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Natural killer (NK) cells are an important component of the innate immune system, and
have a key role in host defense against infection and in tumor surveillance. Tumors and
viruses employ remarkably similar strategies to avoid recognition and killing by NK cells
and so much can be learnt by comparing NK cells in these disparate diseases. The lung is
a unique tissue environment and immune cells in this organ, including NK cells, exist in a
hypofunctional state to prevent activation against innocuous stimuli. Upon infection, rapid
NK cell infiltration into the lung occurs, the amplitude of which is determined by the extent
of inflammation and damage. Activated NK cells kill infected cells and produce pro-
inflammatory cytokines and chemokines to recruit cells of the adaptive immune system.
More recent evidence has shown that NK cells also play an additional role in resolution of
inflammation. In lung cancer however, NK cell recruitment is impaired and those that are
present have reduced functionality. The majority of lung NK cells are circulatory, however
recently a small population of tissue-resident lung NK cells has been described. The
specific role of this subset is yet to be determined, but they show similarity to resident
memory T cell subsets. Whether resident or recruited, NK cells are important in the control
of pulmonary infections, but equally, can drive excessive inflammation if not regulated. In
this review we discuss how NK cells are recruited, controlled and retained in the specific
environment of the lung in health and disease. Understanding these mechanisms in the
context of infection may provide opportunities to promote NK cell recruitment and function
in the lung tumor setting.

Keywords: natural killer (Nk) cell, tissue-resident natural killer cells, lung cancer, immune cell recruitment,
chemokines, extracellular matrix, tissue-specific immunity
INTRODUCTION

NK cells belong to the innate arm of the immune system, with roles analogous to those of CD8+ T
cells of the adaptive immune system. They are part of the innate lymphoid cell (ILC) family, which
also includes helper type 1, type 2 and type 3 ILCs (ILC1s, ILC2s and ILC3s). ILCs are categorized by
the cytokines they express, which mirror those expressed by T helper (Th) cells Th1, Th2 and Th17
(1). NK cells share some similarity with ILC1s in that they both produce interferon-g (IFNg) and
tumor necrosis factor-a (TNFa). However, NK cells, like CD8+ T cells, also produce granzyme B
org July 2022 | Volume 13 | Article 8875031
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and perforin, which promote the lysis of target cells (1, 2)
(Figure 1). Additionally, helper type ILCs are only found in
tissues, whereas NK cells are a predominantly circulatory
population (3, 4).

NK cells (and other ILCs) derive from common lymphoid
progenitor cells in the bone marrow. After differentiation to NK
cell precursors, they leave the bone marrow in an immature state
and then proceed through several stages of maturation and
differentiation in secondary lymphoid tissues, from where they
exit to the peripheral blood (5, 6).

NK cells are important in the early stages of host defense, as
they exist in a poised effector state (7). Their activation is strictly
controlled by numerous activating receptors (for example, CD16,
NKG2D, activating killer cell immunoglobulin-like receptors
(KIRs) and NKp46) and inhibitory receptors (for example,
inhibitory KIRs and NKG2A) that are expressed on their cell
surface, and the balance of activating to inhibitory signals
received by the NK cell determines its fate. CD16 (FcgRIII
receptor) is the only receptor for which ligation on its own by
antibody is sufficient to induce NK cell activation, leading to
antibody-dependent cell cytotoxicity (ADCC). All other
activating receptors require multiple interactions, which are
counter-balanced by ligation of inhibitory receptors; for
Frontiers in Immunology | www.frontiersin.org 2
example, TIGIT and DNAM-1 bind to the same ligands and
have opposing effects (8). NK cells also respond to soluble
environmental cues such as pathogen-associated molecular
patterns (PAMPs), damage-associated molecular patterns
(DAMPs) and cytokines; in particular interleukins (IL) IL-2,
IL-12, IL-18, IL-15 and type I IFNs which promote NK cell
activation (9). Conversely, transforming growth factor-b (TGFb)
has many inhibitory effects on NK cells, which include reducing
NK cell cytotoxicity and IFNg production (9–11). These cytokine
signals combine with the signals NK cells receive through their
activating and inhibitory receptors to determine whether the NK
cell activation threshold is reached (9).

Activating receptors bind to ligands associated with damage
and stress (e.g. PAMPs and DAMPs), whereas inhibitory
receptors bind to ‘self’ molecules — major histocompatibility
complex class I (MHC-I), also known as human leukocyte
antigen (HLA) — that are expressed on the surface of all
nucleated host cells. In health, these interactions maintain NK
cell inhibition. However, during infection, NK cells receive more
activating receptor signals, which outweigh the inhibitory
signals, thereby overcoming the threshold for NK cell
activation. In a similar way, MHC-I molecules are often
downregulated on the surface of tumor cells, reducing the
FIGURE 1 | NK cells in the lung. NK cells are part of the ILC family, and in humans are classified into more or less differentiated on the basis of their expression of
CD16. In mice, the relative levels of CD11b and CD27 correspond to their differentiation status. More differentiated NK cells predominantly express granules that
contain perforin and granzyme, and to a lesser extent they produce the cytokines IFNg and TNFa. In the human lung, they express CD16, CD56 and KIRs on their
cell surface, and are controlled by the transcription factor Eomes. In the mouse lung, they express CD49b, high levels of CD11b, and variable levels of CD27, and
are controlled by the transcription factors Tbet and Eomes. The less differentiated NK cells predominantly produce IFNg and TNFa, but can also release perforin and
granzymes. In the human lung, these NK cells do not express CD16 and express no/low levels of KIRs, but they express higher levels of CD56 than mature NK cells.
They are also regulated by Eomes. In the mouse lung, these less differentiated NK cells express CD49b, no/low levels of CD11b, and high levels of CD27; and are
regulated by Tbet and Eomes. In the human lung, tissue resident NK (trNK) cells express the cell-surface receptors CD69, CD49a and/or CD103; they are CD56+

but CD16−; they produce IFNg and TNFa, and have low expression of lytic granules. They express both Eomes and T-bet. In the mouse lung, trNK cells express do
not express CD49b, but express CD49a, CD69 and CD11b, and low levels of CD27. They are thought to express both Eomes and Tbet. Further detail on the cell
surface markers that characterise these NK cell subsets in the human and mouse lung is shown in Table 1. *This is an area where further research is needed.
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amount of inhibitory signaling and enabling NK cell activation.
This downregulation of MHC-I is known as the ‘missing self’
hypothesis (12). Once an NK cell is activated, either by antibody
cross-linking of CD16 (ADCC) or by ligand binding to NK cell
activating receptors, the interacting target cell is lysed. Lysis
occurs via two different pathways: release of lytic granule content
(perforin and granzyme), or death receptor signaling. In the first
mechanism, the NK cell forms an immunological synapse with
the target cell, and granules containing the lytic mediators
perforin and granzyme B are released (13). Perforin creates
pores in the target cell surface, through which granzyme B
enters to induce apoptosis through cleavage and activation of
caspase-3, as well as caspase-independent mechanisms (14). An
alternative mechanism of NK cell killing is via death receptor
signaling where NK cells expressing Fas ligand (FasL) or TRAIL,
apoptosis-inducing members of the TNF family, bind their
conjugate receptors Fas and TRAIL-R that are expressed on
target cells. This receptor-binding interaction triggers the
cleavage and activation of caspase-8, again leading to apoptosis
of the target cell (15). The killing ability of NK cells is not limited
to a single target cell — NK cells are able to sequentially kill
multiple target cells, with in vitro studies showing NK cell serial
killing of up to 10 target cells over a 6-hour period (16, 17).

As part of the innate immune system, the traditional view was
that NK cells would not exhibit memory-like or adaptive-like
properties. In fact innate immune cells, including NK cells, have
been found to exhibit some form of immunological memory, also
known as trained immunity (18). Various different memory-like
NK cell subsets have been described in both humans and mice,
including tissue-resident NK cells in the liver (19, 20), adaptive-
like tissue-resident NK cells in the lung (21), pregnancy-trained
decidual NK cells (22), and in vitro generated cytokine-induced
memory-like NK cells (generated following IL-2/IL-15/IL-12/IL-
18 stimulation) (23). These cells are generally characterized by
NKG2C expression, and show increased cytokine production,
cytotoxicity and proliferative capacity upon re-challenge (19,
21–24).

This review will focus on what is known about the specific
phenotype of NK cells in the lung in both humans and mice, and
how the NK cell population in this organ is affected in different
disease states. In particular, this review will compare and contrast
the mechanisms regulating NK cell function and recruitment in
the settings of infection and cancer. Understanding these
mechanisms will help identify new ways to promote NK cell
recruitment to lung tumors, which may be applicable in a
clinical setting.
Comparison of NK Cell Subtypes in the
Blood and in the Lung
In healthy human blood and lungs, NK cells make up around
10% of the population of lymphocytes (25, 26). NK cells are
categorized based on the level of expression of CD56 (bright (br)
and dim) and CD16 and include two broad subsets:
CD56br/dimCD16− and CD56dim CD16+ (27). We will refer to
these as CD16− and CD16+ NK cells, respectively, throughout
this review as it can be difficult to distinguish between CD56br
Frontiers in Immunology | www.frontiersin.org 3
and CD56dim subsets in lung tissue – particularly in lung tumors
(28, 29). CD16− NK cells are less differentiated and have low
cytolytic ability, but produce greater amounts of IFNg and TNFa
than their CD16+ counterparts (30, 31). Conversely, CD16+ NK
cells are more differentiated, with high cytolytic activity (30, 31)
(Figure 1). A key difference between the two subsets in the blood
is that CD16− NK cells lack the expression of KIRs (31, 32). NK
cell expression of KIRs is acquired during their maturation, in a
process known as NK cell education or licensing, and expression
of KIRs is vital for the cytolytic activity of NK cells (33–35).
However, expression of KIRs by CD16− NK cells does occur in
some tissues, such as the lung (21, 36).

The lung microenvironment regulates resident immune cells
at homeostasis to prevent unwanted activation by harmless
antigens. Alveolar macrophages are a prime example of this;
these cells are regulated by anti-inflammatory soluble factors
such as TGFb and IL-10, and by ligation of inhibitory receptors
such as CD200R and SIRPa (37). The lung NK cell population as
a whole (including circulating and tissue-resident subsets) in
both humans and mice similarly displays hypo-functional
features in the healthy state compared to NK cells from the
blood or other organs (38–41). In vitro, human lung-derived NK
cells exhibit 25-fold lower cytotoxicity against K562 cells (a cell
line particularly sensitive to NK-cell-mediated lysis) (39) and
decreased degranulation and ADCC responses compared to
blood-derived NK cells (38). In mice, lung NK cells also show
decreased cytotoxicity and degranulation versus NK cells isolated
from the spleen (40), and express higher levels of the inhibitory
receptor NKG2A and lower levels of activating receptors NKp44
and NKG2D (41). Therefore, lung NK cells are thought to be
more tightly regulated with a higher threshold for activation than
NK cells in other tissues.

In the blood (where they are known as circulating NK (cNK)
cells) approximately 10% of NK cells are CD16− and 90% CD16+

(31). The CD16− compartment can also contain CD16+ NK cells
that transiently lose expression of CD16 following activation,
when CD16 is cleaved from the cell surface (42–45). In the lung,
the distribution of CD16+ to CD16− NK cells is similar to that in
the blood (38, 46); however, it does vary, for example in the liver
and gut, where the CD16− population predominates (25, 26). In
addition, recent studies show the presence of possible ‘resident’
NK cells in certain tissues (particularly the liver) on the basis of
the expression of the markers CD69, CD103 (aE integrin) and
CD49a (a1 integrin), which cause their retention (20, 47, 48)
(Figure 1). CD69 interacts with sphingosine-1-phosphate
receptor 1 (S1PR1) to promote its degradation; as a result,
S1PR1 surface expression is decreased, causing a reduction in
chemotactic cues to the blood where high levels of S1P are
present. CD49a and CD103 have specific ligands: CD103 binds
to E-cadherin, which is expressed by epithelial cells; and CD49a
binds to collagen IV, a component of the ECM. For simplicity,
we will refer to these cells as tissue-resident NK (trNK) cells in
this review, but cells with this phenotype have also been
described (in various tissues) as ILC1s (49–51), CD103+ ILC1s
(50) and intra-epithelial ILC1s (ieILC1s) (2, 50, 52, 53). In the
placenta there is also a population of NK cells that expresses
CD49a and CD103 described as decidual NK cells (dNK cells) (2,
July 2022 | Volume 13 | Article 887503
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54). dNK cells have unique functions that are crucial for
successful pregnancy which include maintaining maternal-fetal
immune tolerance and promoting uterine spiral artery
remodeling; the latter being necessary for allowing sufficient
blood flow to both the placenta and the developing fetus (2,
54) [reviewed by Liu et al. (55)]. In both humans and mice, and
between different organs, the distinction between trNK cells and
Frontiers in Immunology | www.frontiersin.org 4
ILC1s/ieILC1s is blurred, with few clear markers to distinguish
these cell types and no clear differences in function [reviewed by
O’Sullivan 2019 (56), and Peng and Tian 2017 (57)]. We have
summarized the similarities and differences between trNK cells,
ieILC1s and ILC1s in the lung specifically in Table 1.

In the lung, trNK cells comprise 10–25% of the total NK cell
population, with the overwhelming majority of trNK cells being
TABLE 1 | Characteristics of trNK cells, ieILC1s and ILC1s in the human and mouse lung.

trNK ieILC1 ILC1

Human

Markers
(unstimulated)

CD56+/bright
CD16−/low
CD69+
CD103+
CD49a+
Perforin −/low
Granzyme B −/low
CXCR6+
NKG2A+
CD57−
CCL5+

CD56+
CD16-
CD69+
CD103+
CD49a+
Perforin low
Granzyme B low
CD127−
CD161+
NKp46+
CD94+
2B4+
CD160+
CD122+

CD56+/−
CD16−
CD69+/−
CD49a-
IL-12RB2+
NKp44+/−
CD117−
CD127+
CD161+
CRTH2−

Transcription
factors

Tbet+
Eomes+

Tbet+
Eomes+

Tbet+
Eomes+/−

Response to
stimulation

PMA/ionomycin:
Increased GM-CSF expression by CD49a+ trNK vs CD16− cNK.
~60% of CD49a+ trNK express IFNg and TNFa, but no difference in
IFNg or TNFa expression between CD49a+ trNK and CD16− cNK.
Low (10 - 30% positive) expression of CD107a, no difference in
expression between CD49a+ trNK and CD16− cNK.
IL-15:
Increased Ki-67 expression on CD16− CD49a+ trNK (~40%) vs
CD16+ cNK (~10%), but no difference compared to CD16− cNK.
100% expression of perforin and 60% expression of granzyme B on
CD49a+ trNK – less than CD16+ cNK (but no difference as
compared to CD16− cNK)
Ex vivo influenza X31:
Increased CD107a on CD16− CD49a+ trNK vs CD16− cNK (but no
difference between CD16+ CD49a+ trNK and CD16+ cNK)
No significant difference in expression of CD107a or TNFa between
CD49a+ trNK and CD16− cNK.

IL-12 + IL-15:
~10% positive for IFNg (no
difference between ieILC1 and
CD103− NK cells)
IL-12 + IL-18:
~10% positive for IFNg (no
difference between ieILC1 and
CD103− NK cells)

PMA/ionomycin:
Can produce IFNg (cannot say % positive as
cells gated on total ILC population, not ILC1
specifically)

References (21, 26, 46, 58, 59) (2) (1, 60–64)

Mouse

Markers
(unstimulated)

Lineage −

NK1.1+
CD49a+
CD49b−
CD11b high
CD27 low

Not described in the lung Lineage −

NK1.1+
CD49a+/high
CD49b+/low
CD11b+
CD27−
CD90+
NKp46+
CD127−

Transcription
factors

Not described in the lung Not described in the lung Tbet+
Eomes low/−
RORgT−

Response to
stimulation

Not described in the lung Not described in the lung PMA/ionomycin:
ILC1 produced less IFNg and TNFa than NK
cells and were less cytotoxic

References (48, 65, 66) Not described in the lung (4, 67, 68)
July 2022 | Volume 13 | Article 887503
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CD16− (46, 48, 58, 59). As the majority of the NK cells in the lung
are circulating rather than tissue-resident, this provides an
explanation for the predominance of CD16+ NK cells in this
organ, whereas other tissues — namely the liver, skin and
secondary lymphoid organs — have a larger population of
CD16− trNK cells (48). A caveat in the identification of trNK
cells in the human lung is that all studies (21, 46, 58) use lung
tissue obtained from patients with lung cancer (tissue that is
distal from tumors). trNK cells (described as ieILC1-like cells)
are also reported at a higher frequency in lung tumor regions
than in adjacent non-cancerous lung tissue (2). A population of
trNK cells is also present at low frequencies in the blood,
although the frequency of these cells was increased in lung
cancer patients compared to controls (21).

Whether lung trNK cells are truly resident remains unclear.
In terms of their function, one study which separated CD16−

trNKs into CD56br and CD56dim trNK cells found that CD16−

CD56br trNK cells have higher expression of the degranulation
marker CD107a than CD16− CD56br cNK cells in response to
influenza A virus in a human lung explant model (46). However,
this difference is not observed between CD16− CD56dim trNK
cells and CD16− CD56dim cNK cells. Additionally, no difference
is observed in CD107a expression or production of granzyme B,
IFNg or TNFa between trNK cells and cNK cells in response to
PMA and ionomycin (46, 58); however trNK do produce
increased levels of GM-CSF and show decreased perforin
expression (58). In addition, a sub-population of trNK cells
described as adaptive-like trNK cells has recently been
described in the human lung, characterized by expression of
CD49a, NKG2C and KIRs (21). In line with their memory-like
phenotype, these cells display greater cytokine production and
cytotoxicity than CD49a+ NKG2C- trNK cells (21). The
discovery of these cells adds further confusion to the
nomenclature surrounding trNK cells, and more research is
needed to determine the similarities and differences between
trNK cells and memory-like NK cells.

Differences are observed at the transcriptional level in lung
trNK cells (in this study defined as CD69+CD49a+ and/or
CD103+) compared to CD69+ single-positive and CD69-
negative NK cells, with higher expression of ID3, IRF4 and
RBPJ in the former (58). Genes involved in tissue retention
such as RGS1, RGS2 and ZNF683 (Hobit) are also upregulated in
the trNK cells compared to CD69− NK cells. Different tissue
resident immune cell subsets share some features, for example,
lung trNK cells express high levels of CXCR6 and RGS1, and have
reduced levels of expression of SELL, S1PR5 and FGFBP2 similar
to lung and spleen CD8+ tissue-resident memory T cells (TRM)
(58, 69). Liver trNK cells also express high levels of CXCR6 at
both the mRNA and protein level (20) and produce high levels of
IFNg, TNFa and GM-CSF but lower levels of perforin upon
stimulation; similar to trNK cells in the lung (70, 71).

Comparison of human NK cell subsets with those in mice are
difficult as murine NK cells do not express CD56, but are instead
identified using NK1.1 and/or CD49b (DX5), and with maturity
determined using the expression of CD11b and CD27
(Figure 1) (72, 73). Fortunately, most activating and
Frontiers in Immunology | www.frontiersin.org 5
inhibitory receptors are conserved between human and
mouse; for example, NKp46 and NKG2D (74). CD49a is also
used as a marker for tissue residency in mice, however most
studies refer to trNK cells as ILC1s as, in mice, the population
tends to lack expression of the transcription factor Eomes (75).
Despite these differences, parabiosis mouse models show that
80–90% of lung NK cells are cNK cells (4, 76), with the
remaining 10–20% presumed to be trNK cells, in agreement
with the human studies described above. Further studies are
needed to ascertain the functional role of this potential trNK
cell population.
NK CELLS IN DISEASE SETTINGS

From a historical perspective, as shown in their name as “killer”
cells, the typical view has been that NK cells play a beneficial role
in diseases: clearing infection and preventing development of
tumors. However, it is now clear that there is much more nuance
to this, and NK cells can have both beneficial and detrimental
roles. Indeed, they can play an immunoregulatory role in
restraining the activity of other immune cells at sites of
infection (77), although in the tumor setting this is unclear.
Their recruitment and function in disease depends on the tissue
microenvironment (e.g. extracellular matrix), the level of tissue
damage and the general inflammatory milieu – which rises and
falls quickly in lung infection, but is slower to rise and becomes
chronic during tumor development (78).

NK Cells in Pulmonary Infections
In the healthy lung, NK cells are localized to the interstitium
rather than to the airways (38). However, NK cells are observed
in the bronchoalveolar lavage (BAL) fluid after infection with
influenza virus (79), Staphylococcus aureus (80), cytomegalovirus
(CMV) (81), and SARS-CoV-2 (82). NK cells are also present in
BAL fluid in various non-infectious diseases, such as asthma and
chronic obstructive pulmonary disease (COPD) (47).

Despite an apparent hypo-functionality at homeostasis, NK
cells respond and activate quickly in response to pulmonary
infections. In humans, rare genetic disorders affecting NK cell
function are associated with increased respiratory infections,
particularly viral infections (13, 83). As ‘poised effector’ cells,
NK cells are early responders to infection and animal models
show that substantial numbers are recruited to the lungs 2–3
days after infection with influenza virus, S. aureus and Klebsiella
pneumoniae (41, 84, 85). The increase is thought to be due to NK
cell recruitment rather than local proliferation, as the numbers of
splenic and circulating NK cells show concomitant decreases
following infection (41, 86). This increase is transient, as levels
return to normal by day 6–9 after infection (85, 87). Similarly in
SARS-CoV-2 infection in humans, peripheral NK cells are
reduced during acute infection (88–90) and return to normal
levels as the infection is cleared; however, in patients with severe
COVID-19 the NK cell count remains low at 3 weeks post
infection (91).
July 2022 | Volume 13 | Article 887503
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Activation of NK cells in the lung is facilitated by the
upregulation of DAMPs, which are often ligands of NK cell
activating receptors, particularly NKG2D (92). For example,
Mycobacterium tuberculosis-infected monocytes and
macrophages upregulate the NKG2D ligand ULBP1, and
blocking ULBP1 prevents NK cell-mediated lysis of infected
mononuclear cells (93). Airway epithelial cells also express the
NKG2D ligands MICA and MICB (referred to as MICA/B
hereafter) and ULBPs under stress (94). In addition, NK cells
bind directly to viral proteins expressed on the surface of infected
cells, such as the haemagglutinin (HA) glycoprotein of influenza
virus, which is recognized by the activating receptor NKp46 (95).
Once activated, NK cells produce pro-inflammatory cytokines
including TNFa and IFNg. The latter has a number of important
roles, including induction of interferon-stimulated genes in
nearby cells (96), recruitment of other immune cells to the site
of infection, and aiding the activity of CD8+ T cells (34, 83). In
addition to cytokine production, activated NK cells also release
perforin and granzymes, which induce apoptosis in targeted cells
(Figure 2A). NK cells can also kill virally infected cells through
death-receptor-mediated pathways; for example, influenza A
induces the expression of TRAIL on NK cells, and blocking
TRAIL in vivo results in reduced viral clearance (97).

Animal models show that lung NK cells have both protective
and damaging roles in infection. In influenza virus and S. aureus
infection, mice that lack NK cells (Ncr−/−, Il15−/−, or depleted
using anti-NK1.1 antibodies) show a higher lung viral or
bacterial burden at the peak of infection and a longer
infection period (46, 80, 86). However, NK cells can also
cause harm by contributing to inflammatory-mediated
damage, particularly with high dose infections (85–87, 98)
[reviewed by Frank and Paust 2020 (99)]. In a more
regulatory role, in some tissues NK cells can also indirectly
inhibit viral clearance by promoting the apoptosis of activated
CD4+ T cells, which in turn reduces CD8+ T cell numbers
(Figure 2B). However, in the same way, decreasing CD8+ T cell
numbers can a l so prevent CD8+ T ce l l -media ted
immunopathology (Figure 2C) (100). Therefore, timely
induction of NK cell activation — but also contraction of
their responses — is optimal for virus containment. Impaired
NK cell responses occur in aged mice, which show decreased
numbers in the lung following infection and reduced levels of
the activation marker CD69 (101). Clearly, NK cells are
important in the lung, but their impact on the outcome of an
infection in mice is affected by factors such as viral titre and the
strain and age of the mouse (85, 98, 101).

NK Cells in the Resolution of Inflammation
As with most immune cells, NK cells have pleiotropic functions
and are involved in the resolution of inflammation. As described
above, NK cells can lyse activated CD4+ T cells via perforin and
granzyme, thereby removing 'help' for CD8+ T cells (100). NK
cells can also directly lyse activated CD8+ T cells, which again can
have both pathogenic (impaired viral clearance) and pro-
resolving (prevent immunopathology) effects; although this has
not been shown specifically in the lung (102, 103). However, in
Frontiers in Immunology | www.frontiersin.org 6
an influenza infection model, antigen-specific CD8+ TRM are
significantly raised in NK cell-depleted mice, providing an
improved response to re-infection with a different influenza
strain; implying that NK cell-mediated clearance of CD8+ T
cells in the lung may have detrimental effects in the long
term (104).

Resolution of inflammation is also facilitated by NK cell
production of IL-10 that limits anti-viral CD8+ T cell
responses (105), NK cell expression of TRAIL that may
facilitate removal of neutrophils and activated CD4 T cells
(106, 107), and, in the case of asthma, lysis of granulocytes and
T cells in an NKG2D-dependent way (108–110). Indeed,
impaired NK cell-mediated killing is associated with severe
asthma (110). NK cells also express receptors for the pro-
resolving mediator lipoxin A4 (LXA4) (109, 110), which upon
binding promotes NK cell-driven apoptosis of eosinophils and
neutrophils through NKG2D (108). Furthermore, depletion of
NK cells delays the resolution of allergic airways disease in mice
(108). NK cells have also been described as a source of IL-22 in
the lung following influenza virus infection in mice, which is
crucial for the repair and regeneration of the tracheal epithelial
layer after severe infection (79) (Figure 2C). However, more
recent studies show non-NK ILCs (ILC3s) as a more important
source of IL-22 in the lung (111, 112). Zwirner, Domaica and
Fuertes have recently reviewed the regulatory functions of NK
cells in detail (77). As such, it seems that NK cells have diverse
roles in the lungs, beyond their activity as killer cells.

NK cells are therefore protective, pathogenic and reparative in
lung infection (85, 86, 98, 113, 114) (Figure 2). The molecular
mechanisms that govern each role are at present unclear, but
they are clearly driven by the local tissue microenvironment. A
caveat here is that the vast majority of research discussed above is
derived from mouse models. Further study is needed to
determine if NK cells in the human lung have the same roles.

NK Cells in Fibrotic Lung Disease
NK cell activity will alter depending on the physical and chemical
properties of the tissue. These changes in tissue architecture are
particularly evident in fibrotic lung diseases associated with
chronic inflammation, and alterations in NK cell function are
seen in a number of fibrotic lung diseases. For example in
idiopathic pulmonary fibrosis (IPF), decreased expression of
the activating receptor NKG2D on NK cells (and NKT cells
and gd T cells) isolated from the BAL fluid has been documented,
indicating a decrease in NK cell functionality in IPF (115). In
addition, NK cells are reduced in the blood of IPF patients (116).
In COPD, which also contains a fibrotic element, lung NK cells
have increased cytotoxic activity in comparison to NK cells from
similar patients without COPD, and may actually drive
destruction of the epithelium in COPD (113, 117). In a mouse
model of pulmonary fibrosis (bleomycin-induced), the disease is
more severe in mice where CXCR3-dependent immune cell
(particularly NK cell) recruitment is reduced, resulting in
increased mortality in Cxcr3-/- animals (118). Indeed, IFNg was
shown to have a protective effect in this model (118), implying
that NK cells as a key source of IFNg could have a beneficial role
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in pulmonary fibrosis, in contrast to the studies described above
in COPD. This is an understudied area - NK cells can have
negative and positive consequences in different fibrotic
lung diseases.

NK Cells in Lung Cancer
Abundant NK cells or a dominant NK cell gene signature within a
tumor correlates with better overall survival in a number of cancers,
including lung cancer [reviewed by Larsen, Gao and Basse (119)],
but the prognostic importance of NK cells in lung cancer is unclear.
Some studies link high tumor NK cell infiltration with increased
Frontiers in Immunology | www.frontiersin.org 7
survival (120, 121), whereas others show no correlation (29, 122).
Early studies grouped NK cells, NKT cells, gd T cells and/or ILC1s
together [reviewed by Habif et al. (122)] which has now been largely
overcome by using antibodies to NKp30 (36) or NKp46 (25, 29), or
by co-staining of CD45+ CD3− CD56+ cells (122). Discrepancies
also arise owing to the different stages of tumor development
examined and the precise microenvironment generated (78).
Regardless of their prognostic significance, it is clear by both
immunohistochemistry and flow cytometry that lung tumors have
low NK cell infiltration (25, 28, 29, 36, 122–124). Additionally, NK
cells tend to locate at the tumor edge, or in the tumor stroma,
A B

C

FIGURE 2 | Pleiotropic functions of NK cells in the lung: protective, pathogenic and reparative. (A) NK cells have a protective role by recognizing virally infected cells
that display viral proteins on their surface (for example, HA) and/or upregulate damage-associated molecules (for example, MICA/B and ULBPs). These bind to
activating receptors on NK cells such as NKp46 (which binds HA) and NKG2D (which binds MICA/B and ULBPs). Once activated in this way, NK cells produce the
inflammatory cytokines TNFa and IFNg, which aid recruitment of effector cells to the site of infection and facilitate their activation. They also produce perforin and
granzyme B, which directly lyse infected cells, and can mediate the contraction of activated CD4+ T cells to prevent immune-mediated tissue damage. Lysis of
infected cells can also be death-receptor-mediated, via TRAIL or FasL. (B) NK cells can drive a pathogenic outcome in infection, particularly in cases of high viral
load. Here activated NK cells produce excessive amounts of TNFa, which damages the epithelium and causes excessive recruitment of other immune cells. Excess
lysis of activated CD4+ T cells through the release of perforin and granzyme removes the help for other immune cell subsets, particularly virus-specific CD8+ T cells,
which results in impaired viral clearance. (C) NK cells can mediate the resolution of inflammation following infection. They are a source of IL-22, which promotes
repair of the epithelium. They express the receptor LXA4R, which binds to the pro-resolving mediator LXA4. As a result of LXA4 binding, NK cells promote the
apoptosis of immune effector cells such as CD8+ T cells and eosinophils. They also clear activated CD4+ T cells in a TRAIL-dependent manner, reducing CD8+ T cell
help. NK cells also produce IL-10 which has general anti-inflammatory activity. Together, these clearance mechanisms prevent prolonged inflammation after infection.
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indicating a possible defect in their recruitment (25, 29, 36, 122).
Factors affecting NK cell recruitment to both tumors and sites of
infection include chemokines (125, 126), extracellular matrix (127,
128) and soluble mediators (129, 130), and these will be discussed in
the next section.

As with viral infection, animal models of lung cancer indicate
that the timing of NK cell infiltration may be crucial for their
anti-tumor activity. In a mouse model of lung cancer, depletion
of NK cells at early stages of cancer — but not at later stages —
accelerated tumor growth (131). Furthermore, as tumor growth
progresses, both mouse and human NK cells exhibit decreased
expression of the degranulation marker CD107a (29, 36, 131), as
well as decreased IFNg (29, 131) and perforin (36, 131)
(Figure 3). In mouse studies only, tumor NK cells have
decreased expression of granzyme B and reduced proliferation
(131) (Figure 3). In lung adenocarcinomas, as well as in other
solid tumors, intratumoral NK cells are predominantly CD16−,
rather than the more cytotoxic CD16+ subset seen in the
neighbouring healthy margin tissue (29, 36, 122–124).
Furthermore, downregulation of activating receptors, including
NKG2D [as is also seen in IPF (115)], and upregulation of the
inhibitory receptor NKG2A, reduce anti-tumor potency (28, 29,
122) (Figure 3). As mentioned previously, CD16 is enzymatically
cleaved from NK cells after receptor engagement and activation
(42, 43) and re-expression can be delayed (44, 45) meaning that
NK cells in lung tumors may be ‘ex-CD16+’ rather than bona fide
CD16− NK cells. NK cells isolated from lung tumors (as well as
matched blood and lung margin) have also been shown to
produce tumor-promoting angiogenic factors, including
vascular endothelial growth factor (VEGF), placental growth
Frontiers in Immunology | www.frontiersin.org 8
factor (PlGF) and IL-8 (Figure 3) (123). Although there was
no significant difference in the expression of these factors
between tumor, lung margin and blood NK cells, it is
interesting to note that CD16− NK cells – which are present in
greater abundance in lung tumors – produce far greater amounts
than CD16+ NK cells (123).

This population of CD16− NK cells in lung tumors may also
comprise trNK cells, which, in the lung, are predominantly
CD16− (58). To support this idea, tumor NK cells express
higher levels of CD69 compared to unaffected lung or blood
NK cells (29, 36, 132); a marker highly expressed on trNK cells
(38, 46, 58). Indeed, a population resembling trNKs (classified as
ieILC1s) is apparent in human lung tumor tissue (2). Further
characterization of tissue residency markers is required to
determine what contribution trNK cells make to the
intratumoral NK cell compartment.
FACTORS INFLUENCING LUNG NK CELL
RECRUITMENT AND FUNCTION

The process of NK cell recruitment into the infected or malignant
lung is very similar, though themagnitude will depend on the extent
and nature of tissue damage. Affected areas have altered cellular
composition, including changes in the phenotype, function and
numbers offibroblasts, stem cells, endothelial cells and immune cells
including macrophages and lymphocytes. As such, many soluble
factors are present at high levels in the infected lung and in the lung
TME that are not normally expressed or expressed at low levels
FIGURE 3 | Altered phenotype of lung tumor NK cells. NK cells in lung tumors have reduced expression of activating receptors including NKG2D, NKp30, NKp80
and DNAM1 and increased expression of the inhibitory receptor NKG2A. The activation marker CD69 is increased. Tumor NK cells have reduced expression of Ki67
and hence reduced proliferative capacity, and decreased expression of pro-inflammatory cytokines TNFa and IFNg, and decreased production of perforin and
granzyme B. Lung tumor NK cells can also produce pro-angiogenic growth factors VEGF, PlGF and IL-8.
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within healthy tissues: for example, chemokines, hypoxia-inducible
factors and TGFb (129, 130).

Chemokines
cNK cells express a broad repertoire of chemokine receptors
depending on their differentiation stage (25, 133) (Table 2),
providing one explanation for the variation in the ratio of CD16−

to CD16+ NK cells in different tissues. For example, CD16− NK
cells express CCR7 (and CD62L) which promote recruitment to
secondary lymphoid tissues (25, 133, 134). Furthermore, organ-
specific chemokine patterns exist in the steady state and in
disease (135).

Although CXCR3 can be expressed by both CD16− and
CD16+ NK cells, it is predominantly expressed by CD16− NK
cells [~10% of CD16+ NK cells express CXCR3 vs ~90% of
CD16− NK cells (136)] and therefore is more important for
mediating their recruitment (25, 136). At steady state, Cxcr3−/−

mice have decreased NK cells in the lungs, liver, blood and lymph
nodes (118, 137) and fewer NK cells are recruited during lung
infection (125, 138). In the peripheral blood of influenza and
COVID-19 patients, fewer CXCR3+ CD16- NK cells are present
(136), presumably because these cells have been recruited to the
lung. In accordance with this, the expression of CXCL10 (a ligand
for CXCR3) is increased in the BAL fluid of SARS-CoV-2
infected patients, and NK cells isolated from the BAL fluid of
COVID-19 patients also express high levels of CXCR3 (82, 136).
CCR5 is also implicated in NK cell recruitment to the lung,
although to a lesser extent than CXCR3. Ccr5−/− mice only show
a small reduction in pulmonary NK cell numbers after influenza
infection (125). CCL5 expression is also increased in the BAL
fluid of COVID-19 patients (136).

CXCR3 and its ligands CXCL9-10 also mediate the
recruitment of NK cells into tumors. In subcutaneous and
pulmonary mouse tumor models (RMA-S, a lymphoma tumor
cell line expressing low levels of class I MHC; B16 melanoma cell
line transduced to express the NKG2D ligand RAE-1ϵ; and
pulmonary tumor cell line 3LL-Luc2), decreased intra-tumoral
NK cells are observed in Cxcr3-/- mice and in mice treated with
anti-CXCR3 antibodies; but despite this, no difference in survival
is observed (65, 126). However, subcutaneous injection of tumor
cells transduced to overexpress CXCL10, which results in
increased NK cell tumor infiltration, does increase overall
survival as compared to control cell injection (106). Tumor
metastasis to the lung is facilitated by total NK cell depletion,
but not by anti-CXCR3 antibodies, implying a role for other
chemokine receptors (65). For example, IL-33 can drive the
production of CCL5 from eosinophils and CD8+ T cells, which
Frontiers in Immunology | www.frontiersin.org 9
significantly increases survival and decreases lung metastases in
an NK cell-dependent manner (139).

Chemokine production in infected or malignant tissue is also
affected by other soluble factors. For example, IFNg increases the
production of the CXCR3 ligands CXCL9-11 by tumor cells, and
correlates with an increase in NK cells in subcutaneous tumors
and improved survival in mice (126). However, the immune
modulator and tumor-promoting factor prostaglandin E2
(PGE2) inhibits IFNg-induced secretion of CXCR3 ligands
from breast cancer cell lines (140). Similarly, IFNg-matured
dendritic cells (DCs) exhibit reduced production of CXCL10,
CCL5 and CCL19 in the presence of PGE2, which results in
reduced NK cell migration in vitro (141).

In some instances, it is not NK cell recruitment that is the
problem, but the recruitment of inappropriate NK cell subsets.
For example, increased levels of CCL19, CXCL9 and CXCL10 in
lung tumors may preferentially recruit CD16−NK cells, and
reduced levels of CXCL2 may decrease recruitment of more
cytotoxic CD16+ NK cells (Figure 4A) (25). These CD16− NK
cells may also be inappropriately retained via, for example,
reduced expression of S1PR1 that is needed for tissue egress,
and increased expression of CXCR6, promoting retention (132).

Clearly, therapeutic targeting of specific chemokine axes may
facilitate the recruitment of cytotoxic CD16+ NK cells to tumors,
but the potential for off-target effects remains a caveat. Genetic
modulation of chemokine receptors is a current field of research
for NK cell-based therapies, and provides a more targeted
method of altering the chemokine axes of NK cells (142, 143).
However, altered chemokine axes cannot explain all defects in
the recruitment of NK cells, as in some cancers CX3CL1 (the
ligand for CX3CR1) expression is high but CD16+ NK cells are
not present, despite expressing CX3CR1 (144).

The Role of Matrix
Alteration of the extracellular matrix (ECM) occurs in viral
infections (145), and in cancer (78) and may affect NK cell
recruitment, retention and activation.

In both animal tumor models and human cancers, tumors can
be surrounded by ECM, with some encapsulated in laminin or
collagen (Figure 4B) (146–148). Indeed, lung tumors are
surrounded by type I collagen (149), and small cell lung
cancers (SCLC) and their metastases are enveloped in a dense
ECM composed of fibronectin, laminin, collagen IV and
tenascin C (150). Additionally, tumor resistance to PD-1/PD-
L1 blockade is associated with increased collagen deposition
(151). It has also been observed in influenza mouse models that
ECM alterations, which are observed in acute infection, can
TABLE 2 | Chemokine receptor expression on human NK cell subsets, and their corresponding chemokine ligands.

CD16− CD56br Both CD16+ CD56dim

Receptor Ligand(s) Receptor Ligand(s) Receptor Ligand(s)

CCR7 CCL19, CCL20 CXCR4 CXCL12 CX3CR1 CX3CL1
CCR5 CCL3–5 CXCR3 CXCL4, CXCL9-11 CXCR2 CXCL1-3, CXCL5

CXCR1 CXCL8
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persist well after viral clearance (145). To migrate through
tissues, particularly those with dense ECM, many cells
(including NK cells) release proteases such as MMPs (152).
In the Lewis lung carcinoma (LLC) mouse model, tumors with
more altered structural properties have less NK cell infiltration
compared to tumors with a high NKp46, IFNg and, somewhat
controversially, fibronectin signature (127). Furthermore, Ifng
-/- mice have primary tumors with a more aggressive, ECM-
enriched phenotype, and increased metastases (127).
Fibronectin and other ECM proteins are generally associated
with more mesenchymal, invasive tumors. However, the
presence of fibronectin in tumors can be beneficial if
accompanied by a decrease in other typical epithelial-to-
mesenchymal transition (EMT) markers including keratin,
vimentin and N-cadherin (127). It should also be noted, that
cross-linking and density of tumor ECM influences NK cell
recruitment with ‘loose’ facilitating and ‘compact’ inhibiting
(128). The role of ECM in NK cell recruitment to lung tumors,
and indeed in recruitment to the fibrotic lung, is an emerging
area of research.
TGFb and PGE2
The soluble mediators TGFb and PGE2 inhibit immunity in the
healthy lung but also impair immunity in the post-viral lung and
in lung cancer (37, 78).

TGFb has a number of immunoregulatory effects on NK cells
in vitro including a decrease of activating receptors NKG2D and
NKp30; a reduction in IL-15- or IL-2-induced NK cell
cytotoxicity, proliferation, degranulation and granzyme B
Frontiers in Immunology | www.frontiersin.org 10
expression; a reduction of CD16-induced production of IFNg;
a decrease in glycolysis; and enhanced expression of the pro-
angiogenic factors VEGF and PlGF (Figure 4) (10, 11, 123, 131,
153–155). With prolonged treatment, TGFb also reduces NK
cell-dependent ADCC responses (156). In mouse models of
lung metastasis (B16 melanoma model, which spontaneously
metastasizes to the lung), TGFb promotes the expansion of an
‘intermediate ILC1’/’ex-NK cell’ population, associated with
increased expression of inhibitory receptors, reduced
cytotoxicity, and expression of the trNK-associated marker
CD49a (Figure 4C). Interestingly, this population increases
with tumor burden, as do the levels of TGFb in the TME (157–
159). In vitro studies with human blood-derived NK cells have
also shown that TGFb alone or in combination with IL-15 can
promote the development of a trNK cell-like phenotype (53,
129, 153). However, unlike the studies described above in mice,
these cells were highly cytotoxic (53). TGFb (alone, or in
combination with hypoxia and a demethylating agent) has
also been shown to promote cNK cell acquisition of a dNK
cell-like phenotype in vitro (160, 161). However in these
studies, only the combination treatment resulted in a decrease
in NK cell cytotoxicity (161). In the TME more broadly, TGFb
affects the chemokine milieu (78). For example, in a murine
model of lung metastasis TGFb suppressed the production of
CXCL1 and CXCL5 by tumor cells (162) – chemokines
associated with recruitment of CD16+ NK cells (36, 133).

PGE2 is a potent immune modulator produced during
inflammation that, as mentioned previously, indirectly affects
NK cells by reducing the levels of chemokines necessary for their
recruitment (140, 141). PGE2 also directly suppresses NK cell
A B

C

FIGURE 4 | Factors affecting NK cell recruitment to tumors. (A) Chemokines. Tumor cells and immune cells in the TME produce increased levels of CCL19, CXCL9
and CXCL10 and decreased levels of CXCL2, which may preferentially recruit CD16−NK cells expressing CCR7 and CXCR3. (B) Extracellular matrix. Tumors can be
surrounded by a dense ECM layer that restricts or prevents NK cell entry from the circulation. Entry requires specific proteolytic activity, e.g. MMPs. (C) Soluble
factors. Tumor cells and immune cells in the TME secrete soluble factors including TGFb and PGE2. TGFb can promote a phenotypic switch in NK cells to a more
trNK cell-like phenotype (also known as ex-NK cells, and intermediate ILC1s), with increased expression of CD49a, increased production of pro-angiogenic factors
VEGF and PlGF, and increased expression of inhibitory receptors. These trNK cells may also have decreased cytotoxicity. TGFb and PGE2 have other inhibitory
effects on NK cells, including reducing NK cell cytotoxicity, decreasing inflammatory cytokine production, decreasing proliferative capacity and altering their metabolic
activity (decreasing glycolysis). PGE2 can also alter NK cell chemokine production, decreasing secretion of CCL5 and XCL1.
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proliferation, cytokine secretion, and cytotoxicity (Figure 4C)
(141, 163, 164). In mouse tumor models (B16 melanoma and
MC38 colorectal), a lack of the prostaglandin receptors EP2 and
EP4 specifically on granzyme B+ cells – predominantly NK cells –
causes tumor regression (165). PGE2 reduces the expression of
the NK cell-derived chemokines CCL5 and XCL1 (Figure 4C),
thereby decreasing the recruitment of conventional type 1 DCs to
tumors (130, 166). In human immune cell datasets, XCL1 and
XCL2 (homologues in humans for XCL1 in mice) are most
highly expressed by CD16+ NK cells — the cells that are missing
from the lung TME (130).

Soluble NKG2D Ligands
Theability ofNKcells to becomeactivateddependson the expression
of cell-surface receptors, for example, NKG2D (167, 168). However,
activating receptors can be internalized or cleaved leading to cancer
and viral escape (169–171). For example, MMPs and A disintegrin
and metalloproteinases (ADAMs), which are often present in the
TME (172) and the post-viral lung (173), cleave NKG2D ligands
(NKG2DLs) from the cell surface of tumor cells or infected cells,
which leads to the evasion of NK cell-mediated killing (114, 174–
176). Increased levels of soluble NKG2DLs are observed in the
TME and serum of patients with cancer, including lung cancer
(177), which correlate with decreased overall survival (177–181).
Similarly in IPF, increased levels of solubleMICA are observed in
the plasma, and polymorphisms in MICA are associated with
increased risk for the development of IPF (115). Soluble
NKG2DLs inhibit both CD8+ T cells and NK cells as they
block ligation of membrane-bound NKG2DLs (180, 182, 183)
and cause downregulation of NKG2D (182, 183). NK cells with
reduced membrane expression of NKG2D exhibit impaired lytic
ability (183, 184), and mice that lack NKG2D are more
susceptible to tumors (185). In various mouse models,
prevention of tumor cell shedding of NKG2DLs increases the
anti-tumor activity of NK cells and decreases the number of
tumor metastases (175, 186). Additionally, combining anti-
soluble MIC treatment with PD-L1 blockade improves survival
in mice (186), and therefore highlights a potential future
therapeutic opportunity for human cancers – particularly
those with high serum levels of soluble NKG2DLs.

Hypoxia
Another feature that influences NK cell activity is hypoxia, which
occurs when the growth of tumor cells outstrips their supply of
oxygen. In addition, the dense nature of the ECM around and
within tumors can act as a barrier to critical metabolites (148).
Hypoxia is often accompanied by lower pH and glucose levels
(172). In vitro, hypoxia alone (1% O2) does not significantly
affect NK cell cytotoxicity in comparison to normoxia (around
6% O2) (187–189). However, anoxia (0%) decreases NK cell-
specific lysis of target cell lines in vitro (189). Hypoxic NK cells
lose the ability to upregulate various activating receptors and
produce less inflammatory cytokines in response to stimuli (190,
191); however, they can produce VEGF to promote angiogenesis
(129). Additionally, indirect NK cell inhibition also occurs in
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hypoxic conditions, as hypoxia is associated with an increase in
the shedding of NKG2DLs from cancer cells (192). Decreased pH
levels also suppress NK cell cytotoxic activity and cytokine
production (189, 193). A profound decrease in NK cell
cytotoxicity occurs with a combination of low O2, pH and
glucose in vitro, mirroring the conditions of the TME (189).

NK Cell Interactions With Other
Immune Cells
In tissues – whether they be trNK cells or recruited cNK cells –
NK cells interact with many different immune cells (194),
epithelial and endothelial cells (94, 117, 171). Lung trNK cells
express different integrins to cNK cells (46, 58), therefore
different NK cell subsets likely have different positions within
the lung tissue and hence different cell types that they
interact with.

NK cell interactions with DCs are well studied (39, 40, 46,
117). Some interactions enhance NK cell activity, such as the
interaction of CD16−NK cells with immature DCs (iDCs) during
infection. These iDCs secrete a number of cytokines, including
IL-12, IL-18, IL-15 and type I IFNs, which promote NK cell
maturation, activation and memory-like responses (Figure 5A)
(117, 194–197). There are also contact-dependent mechanisms
of DC-mediated NK cell maturation (Figure 5A) (195, 197).
Such interactions are often reciprocal: once primed by iDC
interaction, the activated NK cell then either induces killing of
the iDC or its maturation (196, 197). Factors affecting this
outcome are shown in Figure 5B (34 , 194, 198) .
Environmental factors change the interaction between NK cells
and DCs, for example cigarette smoke exposure in mice enhances
NK cell cytotoxicity in a DC-dependent manner (117). A similar
priming effect of DCs on NK cells is observed in COPD (117)
that culminates in enhanced NK cell-mediated destruction of
lung epithelial cells (113, 117). However, much less is known
about NK cell-DC interactions in the TME.

In addition to DCs, NK cells are known to interact with
macrophages. In pulmonary infection, macrophages increase
their surface expression of NKG2DLs, in some cases rendering
them susceptible to NK cell-mediated lysis (94, 199) [reviewed by
(Stojanovic, Correia and Cerwenka, 2018 92)]. Tumor
macrophages can also display increased levels of NKG2DLs
(92, 200, 201), which are postulated to act on NK cells in a
similar way to soluble NKG2DLs – in that low-level engagement
of NKG2D promotes receptor internalization and desensitization
of NK cells (92, 170). As with soluble NKG2DLs in serum,
elevated expression of NKG2DLs is also observed on circulating
monocytes in some cancers (201). Interestingly, this expression
decreases following tumor resection surgery (201). In vitro
studies show that the hypoxia-related factor lactate
dehydrogenase 5 (LDH5) is able to drive expression of
NKG2DLs on monocytes (201); hypoxia may therefore affect
NK cell–macrophage communication. Additionally, tumor- or
metastasis-associated-macrophages can express membrane-
bound TGFb (66), which will likely have similar inhibitory
effects on NK cells as those described earlier for soluble TGFb.
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OUTLOOK: NK CELL-BASED THERAPIES
FOR LUNG CANCER

Response rates to traditional chemotherapy and radiotherapy are
poor in lung cancer, with lung cancer patients having a low 5-
year survival rate of between 10-20% (202). Chemotherapies,
radiotherapies and immunotherapies affect NK cell function;
summarized in Box 1. T-cell-based immunotherapies target
inhibitory molecules that are also expressed by NK cells, but
their effect on NK cells is much less studied. In non-small cell
lung cancer (NSCLC) (the most common lung cancer subtype),
PD-1 and PD-L1 inhibitors are increasingly being used, and do
improve survival in comparison to traditional chemotherapies
(214, 215). However, the response rate is still only ~20%, with the
greatest survival benefit seen in patients with tumors expressing
highest levels of PD-L1 (214, 216). As such, a better
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understanding of how these therapies change NK cell activity
may help to identify more effective dosing regimens and
treatment combinations that promote NK cell tumor killing. In
addition, specifically targeting NK cells with immunotherapies
and/or cytokine therapies is also an area of expanding research
(215). For example, targeting NK cell activation with an IL-15
therapy has shown early promise in clinical trials for NSCLC, in
combination with PD-1 inhibition (217).

The field of chimeric antigen receptor- (CAR) NK cell research
also shows increasing promise, although clinical trials are still in
the early stages. CAR-T cell therapies have so far been less effective
at treating solid tumors than haematoligical (non-solid)
malignancies, although whether this also true for CAR-NK cells
is not clear (212, 213). CAR-NK cell infiltration into tumors is
likely to be inhibited by the same features that affect general NK
cell recruitment to tumors that we have discussed in this review;
A B

FIGURE 5 | Reciprocal interactions between NK cells and immature DCs. (A) iDCs can promote NK cell activation and maturation in several ways: they secrete IL-
12, IL-18, IL-15 and type I IFNs; they trans-present IL-15 to NK cells; and they express MICA/B, which binds to NKG2D on the surface of NK cells. (B) Once
activated, NK cells then promote either killing of the iDC or activation of the iDC, depending on various factors. iDC killing is usually induced when the NK cell
expresses high levels of NKp30 and DNAM, and/or when the iDC expresses low levels of MHC-I. iDC activation is induced when high levels of TNFa are present,
when the NK cell produces GM-CSF, and/or when the iDC expresses high levels of MHC-I.
BOX 1 | Current and future cancer therapies and their effects on NK cells
Clinically, chemotherapies mainly suppress NK cell-mediated killing and cytokine production, although the effect varies depending on dose (203, 204). The mechanisms
behind this suppression are poorly understood, as in vitro a number of chemotherapies actually enhance the immunogenicity of cancer cells to NK cells [reviewed by
Zingoni et al. 2017 (203)]. NK cell recruitment may also be affected by chemotherapeutic drugs, as they can increase the expression of CXCR3 ligands in both human and
mouse cancers (205).

Radiotherapy or ionizing radiation (IR) increases the expression of NKG2DLs and death receptors on cancer cells, making tumor cells more susceptible to NK cell-
mediated lysis [reviewed by Chen et al. (206)]. However, IR also increases the cleavage of NKG2DLs from tumor cells (206), enabling the evasion of NK cell-mediated killing
(174, 175). The effect of IR, like chemotherapy, is also dose-dependent, with low doses generally being beneficial for NK cell activity whereas high doses are detrimental
(206).

Immune checkpoint receptors on T cells targeted by immunotherapies (for example, PD-1, TIGIT and CTLA-4) are also expressed by NK cells, therefore
immunotherapies will also affect their activity. NK cells also contribute to the efficacy of monoclonal antibody therapies through the engagement of CD16, enabling the
killing of target cells by ADCC (207, 208). New immunotherapies are in development to target specific NK cell inhibitory receptors, including anti-KIR and anti-NKG2A
[reviewed by Sun H. and Sun C. (209)]. Indeed, targeting both NK cells and T cells can be more effective than either alone (210, 211).

Chimeric antigen receptor (CAR)-engineered NK cell therapies (CAR-NK cells) are in early clinical trials for solid and haematoligical malignancies (212). CAR-NK cells
are NK cells modified in vitro to express a single-chain Fv fragment that targets a specific tumor antigen. These may prove a more attractive therapy than CAR-T cells, as
there is less chance of them inducing cytokine storm or graft-versus-host disease, as it is not necessary to match HLA as strictly as for CAR-T cells (213).
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namely chemokine axes, extracellular matrix and soluble factors.
These factors are likely also altered by radiotherapy, chemotherapy
and immunotherapy (205).

DISCUSSION

Immunology is becoming more complicated as the appreciation
of tissue complexity and cellular interactions grows. The
phenotype, function, readiness to activate, retention and
survival of immune cells are all dictated by the immediate
environment. This is true for NK cell subsets, the study of
which is catching up with T cells in that they too have a
tissue-resident subset with distinct properties to those
circulating (58). Furthermore, NK cells are influenced by
contact with other cel ls , soluble mediators in the
microenvironment and features of the extracellular matrix.
Many new therapies look to promote NK cell activity in
tumors; however, if these activated NK cells (e.g. by immune
checkpoint inhibitors, or CAR-NK cell infusion) are unable to
enter tumors, then these therapies may prove unsuccessful. A
greater understanding of NK cell activity and the specific
formation of the ECM following lung infection or in cancer
needs to be assessed together.

The nomenclature surrounding tissue-resident NK cell
subsets and other innate lymphoid cells requires further
clarification as currently the disharmony makes it impossible
to compare between studies, which we highlight in regard to the
lung in Table 1. There may also be plasticity between NK cells
and ILC subsets. Confusion also arises by looking at the NK cell
population in bulk, rather than at least separating into CD16−

and CD16+ NK cells. It should be taken into consideration that
CD16− NK cells may be ‘ex-CD16+’ NK cells that have cleaved
CD16 after activation (42, 43). An agreed phenotypic definition
of the more differentiated CD16+/ex-CD16+ NK cell subset is
needed, as is whether CD69 expression indicates tissue residency
or merely activation.

It is not known where trNK cells fit in the differentiation process
of CD16− cells to CD16+ cells, or if they differentiate separately from
traditional cNK cell subsets. However, TGFb and/or IL-15 can
induce the expression of CD103 and CD49a on blood-derived NK
cells in vitro, (with CD16− NK cells having a greater capacity to
acquire this trNK cell-phenotype than CD16+ NK cells), indicating
that perhaps these cells are not developmentally distinct but are
instead reacting to specific signaling cues in the tissue environment
(53, 58, 129, 153). Additionally, lung- and bone-marrow-derived
cells with a trNK cell-like phenotype do not have increased capacity
for self-renewal (unlike TRM cells), as measured by Ki-67 staining
(21, 58, 218). As TGFb is often elevated in the human TME, perhaps
this is driving a switch to a trNK cell phenotype in lung tumors (2),
as has been observed in mouse tumor models (157, 158).

The function of trNK cells remains a controversy as some
studies have shown cells with this phenotype as tumor-
promoting with low cytotoxicity (157–159), whereas others
(including one study identifying these cells in human head and
neck tumors) show they are highly cytotoxic with strong anti-
tumor activity (53, 219). trNK cells in the liver display a form of
immunological memory (20, 220), and a subset of trNK cells in
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the lung appear to also possess memory-like properties (21).
CD8+ TRM cells express high amounts of the effector molecules
ICOS and granzyme B; they also express high levels of inhibitory
molecules CTLA4 and PD-1. As such, they function as rapid
effector cells whose activity can be easily shut off (221). Given the
similarity in gene expression and cell surface marker profile (58),
trNK cells may have a similar function. However, an overall
shared function of trNK cells throughout the body may not exist,
as their function will likely depend on the specific tissue
environment in which they reside; with dNK cells providing a
clear example of this (55).

In the past NK cells were assigned a predominantly pro-
inflammatory role. However, a regulatory role for NK cells is
emerging that promotes inflammatory resolution (Figure 2C)
(79, 100, 105, 106, 108–110). In a tumor setting, NK cells with an
immunoregulatory phenotype could perhaps help drive tumor
development. In mice, an immunoregulatory subset of NK cells
expressing CD117 (c-Kit) and PD-L1 negatively regulate DC
maturation, resulting in decreased DC priming of CD8+ T cells
(222). When these NK cells were adoptively transferred into
tumor-bearing mice, they promoted the development of lung
metastases (222).

NK cell interactions with other immune cells is another area
that warrants further study. As in vitro studies show, NK cells are
an important helper cell to DCs, and NK cell–DC interactions
have effects on both cell types (117, 194–198, 223). NK cells also
interact with macrophages, but how these interactions may
promote or inhibit tumor growth or affect the outcome of
infection is difficult to study. Macrophages are one of the
predominant immune cell types within lung tumors (124, 224,
225), so deciphering this cross-talk may help in the development
of anti-tumor strategies that enable the ‘re-education’ of both NK
cells and macrophages.

CAR-NK cell research offers the opportunity to alter many
aspects of NK cell biology, such as enhancing chemokine
receptor expression to aid NK cell recruitment, or modifying
the repertoire of activating and inhibitory receptors to increase
activity in tumors (226). Other NK-cell-based cancer therapies in
development include anti-NKG2A monoclonal antibodies,
recombinant IL-2 and recombinant IL-15 [reviewed by Bald et
al. (74)]. However, studies with T cell-based immunotherapies
show that targeting one immune cell type in the TME is often not
enough to inhibit tumor growth. Combining chemotherapies, T
cell-based and NK cell-based immunotherapies may be more
effective and a number of combination clinical trials are currently
in progress (74, 227).

In summary, NK cells are an important component of the
immune response to infectious and non-infectious stimuli and
many downstream immune pathways rely on their appropriate
recruitment and activation. The field of tissue-specific training of
innate immunity has exploded in recent years, such that it is
impossible to understand fundamental responses of immune cells
without taking into account their context. This is clearly also relevant
to NK cells, which are influenced by immune and non-immune
factors in the local environment, as well as by direct cell-to-cell
contact. This communication is altered by the TME, resulting in low
infiltration ofNKcells into tumors. Promoting their recruitment into
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the TME, as well as their activation and retention, will be key for
successful NK-cell based therapies. In addition, further research into
the cross-talk between immune cells in the lung TME, such as that
between NK cells and macrophages, may provide new areas for
therapeutic intervention. The identification of trNK cells in the lung
may also reveal novel roles for NK cells beyond their traditional
cytotoxic activity; for example, in immune memory and tolerance.
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