triangles (Figure 2b) and the surface
areas, sk, and volumes, vk, formed at the intersection of hemispheres of different radii,
Rk, with the side faces of a triangular prism were initially determined. For sk and vk, the
following analytical expressions were obtained:

sk =


R2

karctan(b/a), Rk ≤ a
R2

karctan(b/a)− πR2
k[1− (a/Rk)]/2, a < Rk ≤ c

AR2, Rk > c
, (16)



Materials 2022, 15, 3603 6 of 16

vk =


R3

karctan(b/a)/3, Rk ≤ a
R3

karctan(b/a)/3− πR3
k

[
(a/Rk)

3 − 3a/Rk + 2
]
/12, a < Rk ≤ c

BR3
k/2, Rk > c

, (17)

where a, b, and c are the adjacent leg, opposite leg, and hypotenuse of this right
triangle, respectively,

A = arctan

 a
b

√
R2

k − c2

Rk

− arctan
( a

b

)
+

a
Rk

arcsin

 b√
R2

k − a2

 (18)

B = ab
3

√
R2

k−c2

R3
k

+ 2
3

[
arctan

(
a
b

√
R2

k−c2

Rk

)
− arctan

( a
b
)]

+ a
3Rk

[
3−

(
a

Rk

)2
]

arcsin
(

b√
R2

k−a2

)
(19)

Figure 2. (a) Voronoi tessellation for 1000 nuclei and magnified images of selected domains. Areas of
colored cells in ascending order of cell numbers (#), Sv (cm2): 6.13 × 10−6, 2.13 × 10−6, 7.06 × 10−7,
8.77 × 10−7, 1.17 × 10−7. Half-distance from nucleus to the nearest neighbor for the same cells,
Rv (cm): 3.34× 10−4, 6.19× 10−4, 2.95× 10−4, 4.89× 10−5, 9.23× 10−5. The results of the calculation
using (a) and their discussion are given in Section 3.2. (b) Schematic illustration explaining how Sk

and Vk are calculated at a random spatial distribution of nuclei. Symbols a, b and c are included in
Equations (16)–(19).
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Summing the corresponding sk and vk gives a set of Sk and Vk for each polygon.
Similar formulas can be used to calculate the volumes and surface areas of colliding nuclei
whose radius exceeded half the distance to the nearest neighbor during growth. The
total current of randomly distributed nuclei can be obtained by summing the individual
contributions of all N nuclei, taking into account their actual surface area, sN (cm2), and
growth current density:

I = ∑
N

sNig N. (20)

In other respects, the calculation principle for c(ξ,t), ig(t), and r(t) does not differ from
that described in Section 2.1. The proposed approach gives concentration profiles, time
dependences of the radius, volume, surface area, and growth current of each nucleus. Thus,
complete and accurate information about the evolution of the entire ensemble of nuclei is
provided without any averaging.

2.3. Parameters and Simulation Procedure

A series of potentiostatic current transients for hexagonal ensembles was calculated
in the overpotential range from 10 to 140 mV. The values of the radius R and the number
density of nuclei, N0 = 1/(πR2), used in the simulation are given in Table 1. The values of N0
agree in order of magnitude with data from the literature [10,49] and increase exponentially
as the overpotential increases. The exponential dependence N0(η) was experimentally
confirmed for instantaneous nucleation, e.g., in [50].

Table 1. Values of the overpotential, number density of nuclei, and the half-distance between the
nearest neighbors (for hexagonal ensembles).

η, mV 1 N0, cm−2 R, cm

10 7.96 × 104 2.00 × 10−3

20 1.02 × 105 1.76 × 10−3

40 1.69 × 105 1.37 × 10−3

80 4.58 × 105 8.34 × 10−4

100 7.55 × 105 6.49 × 10−4

120 1.25 × 106 5.06 × 10−4

140 2.05 × 106 3.94 × 10−4

1 N0(η) = 6.2 × 104 exp (0.025η) in this paper.

Voronoi tessellations for modeling random ensembles were obtained using the Fortune
algorithm [51]. In this work, the results are presented only for the diagram in Figure 2a,
because changing the tessellation did not actually affect the total current transients at
N = 1000. At the same overpotential, the N0 value for a random spatial distribution was
equal to that for a hexagonal ensemble.

The initial nucleus radius, r0 (cm), slightly exceeded the critical size, rc (cm):

r0 = rc + ε, rc = 2συ/zeη0, (21)

where σ (J·cm−2) is the surface tension of the electrolyte/nucleus interface and ε = 10−9 cm.
The concentration of depositing ions near the nucleus surface, csr (cm−3), depended

on the overpotential [46]:
csr = c0 exp(− f η) (22)

The finite-difference code was implemented in Excel using the built-in VBA pro-
gramming language [52] to simulate the diffusion-controlled growth of each nucleus.
Semi-infinite diffusion was simulated in this work at a maximum ξ value equal to 1 cm.
The time step, ∆t = [r(γ−1)]2/(3D), ensured the stability, acceptable rate and accuracy of
calculations at γ = 1.1. The error of the current value at the maximum point was 0.5%.
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The concentration profile near the nucleus was approximated by the equation

c(ξ) = m/ξ + nξ2 + pξ + q (23)

at each time step. The coefficients of Equation (23) were found by solving a system of
four equations using the Gauss method, taking into account csr and concentrations in the
centers of volumes V1, V2, and V3. Thus, the growth current density was calculated using
Equation (13) with

(∂c/∂ξ)ξ=r = −m/r2 + 2nr + p. (24)

When the nucleus size increased by 0.1%, the radii of all surfaces were recalculated in
accordance with Equation (6), i.e., all surfaces moved up (except for the fixed last one). The
penultimate surface was destroyed if its radius exceeded 0.95 cm.

The electrocrystallization parameter values were close to those for silver electrode-
position from the AgNO3-KNO3-NaNO3 melt (cAg+ = 0.0166 M) [53]: T = 523 K, z = 1,
υ = 1.7 × 10−23 cm3, σ = 1 × 10−5 J cm−2, D = 1 × 10−5 cm2 s−1, c0 = 1 × 1019 cm−3. It was
shown experimentally [46,53] and theoretically [54] for this system that, in a wide range
of overpotentials, the rate of the charge transfer stage affects the kinetics of the nucleus
growth only at the very initial stage, when the nucleus size is close to the critical one. The
contributions of side processes, including surface diffusion, are also negligible [53,55], so
this system is the most suitable for studying diffusion-controlled growth.

3. Results and Discussion
3.1. Hexagonal Ensemble

Typical concentration profiles for diffusion-controlled growth of a nucleus equidistant
from six similar nuclei (see Figure 1a) are presented in Figure 3 at some time points in the
range 0.05 s ≤ t ≤ 25 s (solid lines). For comparison, Figure 3 also shows the concentration
profiles for stationary spherical diffusion to an independent nucleus [46], whose radius is
described by Equation (4),

c(ξ, t) = c0 − (c0 − csr)
r(t)

ξ
(25)

at t = 0.25 s and t = 25 s (dotted lines), and for planar diffusion to the electrode [56],

c(ξ, t) = c0 erf

[
ξ

2(Dt)1/2

]
(26)

at t = 25 s (a dashed line).

Figure 3. Concentration profiles for any nucleus within the hexagonal ensemble (dark red solid
lines) for the ten t values indicated to the right of the figure (t = 0.05 s for the top profile and t = 25 s
for the bottom one). Parameter values: c0 = 1 × 1019 cm−3, η = 100 mV and R = 6.49 × 10−4 cm
(N0 = 7.55 × 105 cm−2). For comparison, the concentration profiles for spherical diffusion to the
independent nucleus (dotted lines) and planar diffusion to the electrode (a dashed line) are also
shown here for the same c0 and η values and t = 0.05 s and/or t = 25 s; (a,b) differ only in ξ scale.
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Each concentration profile associated with mass transfer to a nucleus within a hexag-
onal ensemble can be characterized as follows: spherical diffusion to a nucleus always
realized at ξ < R, and a gradual transition to planar diffusion to the electrode occurs as
a result of propagation and collision of 3D diffusion fields of growing nuclei at ξ ≥ R.
A slight inflection in the concentration profiles near ξ = R is a consequence of this transition.
Mass transfer becomes purely planar at ξ > 10R. Figure 3 also demonstrates the change in
the shape of the concentration profile as the electrodeposition time increases: the simulated
profile practically coincides with that calculated by Equation (25) at small t (e.g., 0.05 s),
and c(ξ,t) is close to that described by Equation (26) at large t. As far as we know, the
concentration profiles for this case have not been calculated so carefully in other works.

Figure 4a presents a series of potentiostatic current density transients for hexagonal
ensembles in which the number density of nuclei increases and the distance between
nearest neighbors decreases, according to Table 1, as the overpotential increases. It can
be seen that the shape of the calculated i(t) dependences and their mutual arrangement
are similar to those observed experimentally for many systems at a low concentration of
depositing ions. Namely, as the overpotential increases, the maximum value of the current
density (im) increases, the time to reach the maximum (tm) decreases, and the final i(t)
sections converge and merge with the curve described by the Cottrell equation.

Figure 4. (a) Calculated potentiostatic current density transients, (b) time dependences of the growth
current, (c) time dependences of the nucleus radius, and (d) logarithmic dependences of the nucleus
radius on time for hexagonal ensembles. Designations of colored lines in (b,c) are given in (a).
Parameter values are given in Section 2.3 and Table 1. The radius and growth current of a single
nucleus were calculated using Equations (4) and (5), respectively. The cathode overpotential and
current are considered positive in this work.

Figure 4b,c show the time dependences of the growth current and nucleus radius,
respectively. It can be seen that Ig(t) and r(t) depend ambiguously on the overpotential.
On the one hand, a higher overpotential (i.e., a lower concentration of depositing ions
near the nucleus surface) promotes a higher growth rate at the initial stages, when the
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influence of neighboring nuclei is small. On the other hand, a higher number density of
nuclei at higher overpotentials enhances competition due to the overlap of diffusion fields
and leads to a noticeable decrease in the growth rate. The combination of these factors
contributes to the formation of the largest nuclei in the selected system at η = 40 mV due to
the highest growth rate. As the overpotential increases, the csr value and its effect on the
growth kinetics decrease. At sufficiently high overpotentials (at η ≥ 80 mV in this case),
the growth rate depends mainly on the number density of nuclei, i.e., the growth current
and the nucleus size decrease as N0 increases.

Comparison with curves for a single (independent) nucleus demonstrates a decrease
in the growth current and the size of nuclei due to the mutual influence of neighbors
(see Figure 4b,c). Figure 4d shows the logarithmic dependences needed to determine the
growth exponent from slopes of two straight-line sections. It is known that the growth
exponent can vary from a value of 1/2, corresponding to the stationary growth of the
independent nucleus, to a value close to the theoretical limit of 1/6, corresponding to
growth due to purely planar diffusion [19,26,31,57]. The simulation shows that the slopes
x1 and x2 depend on the overpotential and the number density of nuclei. At high η and
N0 (dark blue curve in Figure 4d), the value of x1 decreases significantly, which is in good
agreement with [19,36], and the value of x2 ≈ 1/6 can be achieved.

Figure 5a demonstrates a comparison of several i(t) curves from Figure 4a with the
SH model and the theoretical dependence derived in [38,39] for instantaneous nucleation
followed by diffusion-controlled growth of a hexagonal array using the concept of planar
diffusion zones.

i(t) =


iCπk̃DN0t, t < γ−1

√
3iC
[√

γt− 1 + γt
(
(π/6)− arctan

√
γt− 1

)]
, γ−1 ≤ t ≤ (0.75γ)−1

iC, t > (0.75γ)−1
, (27)

where iC = zec0(D/πt)1/2 and γ = 2
√

3N0k̃D. The maximum of this dependence is unambigu-
ously related to the maximum of the SH model (Equation (3)), namely, im Equation (27) = 1.510 im SH
and tm Equation (27) = 0.778 tm SH ceteris paribus. Therefore, we presented in Figure 5a only
one curve calculated by Equation (27) for the highest number density of nuclei.

Figure 5. (a) Comparison of current density transients from Figure 4a with models based on the
concept of planar diffusion zones for random (Equation (1)) and hexagonal (Equation (27)) ensembles;
(b) Comparison of the same curves in dimensionless form.

As can be seen, the simulated dependences for the hexagonal ensembles are quite
close to the current density transients calculated by Equation (1) (Figure 5a), and the
dimensionless dependences (i/im)2 vs. t/tm almost coincide with the curve calculated
by Equation (2) (Figure 5b). Thus, they agree much better with the SH model designed
for random spatial distribution of nuclei than with the model for a hexagonal array [39].
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The same trend was observed in Brownian dynamic simulation of the diffusion-controlled
growth of hexagonal ensembles in [36].

These discrepancies can be explained as follows. In models based on the concept
of planar diffusion zones, the radii of all zones are the same in the case of instantaneous
nucleation, rd = (kDt)1/2, and are proportional to the radius of an independent nucleus
growing under stationary conditions, r = (2Dc0υt)1/2, and the effect of the overpotential is
detected only in the N0 value. This leads to an overestimation of the propagation rate of 2D
zones, an increase in the current up to the transition to planar diffusion, and a decrease
in the time to reach the maximum, which is especially noticeable when the nuclei are
regularly arranged (in a square or hexagonal ensemble). Our model takes into account
that the growth rate depends on the number density of nuclei and overpotential (via csr)
and significantly decreases with time as a result of the overlap of 3D neighboring diffusion
fields, which is consistent with the experimental and theoretical results [19,23,26,31,49,57].
The change in relative position of the simulated and SH current density transients (cf. solid
and dashed lines in Figure 5a) is explained by the decrease in csr as the overpotential
increases. Our simulations show that at high overpotential, im hex will always be higher
than im SH, but not by a factor of 1.5: im hex = 1.12 im SH and tm Equation (27) = 1.01 tm SH in the
limit csr = 0.

3.2. Random Distribution of Nuclei

In this case, c(ξ,t) dependences are individual for each nucleus and depend not only on
c0, csr(η), and N0, but also on the location relative to the neighbors, i.e., from the Voronoi cell
area, Sv (cm2), and the distance to the nearest side of the cell, Rv (cm). Figure 6 demonstrates
this fact for the concentration profiles of two nuclei from the random ensemble shown
in Figure 2a.

Figure 6. Concentration profiles of 551st (SV = 7.06 × 10−7 cm2, RV = 2.95 × 10−4 cm) and 590th
(SV = 8.77 × 10−7 cm2, RV = 4.89 × 10−5 cm) nuclei (see Figure 2a) at the times indicated on the right;
(a,b) differ only in ξ scale. η = 100 mV. Values for other parameters are specified in Section 2.3.

Differences in the conditions of mass transfer to each nucleus, associated with the in-
homogeneity of the spatial distribution, lead to a difference in the growth rates of the nuclei
and, as a result, to a dispersion of their sizes, despite the same initial radius (Figure 7a,b).
The nucleus radius increment mainly depends on the Voronoi cell area and, to a lesser
extent, on the distance to the nearest neighbor. The smaller SV and RV result in the smaller
nucleus radius and the greater deviation from the growth law of the independent nucleus
at large t. For example, at η = 100 mV, the growth exponent x2 = 0.2544 for the largest 48th
nucleus (SV = 6.13 × 10−6 cm2, RV = 3.34 × 10−4 cm), while x2 = 0.1752 for the smallest
775th one (SV = 1.17 × 10−7 cm2, RV = 9.23 × 10−5 cm). The indicated values of x1 and
x2 are in good agreement with the experimental data [19] and the results of Brownian
dynamics simulation [36].
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Figure 7. (a) Time dependences of the growth current, (b) time dependences of the nucleus radius for
five nuclei highlighted in Figure 2a; (c) Comparison of the total current density transients for random
and hexagonal ensembles with the SH model at the same number density of nuclei; (d) Dimensionless
dependencies for data of (c). The same designations of colored lines are used in (a,b). Parameter
values are given in Section 2.3 and Table 1.

An increase in the number density of nuclei contributes to a decrease in the growth
current and nucleus radius, but an increase in the total current density (Figure 7c). This
figure also shows that the maximum value of the current density for the random ensemble
im rand is always lower than for the hexagonal one at the same number density of nuclei.
In the limit csr = 0, im hex = 1.15 im rand and tm hex = 0.97 tm rand. In addition, im rand is
always lower than im SH (im rand = 0.98 im SH and tm rand = 1.04 tm SH at csr = 0) because the
moment of reaching the maximum is individual for each nucleus. For this reason, there is
the deviation of the dimensionless dependences from the SH model (Figure 7d), similar
to that often observed in experiments. Qualitatively similar results were obtained at low
concentrations of depositing ions in other simulations [29,31,33,36].

Note that the SH model was developed for high overpotentials, when csr can be
considered equal to zero and the effect of the charge transfer stage can be safely neglected.
However, the SH model is often used in practice at moderate overpotentials. Simulation
shows that this can lead to serious errors in determining N0 and D due to the above
difference in the values of (im, tm)rand compared to (im, tm)SH, even if the growth is indeed
diffusion controlled. For example, the error in the D value calculated from the product im2tm
will be more than 22% at η = 100 mV in our case (im rand = 0.85 im SH and tm rand = 1.08 tm SH
for the orange curve in Figure 7c). At T = 298 K, the error will be smaller and amount to
about 5% ceteris paribus.

The magnified fragment of the substrate with nuclei at t = 25 s and the size distribution
are shown in Figure 8. As can be seen, the radii of nuclei can differ significantly from the
average radius <r>, the fraction of the largest nuclei decreases, and the dispersion increases
during electrodeposition (see also Video S1 in Supplementary Materials). The characteristic
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asymmetry of the distribution (a tail on the low r/<r> side) and a 5–10% deviation of the
size of nuclei from the mean value (at t ≤ 5tm) were also observed in the simulation of
instantaneous nucleation followed by diffusion-controlled growth in [29,31,33,36,37]. The
change in the shape of histograms with an increase in the process duration is similar to that
mathematically justified in [31].

Figure 8. (a) Simulated 3D image of the electrode area with nuclei after diffusion-controlled growth
of a random ensemble (see Figure 2a) for 25 s at η = 100 mV. The largest 48th nucleus is highlighted
in red. (b) Nucleus radius distribution for the 1000 nuclei random ensemble. N0 = 7.55 × 105 cm−2,
tm = 0.875 s.

In conclusion, we emphasize that our results are in good agreement not only with
the results of numerical simulation performed using other approaches, but also with
experimental data (see, for example, [19,49]). In particular, the correctness of our approach
is confirmed by the experimental facts obtained by Lemineur et al. [49] during the in
situ observation of the electrodeposition process of silver nanoparticles from the 0.1 M
NaNO3-100 µM AgNO3 solution, registration of individual transients for nanoparticles,
and spatial distribution monitoring by Voronoi tessellations using backside absorbing
layer microscopy (BALM). Namely, (i) the growth kinetics of an individual nanoparticle is
related to the Voronoi cell area and (ii) the summation of individual nanoparticle transients
makes it possible to obtain a total chronoamperogram identical to that recorded by the
conventional method.

It is important that the proposed model in its present form is suitable for use with any
time dependence of the overpotential. For example, this model can be used to calculate
cyclic voltammograms. Subsequently, we also plan to apply the proposed approach to
simulate more complex cases, including mixed growth control and progressive nucleation.

4. Conclusions

The numerical model is proposed for diffusion-controlled growth following the instan-
taneous nucleation, which considers the spatial distribution of nuclei and the decrease in
the growth rate due to the collision of 3D diffusion fields. The model allows us to calculate
the fluxes of depositing ions to each nucleus, taking into account the influence of nearest
neighbors, and to study the evolution of the system during electrodeposition. The proposed
approach provides not only the simulation of the total current density transient, but also
comprehensive information about the concentration profiles, individual current transients,
and time dependences of the nucleus radius.

Comparison of simulation results for hexagonal ensembles with models using the
concept of planar diffusion zones showed that the total current density transients agree
much better with the SH model for instantaneous nucleation and diffusion-controlled
growth of random ensembles (especially in dimensionless form) than with the model [39]
for hexagonal arrays. The reason is apparently the overestimated growth rate of identical



Materials 2022, 15, 3603 14 of 16

2D zones used in these models. According to our estimate, the maximum current density
of the hexagonal ensemble exceeds that in the SH model by no more than 1.12 times at
the same number density of nuclei. Calculations show that the growth exponent in the
case of the growth of hexagonal ensembles can vary from 1/2 to 1/6 depending on the
electrodeposition time, number density of nuclei, and overpotential.

In the case of a random spatial distribution of nuclei, the conditions for mass transfer
to each nucleus depend on the Voronoi cell area and, not so obviously, on the distance
to the nearest neighbor. For this reason, the growth exponents are individual for each
nucleus, and a dispersion of the sizes of the nuclei arises, despite the identical initial radius.
The size dispersion increases as the electrodeposition duration increases. An increase in
the number density of nuclei contributes to a decrease in the growth current and nucleus
radius, but an increase in the total current density. The maximum current density value for
the random ensemble is always lower than for the hexagonal one and SH model at the same
number density of nuclei (im hex = 1.15 im rand, tm hex = 0.97 tm rand and im rand = 0.98 im SH,
tm rand = 1.04 tm SH at csr = 0). The influence of the concentration of depositing ions near the
nucleus surface cannot be neglected at moderate overpotentials, so the use of Equation (3)
can introduce an error into the values of the diffusion coefficient of depositing ions and
the number density of nuclei. Detected deviation of the dimensionless dependences
i/im vs. t/tm from the SH model is similar to that often observed in experiments and is
associated with different growth rates of nuclei.

Comparison of the simulation results with reliable data from the literature confirms
the adequacy of the proposed approach and the prospects of its use for the analysis of
electrochemical phase formation in more complex cases.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma15103603/s1, Video S1: Growth of nuclei located near the
smallest 775th nucleus.
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