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Abstract

Neuronal membrane potential resonance (MPR) is associated with subthreshold and network

oscillations. A number of voltage-gated ionic currents can contribute to the generation or

amplification of MPR, but how the interaction of these currents with linear currents contributes

to MPR is not well understood. We explored this in the pacemaker PD neurons of the crab

pyloric network. The PD neuron MPR is sensitive to blockers of H- (IH) and calcium-currents

(ICa). We used the impedance profile of the biological PD neuron, measured in voltage clamp,

to constrain parameter values of a conductance-based model using a genetic algorithm and

obtained many optimal parameter combinations. Unlike most cases of MPR, in these optimal

models, the values of resonant- (fres) and phasonant- (fϕ = 0) frequencies were almost identi-

cal. Taking advantage of this fact, we linked the peak phase of ionic currents to their ampli-

tude, in order to provide a mechanistic explanation the dependence of MPR on the ICa gating

variable time constants. Additionally, we found that distinct pairwise correlations between ICa

parameters contributed to the maintenance of fres and resonance power (QZ). Measurements

of the PD neuron MPR at more hyperpolarized voltages resulted in a reduction of fres but no

change in QZ. Constraining the optimal models using these data unmasked a positive correla-

tion between the maximal conductances of IH and ICa. Thus, although IH is not necessary for

MPR in this neuron type, it contributes indirectly by constraining the parameters of ICa.

Author summary

Many neuron types exhibit membrane potential resonance (MPR) in which the neuron

produces the largest response to oscillatory input at some preferred (resonant) frequency

and, in many systems, the network frequency is correlated with neuronal MPR. MPR is

captured by a peak in the impedance vs. frequency curve (Z-profile), which is shaped by
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the dynamics of voltage-gated ionic currents. Although neuron types can express variable

levels of ionic currents, they may have a stable resonant frequency. We used the PD neuron

of the crab pyloric network to understand how MPR emerges from the interplay of the bio-

physical properties of multiple ionic currents, each capable of generating resonance. We

show the contribution of an inactivating current at the resonant frequency in terms of

interacting time constants. We measured the Z-profile of the PD neuron and explored pos-

sible combinations of model parameters that fit this experimentally measured profile. We

found that the Z-profile constrains and defines correlations among parameters associated

with ionic currents. Furthermore, the resonant frequency and amplitude are sensitive to

different parameter sets and can be preserved by co-varying pairs of parameters along their

correlation lines. Furthermore, although a resonant current may be present in a neuron, it

may not directly contribute to MPR, but constrain the properties of other currents that

generate MPR. Finally, constraining model parameters further to those that modify their

MPR properties to changes in voltage range produces maximal conductance correlations.

Introduction

Neuronal network oscillations at characteristic frequency bands emerge from the coordinated

activity of the participating neurons. Membrane potential resonance (MPR) is defined as the

ability of neurons to exhibit a peak in their voltage response to oscillatory current inputs at a

preferred or resonant frequency (fres) [1]. MPR has been observed in many neuron types such

as those in the hippocampus [2–4] and entorhinal cortex [2–6], inferior olive [7, 8], thalamus

[1, 9], striatum [10, 11], as well as in invertebrate oscillatory networks such as the pyloric net-

work of the crustacean stomatogastric ganglion (STG) [12–14]. Neurons may also exhibit pha-

sonance or a zero-phase response, which describes their ability to synchronize with oscillatory

inputs at a preferred phasonant frequency (fϕ = 0) [4, 15–18]. Resonance, phasonance and

intrinsic oscillations are related, but are different phenomena as one or more of them may be

present in the absence of the others [15, 16, 18].

Resonant and phasonant frequencies result from a combination of low- and high-pass filter

mechanisms produced by the interplay of the neuron’s passive properties and one or more

ionic currents and their interaction with the oscillatory inputs [1, 15, 18, 19]. The slow reso-

nant currents (or currents having resonant gating variables) oppose voltage changes and act as

high-pass filters. They include the hyperpolarization-activated inward current (IH) and the

slow outward potassium current (IM). On the other hand, the fast amplifying currents (or cur-

rents having amplifying gating variables) favor voltage changes and can make MPR more pro-

nounced. They include the persistent sodium current (INaP) and the inward rectifying

potassium (IKir) current. Most previous systematic mechanistic studies have primarily exam-

ined models with one resonant and one amplifying current, such as IH and INaP, respectively

[15, 18–20]. Currents having both activating and inactivating gating variables (in a multiplica-

tive way) such as the low-threshold calcium current (ICa) are not included in this classification,

but they are able to produce resonance by mechanisms that are less understood [16, 21].

Although a causal relationship between the properties of MPR and network activity has not

been established [but see 22], resonant neurons have been implicated in the generation of net-

work oscillations in a given frequency band because the resonant and network frequencies

often match up or are correlated. One example is in the hippocampal theta oscillations [23] in

which CA1 pyramidal cells exhibit MPR in vitro at theta frequencies of 4–10 Hz [2–4, 24] (but

see [25]). Interestingly, MPR is not constant across the somatodendritic arbor in these neurons
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[26]. Hippocampal interneurons also show MPR in vitro, but at gamma frequencies of 30–50

Hz [3, but see 4], and gamma oscillations have been found to be particularly robust in network

models containing resonant interneurons [27, 28].

The crab pyloric network produces stable oscillations at a frequency of ~1 Hz, driven by a

pacemaker group composed of two neuron types, the anterior burster (AB) and the pyloric

dilator (PD), that produce synchronized bursting oscillations through strong electrical-cou-

pling [29]. The PD neuron shows MPR, with fres ~1 Hz that is positively correlated with the

pyloric network frequency [12]. Previous work has demonstrated that MPR in this neuron

depends on two voltage-gated currents: ICa and IH [12]. Ionic current levels in pyloric neurons

are highly variable across animals, even in the same cell type [30]. It is therefore unclear how

these currents may interact to produce a stable MPR in the PD neuron and whether this vari-

ability persists or is increased or decreased in the presence of oscillatory inputs.

Traditionally, MPR is measured by applying ZAP current injection and recording the

amplitude of the voltage response [1, 31]. In some systems, depolarization can increase [32] or

decrease [33]) the preferred frequency. Alternatively, resonance is measured by applying ZAP

voltage inputs in voltage clamp and recording the amplitude of the total current. Both

approaches yield identical results for linear systems, but not necessarily for nonlinear systems.

A previous study from our lab using the voltage clamp technique showed that in the PD neu-

ron hyperpolarization decreases both fres and network frequencies [14]. Since MPR results

from the outcome of the dynamics of voltage-gated ionic currents activated in different voltage

ranges, changing the input voltage amplitude is expected to change fres in an input amplitude-

dependent manner. This cannot be captured by linear models in which impedance is indepen-

dent of the input amplitude. To our knowledge, no study has attempted to understand the

ionic mechanisms that produce shifts in fres in response to changes in the voltage range.

Previous studies have explored the generation of MPR by ICa and through the interaction

between ICa and IH in hippocampal CA1 pyramidal neurons [16, 17] and thalamic neurons

[21], where the resonant and network frequencies are significantly higher than in the crab

pyloric network and the ICa time constants are smaller. Based on numerical simulations, these

investigations have produced important results about the role of the activating and inactivating

gating variables and their respective time constants play in the generation of MPR and the

determination of fres. However, a mechanistic understanding of the effects of the interacting

time constants and voltage-dependent inactivation that goes beyond simulations is lacking. An

important finding for the CA1 pyramidal neurons is that, for physiological time constants,

they exhibit resonance, but no phasonance [16]. However, for larger time constants, outside

the physiological range for these neurons, they are able to exhibit phasonance. This suggests

that PD neurons, which have slower time scale currents, may exhibit resonance and phaso-

nance at comparable frequencies. If so, such a correlation between resonance and phasonance

can be used to explain the influence of ionic current parameters.

Our study has two interconnected goals: (i) to understand how the interplay of multiple reso-

nant gating variables shapes the Z- and φ-profiles (impedance amplitude and phase-shift as a

function of input frequency) of a biological PD neuron, and (ii) to understand the many ways

in which these interactions can occur to produce the same Z-profile in these neurons. For a neu-

ron behaving linearly, e.g., with small subthreshold inputs, this task is somewhat simplified by

the fact that linear components are additive. However, neurons are nonlinear and the nonlinear

interaction between ionic currents has been shown to produce unexpected results [16, 18, 19].

To achieve these goals we measured and quantified the Z- and φ-profiles of the PD neuron.

We then used a single-compartment conductance-based model of Hodgkin-Huxley type [34]

that included a passive leak and the two voltage-gated currents IH and ICa to explore what com-

binations of model parameters can produce the experimentally observed PD neuron Z- and φ-
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profiles. The maximal conductances of ionic currents of neurons in the stomatogastric nervous

system vary widely [35–37]. We therefore assume that the parameters that determine the Z-

profile in the PD neuron vary across animals. Thus, instead of searching for a single model

that fit the PD neuron Z-profile, we used a genetic algorithm to capture a collection of parame-

ter sets that fit this Z-profile. To achieve such a fit, we defined a set of ten attributes that char-

acterize the PD neuron Z-profile (e.g., resonant frequency and amplitude) and used a multi-

objective evolutionary algorithm [MOEA, 38] to obtain a family of models that fit these attri-

butes. We then used this family of optimal models to identify the important biophysical

parameters and relationships among these parameters to explain how the PD neuron Z-profile

is shaped. We show how the fact that the inactivating calcium current peaks at the same phase

as the passive properties, in response to sinusoidal inputs, can explain why resonant and pha-

sonant frequencies are equal. We identify significant pairwise parameter-correlations, which

selectively set certain attributes of MPR. We show that, in this neuron, IH does not produce

MPR but can extend the dynamic range of ICa parameters mediating MPR. Furthermore, we

identify a subset of models that capture the experimental shift in the resonant frequency with

changes in lower bound of voltage oscillation. Finally, we exploit the fact that the resonant and

phasonant frequencies are equal for the PD neuron to provide a mechanistic understanding of

the effects of the ICa time constants on the resonant frequency by using phase information.

Our results provide a mechanistic understanding for a generic class of neurons that exhibit

both resonance and phasonance as the result of the interaction between multiplicative gating

variables and complement the studies in [16].

Results

The PD neuron produces 1 Hz bursting oscillations with a slow-wave span of approximately

-60mV to -30mV (Fig 1a). Driving the neuron through this voltage range with a ZAP function

in voltage clamp (Fig 1b top panel) produces a minimum (arrow in Fig 1b bottom panel) in the

amplitude of the current response (Fig 1b). The input frequency at which this minimum occurs

corresponds to the resonant frequency: a peak in the Z-profile (fres, Zmax; Fig 1c1). The value of

fres was 0.86 ± 0.05Hz producing Zmax values of 10.23 ± 0.51 MΩ (N = 18; Fig 1d). The φ-profile

shows a phasonant frequency fφ = 0 = 0.81 ± 0.05Hz, which in most cases matched fres (Fig 1c2).

The PD neuron had a QZ of 2.77 ± 0.71 MΩ and Λ½ of 0.53 ± 0.04 Hz. Across preparations, QZ

showed considerable variability, whereas fres, Λ½, and fφ = 0 were relatively consistent (Fig 1d).

The corresponding median values for fres, QZ, Λ½, and fφ = 0 were 0.83 Hz, 2.77 MO, 0.5 Hz, 0.79

Hz, respectively.

To obtain model parameter combinations constrained by the PD neuron Z- and φ - pro-

files, we generated a population of models using an NSGA-II algorithm (see Methods). The

attributes of a single PD neuron Z- and φ -profiles (Fig 2, filled red circles) constrained the

optimization of the parameter values. This resulted in a population of ~9000 sets of parameters

(“optimal” dataset). All models in the optimal dataset captured the attributes of Z and φ to

within 5% of the target (light blue lines in Fig 2), with the exception of φmax, which may be due

to the anatomical structure of the PD neuron, a property that is omitted in our single-compart-

ment model, or due to additional ionic currents, such as the potassium A current, which are

not included in our model [16, 39].

The generation of MPR by the interaction of two resonant voltage-gated

currents

To understand how Z is generated by the dynamics of individual ionic currents at different

voltages and frequencies, we examined the amplitude and kinetics of ionic currents. In
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voltage clamp, Z is shaped by active voltage-gated currents, interacting with the passive leak

and capacitive currents, in response to the voltage inputs. To understand the contribution of

different ionic currents, we measured these currents in response to a constant frequency sine

wave voltage inputs (Fig 3a inset) at three frequencies: 0.1Hz, 1Hz (fres) and 4Hz (Fig 3). For

Fig 1. Membrane potential resonance MPR of the PD neuron was measured in voltage clamp. a. During

ongoing activity, the PD neuron shows a slow-wave voltage waveform ranging approximately between -60

and -30 mV. b. The membrane potential (Vzap) and the injected current (IPD) were recorded when the PD

neuron was voltage-clamped using a ZAP function between -60 and -30mV and sweeping frequencies

between 0.1 and 4 Hz. The arrowhead indicates resonance, where the current amplitude is minimal and Z is

maximal. c. The impedance amplitude Z(f) (c1) and phase φ(f) (c2) profiles of the PD neuron recorded in 18

preparations. The cross bars show the mean and SEM of fres and Zmax (c1) and fφ = 0 (c2). The shaded region

indicates the 95% confidence interval. d. The range of three Z(f) attributes fres, QZ, and Λ1/2 and one φ(f)

attribute fφ = 0. Each attribute was normalized to the median of its distribution for cross comparison. CoV is the

coefficient of variation.

https://doi.org/10.1371/journal.pcbi.1005565.g001
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Fig 2. Optimal models were fit to the impedance attributes of a single PD neuron. The Z(f) (a) and φ(f)

(b) profiles of 500 randomly selected models from the optimal dataset (light blue curves) are compared to the

target neuron’s impedance profiles (red circles). All attributes (except φmax) were captured to within 5%

accuracy. The values of the biological target impedance amplitude attributes (in Hz, MΩ) were: (f0, Z0) = (0.1,

8.2), (fres, Zmax) = (1, 13.7), (0.4, 11.65), (2.5, 11.65) and (4, 9.6). The target impedance phase attributes (in

Hz, rad) were: (0.1, 0), (fφmax, φmax) = (0.4, 0.5), (fφ = 0, 0) = (1.05, 0), (2, -4), (fφmin, φmin) = (4, -0.4).

https://doi.org/10.1371/journal.pcbi.1005565.g002
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these frequencies, we plotted the steady-state current as a function of voltage (Fig 3b–3d left)

and normalized time (or cycle phase = time x frequency; Fig 3b–3d right). At 0.1 Hz, the

amplitudes of IH and IL +ICm sets Itotal at low (~ -60 mV) and high (~ -30 mV) voltages,

respectively (Fig 3b left). Since IH deactivation is slow, it also contributes to Itotal at high volt-

ages (Fig 3b right). At 1 Hz (= fres), IH still sets the minimum of the total current, but, because

of its slow kinetics, its steady-state dynamics are mostly linear (Fig 3c left). However, now ICa

peaks in phase (Fig 3c right) with the passive IL + ICm at high voltages, thus producing a

smaller Itotal (magenta bar in Fig 3c). The values of IH at 4 Hz are not much different from 1

Hz (Fig 3d). However, ICa peaks at a much later phase (Fig 3d right), which does not allow it

to compensate for IL + ICm at high voltages, thus resulting in a larger Itotal (magenta bar in

Fig 3d). Note that at 1 Hz, the total current peaks at a cycle phase close to 0.5, thus implying

that that the fres and fφ = 0 are very close or equal (Fig 3c right). Although Fig 3 shows the

results for only one model in the optimal dataset, these results remain nearly identical for all

models in the optimal dataset. The standard deviation of the currents measured, including

the total current was never above 0.15 nA over all models. The inset in Fig 3c shows one stan-

dard deviation around the mean for the data shown in the right panel, calculated for 200 ran-

domly selected models.

An important collective property of the models we found is that the two frequencies, fres

and fφ = 0 coincide (Fig 4a and 4b). We analyzed the experimental data, and confirmed that

the coincidence of MPR and phasonance frequencies also occurs in the biological system

(Fig 4b inset). This is typically not the case for neuronal models (and for dynamical systems

in general), not even for linear systems [18–20], with the exception of the harmonic oscilla-

tor. However, the fact that it occurs in this system, allows us to use the current vs. cycle

phase (current-phase) diagrams to understand the dependence of fres and fφ = 0 on the model

parameters (Fig 4c).

The current-phase diagrams are depicted as in Fig 3b–3d, as graphs of Itotal, IL and ICa as a

function of the cycle phase for each given specific input frequency (Fig 4c). We do not show IH
and ICm in this plot, because at frequencies near fres they do not change much with input fre-

quency. Note that IL is independent of the input frequency (five panels in Fig 4c) because it

precisely tracks the input voltage.

In voltage clamp, fφ = 0 = 1Hz is where Itotal is at its minimum amplitude exactly at cycle

phase 0.5, coinciding with the peak of the input voltage (Fig 4c, middle). The fact that IL pre-

cisely tracks the input voltage imposes a constraint on the shapes of ICa and Itotal. Therefore, by

necessity, if the ICa trough occurs for a cycle phase below 0.5, the Itotal peak must occur for a

cycle phase above 0.5 (Fig 4c, top two panels) and vice versa (Fig 4c, bottom two panels). This

is shown by the slope of the line joining the peaks of Itotal and ICa and, at fres this line is approxi-

mately vertical (Fig 4c middle panel).

We use this tool to explain the dependence of the Z-profile on the time constants tCam
(Fig 5a) and tCah (Fig 5b). The corresponding current-phase diagrams are presented in Fig 5c

and 5d, respectively. In each panel we present the current-phase diagrams for f at 1 Hz (= fres

when the parameter is at 100%; middle) and f = fres (sides) when fres is different from 1Hz.

To understand the dependence of Z on changes in tCam and tCah we have to primarily explain

the dependence of the two attributes Zmax and fres on these parameters. While fres has a similar

monotonic dependence on tCam and tCah (as these parameters increase, fres decreases), Zmax has

the opposite dependence on tCam and tCah . The opposite dependence of Zmax on tCam and tCah is a

straightforward consequence of the opposite feedback effects (positive for tCam and negative for

tCah ) that these parameters exert on ICa. An increase in tCam (for fixed values of tCah ) results in a

smaller ICa in response to a given voltage clamp input. Because ICa is smaller and negative, this
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leads to an increase in Itotal and a decrease in Z at all frequencies. Similarly, an increase in tCah
(for fixed values of tCam ) results in a larger ICa, leading to a decrease in Itotal and an increase in Z.

For a fixed value of the input frequency f (e.g. f = 1 Hz as in Fig 5), for Zmax to decrease as

tCam increases (Fig 5a), the cycle phase of peak ICa is delayed thereby subtracting less from IL on

Fig 3. Passive and voltage-gated currents contribute to the generation of MPR. a. Z(f) for a random

model from the optimal dataset. We measured the steady-state response to sinusoidal voltage inputs (inset)

at 0.1 Hz, fres = 1 Hz, and 4 Hz. Voltage-gated (ICa and IH) and passive currents (IL + ICm) are plotted as a

function of voltage (left) and normalized time or cycle phase (right) at 0.1 Hz (b), 1 Hz (c), and 4Hz (d). The

inset in 5c shows one standard deviation around the mean for the data shown in the right panel, calculated for

200 randomly selected models.

https://doi.org/10.1371/journal.pcbi.1005565.g003
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Fig 4. fres and fφ = 0 of the optimal models are nearly identical. a. Z(f) (top) and φ(f) (bottom) for a

representative optimal model. Green dots indicate fres (top) and fφ = 0 (bottom). b. Histogram showing the

difference between fres and fφ = 0 for 500 randomly selected models. A comparison of fres and fφ = 0 of the

experimental data of the PD neuron shows a similar distribution (inset, N = 18). (c) Plots of steady-state

responses of ICa, IL, and Itotal to sinusoidal voltage inputs at the frequencies marked in panel a shown as a

function of normalized time (cycle phase). Dotted vertical line indicates cycle phase 0.5 where the passive

currents peak. Solid lines connect the minimum of ICa to the peak of Itotal. The two lines nearly align at fφ = 0.

https://doi.org/10.1371/journal.pcbi.1005565.g004
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the depolarizing phase. This leads to Itotal to phase advance relative to IL (Fig 5c) and causes fres

to decrease. Similarly, for Zmax to increase as tCah increases (Fig 5b), ICa has to peak later in the

cycle thereby subtracting less from IL on the depolarizing phase, which causes Itotal to peak ear-

lier in the cycle, which in turn causes the bar also to swing from the left to the right (Fig 5d).

Therefore, fres decreases.

Fig 5. The time constants of ICa activation and inactivation control fres and Zmax. The Z(f) profiles are plotted for a randomly selected

optimal model (green) at different values of tCam (a) and tCah (b). Note that fres of the control (100%) values are at 1 Hz (dashed vertical line). The

currents ICa, IL and Itotal plotted as a function of cycle phase at 50% (c1, d1), 100% (c2, d2), and 150% (c3, d3) of the control values of tCam (c)

and tCah (d). In each panel of c and d, the currents are shown at 1 Hz (along the dashed lines in a, b) and at fres (filled circles in a, b).

https://doi.org/10.1371/journal.pcbi.1005565.g005
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Parameter constraints and pairwise correlations

Previous studies have shown that stable network output can be produced by widely variable

ion channel and synaptic parameters [37, 40]. Our biological data, similarly, showed that

many of the Z- and φ-profile attributes, such as fres, Λ½ and fφ = 0 are relatively stable across dif-

ferent PD neurons whereas QZ shows the most variability (Fig 1d). To determine whether the

Z- and φ-profile attributes constrain ionic current parameters, we examined the variability of

the model parameters in the optimal dataset. We found that some parameters were more con-

strained while others were widely variable, as measured by the coefficient of variation (CoV;

Fig 6a). Parameters showing large CoVs were �gCa, thm, �gH , tCah , and VCah1
1=2 ; those showing small

CoVs were �gL and the time constant of activation of IH and ICa and half-activation voltage of

ICa: tCam , VCam1
1=2 , �g L (in increasing order of CoV value). A small CoV value implies that the

parameter is tightly constrained in order to produce the proper Z- and φ-profiles.

A number of studies have indicated that the large variability in ion channel parameters is

counter-balanced by paired linear covariation of these parameters [36, 37, 41–43]. Considering

the large variability, we identified parameter pairs that co-varied (Fig 6b). For this, we carried

out a permutation test for the Pearson’s correlation coefficients, followed by a Student’s t-test

on the regression slopes, to identify significant correlations between pairs of parameters

(see Methods). The strongest correlations were between the following parameters: �gL � �gH
(R = -0.93), �gL � tCam (R = 0.73), �gL � tCah (R = 0.88), �gH � tHm (R = 0.68), �gH � tCah (R = -0.82),

�gH � VCah1
1=2 (R = 0.76), �gCa � VCah1

1=2 (R = -0.94), and tCam � tCah (R = -0.80) (correlations selected

with p< 0.01; Fig 6b).

In our experiments, VHm
1

1=2 was fixed at -70 mV, using data from experimental measurements

in crab [44] (see Methods). However, we also repeated the MOEA with VHm
1

1=2 set to -96 mV, as

reported in lobster experiments [45], and found that all correlations observed with the former

value of VHm
1

1=2 remain intact, but simply with a much larger maximal conductance of IH (S1

Fig). In other words, shifting VHm
1

1=2 to the left simply results in larger �gH in the optimal models

without qualitatively changing the other findings.

In particular, we found that the �gCa � VCah1
1=2 correlation appeared nonlinear, but there

were strong and distinct linear correlations in the two regions �gCa > 0.05 μS (low �gCa) and

�gCa < 0.05 μS (high �gCa; Fig 6c). To ensure that our partitioning of the population into different

levels of �gCa was valid, we ran the MOEA two additional times, each time using only the mean

values of �gL, tHm, VCam1
1=2 , and tCam for either the low or the high �gCa values. These optimal models

consistently separated into two non-overlapping model parameters, consistent with the low

and high �gCa models in Fig 6c.

We examined if the low and high �gCa models separated or showed distinct correlations in

the remaining parameters. The two groups produced non-overlapping subsets of model

parameters in the �gCa � VCah1
1=2 graph. We calculated the Pearson’s correlation coefficient for

each pair of parameters in the low and high �gCa groups and tested for significance as before

(see Table 1). We found that only the high �gCa group showed a significant tCam � tCah and

�gH � tCah correlations (Table 1). Additionally, both low and high �gCa groups showed the follow-

ing correlations: VCah1
1=2 � tCah , �gL � �gH ,�gCa � VCah1

1=2 , and �gH � tHm, �gCa � tCah . Furthermore, when

we ran the MOEA on models where �gH was set to 0, the only optimal models obtained fell

within a narrow range of the high �gCa group (S2 Fig), which is consistent with the distribution

of high �gCa models in the �gH � �gCa panel of Fig 6d.
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Fig 6. The optimal models show variability in individual and pairs of parameters. a. The range of parameters for all

optimal models (~9000). Each parameter is normalized by its median value for cross comparison. The median values were

gL ¼ 0:096mS, gH ¼ 0:164mS, gCa ¼ 0:172mS, thm ¼ 2179ms, VCa
1
m

1=2 ¼ � 51mV, tCam ¼ 70ms, V
Ca1h
1=2 ¼ � 67mV, tCah ¼ 458ms. Three

representative optimal model parameter sets are shown (cyan, orange, purple solid line segments) indicating that widely

different parameter combinations can produce the biological Z(f) and φ(f). CoV is coefficient of variation. b. Pairwise

relationships among parameters of all optimal models (black dots). The range of parameter space was sampled within the

prescribed limits given to the optimization routine, shown by including the sampled non-optimal models (grey). Permutation test

showed significant pairwise correlations (green highlighted boxes with linear fits shown as green lines). c. Optimal models could

be separated into two highly significant linear fits (green lines) in gCa � V
Cah1
1=2 according to whether gCa < 0.05 (red; Low gCa) or

gCa > 0.05 (cyan; High gCa). d. All pairwise relationships, separated on the low or high gCa (colors as in panel c). Green boxes are

the same as in b.

https://doi.org/10.1371/journal.pcbi.1005565.g006

Interaction of resonant currents and membrane potential resonance

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005565 June 5, 2017 12 / 30

https://doi.org/10.1371/journal.pcbi.1005565.g006
https://doi.org/10.1371/journal.pcbi.1005565


Decreasing the lower bound of voltage oscillations influences the

measured fres and Zmax

The lower voltage range of the PD bursting oscillation is strongly influenced by the inhibitory

synaptic input from the lateral pyloric neuron (LP), and previous work has shown that fres in

the PD neuron is influenced by the minimum of the voltage oscillation (Vlow) [14]. In order to

explore which subset of our optimal models faithfully reproduce the influence of the minimum

voltage range, we measured the Z-profile when Vlow was changed from -60 to -70 mV (Fig 7a).

Decreasing Vlow significantly decreased fres (by 0.24±0.8Hz), while there was no significant dif-

ference in the mean Zmax (-0.15±0.81MO) (two-way RM-ANOVA; N = 8, p< 0.001; Fig 7b,

left panel).

To explore whether the shift in fres as a function of Vlow could be captured by either low or

high �gCa models, we measured the shift in fres and Zmax, when Vlow was changed from -60mV

to -70mV. We found that fres decreased by 0.24±0.03 Hz and Zmax increased by 5.2±0.6 MO for

high �gCa models, whereas fres decreased by 0.07±0.02Hz and Zmax decreased by 2.6±0.2MO for

low �gCa models (Fig 7b, right panel). Therefore, neither model group reproduced the experi-

mental changes in the Z-profile, specifically, a decrease in fres and no change in Zmax.

We consequently filtered the full optimal dataset (black dots Fig 7c) to find a subset of mod-

els that reproduced the change in fres and Zmax (to within 5% of the representative experimental

Z(f) shown in Fig 7a) when Vlow was decreased to -70mV. Of the ~9000 models in the popula-

tion, we found ~1000 models that produced the desired change. Interestingly, the resulting

models showed a trade-off in values for �gCa and VCah1
1=2 parameters that showed little overlap

with the low and high �gCa model groups (Fig 7c).

To understand why this particular group (which we will term intermediate �gCa) produced

small changes in Zmax when Vlow was decreased, we plotted the current-voltage relationships

for ICa, IH, ICa+IH and Itotal for Vlow = -60 and -70 mV, measured at f = 1Hz (fres at Vlow =

-60mV) and compared these models with the low and high �gCa models. For Vlow = -60mV, the

ionic currents behaved similarly for all model groups and Itotal was maximal at -30mV

(magenta curve in Fig 7d1–7d3), indicating the similarity of all models in the optimal dataset.

However, when Vlow was at -70mV revealed differences in peak ICa, without affecting the peak

amplitude of IH across the different �gCa groups (Fig 7e1–7e3). The differences in peak ICa

accounted for most of the changes in Itotal across the different �gCa groups. The Zmax values for

intermediate �gCa models reproduced the small shift seen in experiments because ICa was at

the correct level at high voltages (-30 mV) when Vlow was at -70mV (Fig 7e3). The other two

groups did not produce appropriate Zmax for Vlow = -70mV because either ICa was too small

Table 1. Statistical p-values obtained using the permutation test of pairwise comparisons for low (lower triangle) and high (upper triangle)�gCa.
Underlined values are statistically significant (p<0.05).

�gL �gH �gCa tHm VCa
m
1

1=2
tCam VCa

h
1

1=2
tCah

�gL 0.003 0.358 0.147 0.272 0.002 0.347 < 0.001

�gH 0.003 0.288 0.03 0.442 0.104 0.21 0.004

�gCa 0.349 0.046 0.449 0.512 0.485 <.001 0.129

tHm 0.054 0.001 0.002 0.349 0.470 0.417 0.121

VCa
m
1

1=2
0.233 0.496 0.138 0.277 0.378 0.452 0.037

tCam 0.133 0.510 0.191 0.253 0.05 0.318 0.036

VCa
h
1

1=2
0.368 0.07 <0.001 < 0.001 0.068 0.092 0.27

tCah 0.307 0.452 0.008 0.05 < 0.001 < 0.001 0.001

https://doi.org/10.1371/journal.pcbi.1005565.t001
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Fig 7. The effect of the lower voltage bound Vlow of oscillations on fres and Zmax constrains the optimal models. a. An example of

the change in Z(f) measured in the biological PD neuron for Vlow = -60mV (black line) and Vlow = -70mV (grey line). Inset shows the

bounds of voltage clamp inputs in the two cases. b. Shifting Vlow from -60 mV to -70 mV lowers the value of fres measured in the PD

neuron significantly, without influencing Zmax (b. Experimental). fres and Zmax values measured in a random subset of optimal model

neurons corresponding to low or high gCa values produced the same fres and Zmax values at Vlow = -60mV (black dots), but distinct fres and

Zmax values at Vlow = -70mV (low gCa: red dots; high gCa: cyan dots). A subset of optimal models could reproduce the experimental result

in which fres shifted to significantly lower values without affecting Zmax. (grey dots). (c) gCa � V
Cah1
1=2 relationship separating out the different
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(and hence Itotal too large), resulting in a smaller Zmax (Fig 7e1) or vice versa (Fig 7e2). It was

also clear that the more negative voltages allowed for an increase in IH levels and therefore

larger contribution to the total current. With Vlow at -70mV, not only was there a larger peak

amplitude of IH at the lower voltages, but the current at positive voltages also increased because

of the very slow deactivation rate. Consequently, IH did not fully turn off when ICa peaked, so

that it also contributes to shaping the upper envelope of the total current. IH kinetics were dif-

ferent across the groups (Fig 7e1–7e3). Taken together with the fact that when IH was removed

produced only parameter values with very high �gCa and very low VCah1
1=2 (S1 Fig), these data sug-

gest that IH could extend the range of ICa parameters over which MPR could be generated

through compensation for variable levels of IH.

The ICa in low �gCa models was too small when Vlow was -70 mV, because the low conduc-

tance did not allow for a significant contribution from the additional de-inactivation (consid-

ering the higher VCah1
1=2 in this group) and therefore the peak current did not increase enough.

Consequently, the contribution of IH at low voltages was greater than that of ICa at higher volt-

ages (Fig 7e2). Conversely, in the high �gCa group, VCah1
1=2 was more negative and so many more

channels were available for de-inactivation and the contribution of ICa at higher voltages was

much larger than that of IH at low voltages (Fig 7e3). These findings suggest that the balance

between these two currents, that shape the lower and upper envelope of the total current

response to voltage inputs, is necessary to produce the appropriate shift in fres without influ-

encing Zmax significantly.

The intermediate �gCa models were strongly correlated in �gCa � VCah1
1=2 (R2 = 0.89; p< 0.001

Fig 7f1, and had a stronger correlation in the tCam � tCah parameters compared to all models

(R2 = 0.65; p< 0.001; Fig 7g). Limiting the optimal models to the intermediate �gCa group also

revealed a correlation in the �gCa � �gH parameters (R2 = 0.79; p< 0.001; Fig 7h). This new cor-

relation may be produced by the balance of the amplitudes of IH and ICa at the lower and

higher voltages, respectively.

fres and Qz are maintained by distinct pairwise correlations

To determine if any of the MPR attributes were sensitive to the correlations, we ran a 2D sensi-

tivity analysis on a random subset of 50 models. We tested for significant difference in sensitiv-

ity across low, intermediate and high levels of �gCa. In particular, we tested for significant

sensitivity of fres and QZ when parameters were co-varied in directions parallel (Lk) or perpen-

dicular (L┴) to their respective population correlation lines.

We first examined whether fres and QZ were sensitive to tCam � tCah for both high (Fig 8a1),

low (Fig 8a2), and intermediate �gCa(Fig 8a3) when parameters were moved along Lk and L┴

(blue and green line; Fig 8a1–8a3). For high and intermediate �gCa models, fres sensitivities in

the Lk group were negative and not significantly different (3-way RM ANOVA; N = 50,

p> 0.05), but both groups were significantly different from the low �gCa group (3-way RM

groups of models producing different responses to changes in Vlow (colors correspond to b Model panel). Models depicted by grey dots

are referred to as intermediate gCa models. (d1-e3) mean voltage-gated ionic currents ICa, IH and ICa+IH and Itotal, shown as a function of

voltage for Vlow = -60 mV (d1-d3) and Vlow = -70 mV (e1-e3). Numbers correspond to the location along the gCa � V
Cah1
1=2 as shown in c. f.

The intermediate gCa models (grey dots) show a distinct gCa � V
Cah1
1=2 linear correlation. g. Intermediate gCa models (grey dots) show a

distinct and tighter tCam � tCah correlation compared to all optimal models (black dots). h. Intermediate gCa models (grey dots) show a

strong gCa � gH linear correlation that is not observed for all optimal models (black dots).

https://doi.org/10.1371/journal.pcbi.1005565.g007
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ANOVA; N = 50, p< 0.001), which had a positive sensitivity (Fig 8b). This result indicates

that the correlation did a better job at maintaining the value of fres when the value of �gCa is

intermediate or high. For all �gCa groups, we found that there was a significant interaction

between the Z attribute and direction (2-way RM ANOVA; F(1, 49) = 853.52, p< 0.001).

When carrying out a pairwise comparison for each direction within an attribute, we found a

significant difference in sensitivity between Lk and L┴ for fres (t(93.57) = 28.251, p<0.001).

Similarly, for all �gCa groups, there was a significant difference in sensitivity between Lk and L┴

for QZ (t(93.57) = -8.294, p<0.001). Because the difference between Lk and L┴ for QZ was neg-

ative, these results suggest that the tCam � tCah correlation determines fres and not QZ (Fig 8b).

We next examined whether fres and QZ were sensitive to the �gCa � VCah1
1=2 correlation for the

three model groups (Fig 9a1–9a3). For all �gCa groups, we found that there was a significant

interaction between the Z attribute and direction (2-way RM ANOVA; F(1, 49) = 1262.73.2,

p< 0.001). When carrying out a pairwise comparison for each direction within an attribute,

we found a significant difference in sensitivity between Lk and L┴ for fres (t(95.18) = 10.10,

p<0.001). Similarly, for all �gCa groups, we found a significant difference in sensitivity between

Lk and L┴ for QZ (t(95.18) = -35.62, p<0.001). Therefore, these results suggest that the

�gCa � VCah1
1=2 correlation determines QZ and not fres (Fig 9b).

Fig 8. Assessing the dependence of fres and QZ on the tCam � tCah linear correlation. a. Parameter values

for each model were changed along a line parallel (k, blue) to the correlation line (black) or along a

perpendicular line (
j� � , grey). This was done for models with high (cyan; a1), low (red; a2) and intermediate

(grey; a3) gCa models. For each model and each line, k or
j� � , we fit a line to the relative change in either fres or

QZ as a function of the relative change in gCa. b. The sensitivity values of fres or QZ to k or
j� � are shown for the

three groups.

https://doi.org/10.1371/journal.pcbi.1005565.g008
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Finally, we tested the sensitivity of fres and QZ to the �gCa � �gH correlation in the intermedi-

ate �gCa group (Fig 10a). We found that there was a significant interaction between the Z attri-

bute and direction (2-way RM ANOVA; F(1, 11.12) = 2236.2, p< 0.001). When carrying out

pairwise comparisons between directions for each attribute, we found there was a significant

difference in fres sensitivity between Lk and L┴ (t(93.93) = 2.65, p = 0.0095; Fig 10). Although

the sensitivity of QZ was not 0 for Lk, the difference in sensitivity values between Lk and L┴ was

also significantly different (t(93.93) = 62.157, p< 0.0001; Fig 10b). These results suggest that,

when Vlow is at -70 mV, for this subset of models to shift fres with only small shifts in Zmax, �gH
and �gCa values must be balanced. It may be possible that the QZ sensitivity is not closer to zero

along Lk because VCah1
1=2 , which is also negatively correlated with �gCa, should decrease too to

compensate for changes in QZ.

Discussion

Many neuron types exhibit membrane potential resonance (MPR) in response to oscillatory

inputs. Several studies have shown that the resonant frequency of individual neurons is

Fig 9. Assessing the dependence of fres and QZ on the linear gCa � V
Ca1h
1=2 correlation. a. Parameter

values for each model were changed along a line parallel (k, blue) to the correlation line (black) or along a

perpendicular line (
j� � , grey). This was done for models with high (cyan; a1), low (red; a2) and intermediate

(grey; a3) gCa models. For each model and each line, k or
j� � , we fit a line to the relative change in either fres or

QZ as a function of the relative change in gCa. b. The sensitivity values of fres or QZ to k or
j� � are shown for the

three groups.

https://doi.org/10.1371/journal.pcbi.1005565.g009
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correlated with the frequency of the network in which they are embedded [2, 6, 12, 14, 22, 46].

Moreover, networks of resonant neurons have been proposed to generate more robust net-

work oscillations than neurons with low-pass filter properties [27, 28]. In several cases, the

underlying nonlinearities and time scales that shape the Z-profile also shape specific properties

of the spiking activity patterns, thus leading to a link between the subthreshold and suprathres-

hold voltage responses [25, 47].

Previous work in the crustacean stomatogastric pyloric network has shown that the reso-

nance frequency of the pyloric pacemaker PD neurons is correlated with the pyloric network

frequency and is sensitive to blockers of both IH and ICa [12–14]. However, it was not clear

how these voltage-gated ionic currents and the passive properties could interact to generate

MPR in the PD neurons. Previous modeling work showed that these currents participate in

the generation of resonance in CA1 pyramidal neurons [16, 17]. However, due to the differ-

ences in ICa time constants, the interaction between its activating and inactivating gating vari-

ables did not produce phasonance in CA1 pyramidal neurons, while it does in PD neurons.

On a more general level, it is not well understood how the nonlinear properties of ionic cur-

rents affect their interplay. Previous studies have shown such interactions may lead to unex-

pected results, which are not captured by the corresponding linearizations [16–19]. This

complexity is expected to increase when two currents with resonant components are involved

[16, 48]. We therefore set out to investigate the biophysical mechanism underlying such inter-

actions by using a combined experimental and computational approach and the biological PD

neuron as a case study. The two PD neurons are electrically coupled to the pacemaker anterior

burster neuron in the pyloric network and their MPR directly influences the network fre-

quency through this electrical coupling [22]. Consequently, our findings have a direct bearing

on how the pyloric network frequency is controlled.

Many studies of biophysical models have explored the parameter space using a brute-force

technique, by sampling the parameters on a grid [40, 49]. Although this technique provides a

rather exhaustive sampling of the parameter space, using a fine grid on a large number of free

Fig 10. Assessing the dependence of fres and QZ of the intermediate gCa models on the linear gCa � gH
correlation. a. Parameter values for each model were in the intermediate gCa group (see Fig 7) were changed

along a line parallel (k, blue) to the correlation line (black) or along a perpendicular line (
j� � , grey). For each

model and each line, k or
j� � , we fit a line to the relative change in either fres or QZ as a function of the relative

change in gCa. b. The sensitivity values of fres or QZ to k or
j� � are shown for the three groups. c. Impedance

profiles showing how QZ changes when the parameters vary along a line parallel (blue) or perpendicular

(grey) to the gCa � gH correlation line in one optimal model. Arrows show the direction of the movement of

Zmax and fres for the change in parameters along k or
j� � .

https://doi.org/10.1371/journal.pcbi.1005565.g010
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parameters could lead to combinatorial explosion and result in a prohibitive number of simu-

lations. On the other hand, a sparse sampling may miss “good” solutions. A multi-objective

evolutionary algorithm (MOEA) can generate multiple trade-off solutions in a single run and

can handle large parameter spaces very well. In contrast to a brute-force approach, the MOEA

can potentially cover a much larger range with possibly hundreds of values [38]. One disadvan-

tage of the MOEA is that, as the number of objectives increases, the search may miss a large

portion of the parameter space. This occurs because randomly generated members often tend

to be just as good as others, which means that the MOEA would run out of room to introduce

new solutions in a given generation. To try to overcome this problem, we carefully chose the

parameters of the MOEA such as population size, mutation and crossover distribution indices

(100, 20 and 20, respectively) and ensured that the sampled population covered the parameter

space evenly. Additionally, we ran the MOEA multiple times, each time collecting all the good

parameter sets until one has exhausted all regions of the parameter space where good models

exist.

In previous work, we and other authors have examined how the additive interaction of

ionic currents with resonant and amplifying gating variables shape the Z and φ profiles at both

the linear and nonlinear levels of description [6, 15, 18, 20, 32, 33, 50]. However, the role of

inactivating currents in the generation of MPR is not so clear. Authors have established that

ICa can generate MPR in the absence of additional ionic currents [21], that the activation vari-

able diminishes the propensity for MPR and the interaction with IH enhances the dynamic

range of parameters producing ICa-mediated resonance [16]. Even so, to date, only a descrip-

tive explanation of how the ionic current parameters affect certain attributes of MPR has been

provided, but no study has provided a mechanistic understanding in terms of the parameters

of ICa that go beyond numerical simulations.

Similar to [16], the model we used in this paper involves the interaction between resonant

and amplifying components. Specifically, this model includes a calcium current with both acti-

vation (amplifying) and inactivation (resonant) gating variables, and an H-current with a sin-

gle activation (resonant) gate. Since IH and ICa shape the lower and upper envelopes of the

voltage response to current inputs, respectively [12], given the appropriate voltage-dependence

and kinetics of the currents both could play equal roles at different voltage ranges. In fact,

either ICa inactivation or IH is capable of producing MPR [2, 21]. In CA1 pyramidal neurons,

the differences in Z profiles are due to the passive properties and the kinetics of IH [4]. It is pos-

sible that the kinetic parameters of IH and ICa are tuned so that they contribute nearly equally

to shaping the envelopes of the voltage-clamp current.

By tracking the current response to sinusoidal voltage inputs at various frequencies, we

found that the fres and fφ = 0 are driven by the peak phase of ICa, and that fres and fφ = 0 are

nearly equal because of the phase matching of ICa with IL. This is not always the case for neuro-

nal models, and dynamical systems in general, not even for linear models, except for the har-

monic oscillator [18–20]. In fact, as we mentioned above, this is not the case for the ICa model

used in [16], although our results on the ICa inactivation time constant are consistent with that

study. In these models phase advance for low input frequencies required the presence of IH.

The underlying mechanisms are still under investigation and are beyond the scope of this

paper. However, the fact that it occurs was crucial to develop a method to investigate the

dependence of the resonant properties, particularly the dependence of the fres on the ICa time

constants, using phase information. To date, no other analytical method is available to under-

stand the mechanisms underlying this type of phenomenon in voltage clamp. The tools we

developed are applicable to other neuron types for which fres is equal to or has a functional

relationship with fϕ = 0. However, the conditions under which such a functional relationship

exists still needs to be investigated.
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Linear correlations between biophysical parameters of the same or different currents have

been reported [37] and may be important in preserving the activity of the model neuron and

its subthreshold impedance profile attributes [41]. Previous studies examined combinations

of parameters in populations of multi-compartment conductance-based models fit to

electrophysiological data [16, 51] and found only weak pairwise correlations suggesting that

the correlations do not arise from electrophysiological constraints. In contrast, constraining

the parameters of the ionic currents found to be essential for MPR in PD neuron by MPR attri-

butes, we observed strong correlations underlying parameters when the Z and φ were con-

strained by the experimental data. We found that constraining the model parameters by fres

produced a correlation between the values of time constants of ICa among the population of

~9000 optimal parameter sets. Furthermore, running a 2D sensitivity analysis confirmed that

the time constants were constrained so that the effect of making inactivation slower was com-

pensated for by making activation faster to maintain fres constant.

The optimal model parameter sets showed a nonlinear co-variation relationship between

the �gCa and half-inactivation voltage of ICa. However, the models could be divided into two

groups, low and high �gCa in each of which this co-variation was close to linear. Interestingly,

although ICa alone was the primary current underlying MPR, in the absence of IH (with

�gH ¼ 0) the models were restricted to the high �gCa group. A 2D sensitivity analysis showed

that co-varying parameters in each groups along their respective correlation lines preserved

QZ without affecting fres, indicating that each group requires distinct changes in one parameter

to compensate for effects of changes in the other. Local sensitivity analysis showed that changes

in VCah1
1=2 had opposite effects on fres between high and low �gCa groups. Increasing VCah1

1=2

decreased fres in high �gCa models but increased it in low �gCa models. A previous modeling

study has found that changes in VCah1
1=2 greatly influenced the amplitude of MPR with little effect

on post-inhibitory rebound in thalamic neurons [21]. It would be interesting to verify whether

the mechanisms that generate MPR overlap with those that contribute to post-inhibitory

rebound properties.

Previous work in our lab has shown that the voltage range of oscillations significantly affects

fres [13]. Here we show that decreasing, Vlow, the lower bound of the oscillation voltage of the

PD neuron, from -60 to -70 mV, significantly shifted fres to smaller values without affecting

Zmax. Within our optimal model parameter sets, we obtained a set of ~1000 models in the

intermediate �gCa range that produced a similar shift in fres but no change in Zmax. Because Vlow

greatly affects both ICa inactivation and IH activation, this indicated a potential interaction

between these two currents. In fact, we found that because IH and ICa are activated preferen-

tially in different voltage ranges, their amplitudes needed to be balanced to keep Zmax

unchanged when Vlow was decreased. If the ratio of IH to ICa amplitudes is incorrect, then Z
will amplify (for high �gCa models) or attenuate (for low �gCa models). The intermediate �gCa
models also showed a stronger tCam � tCah correlation, which may be important in matching the

phase of ICa with that of IL. This group also showed a strong �gH � �gCa correlation, which may

provide a mechanism for controlling the changes in IH amplitude at more negative voltage

with similar changes in ICa amplitude at more positive voltages.

In contrast to the findings of Rathour and Narayanan [16], in our optimal models the IH
amplitude was not different across the groups with different ICa properties. However, since ICa

and IH are differentially modulated [45, 52], their functional role may overlap when their volt-

age thresholds and time constants are shifted by neuromodulation. Therefore, we expect that

under certain neuromodulatory contexts, IH may play more of an active role in the generation

of MPR. A similar effect of two ionic currents on resonance has been observed in the hippo-

campal pyramidal cells that participate in the theta rhythm, in which two currents, the slow
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potassium M-current and IH, were found to operate at the depolarized and hyperpolarized

membrane potentials respectively to generate theta-resonance [2].

In general, variability of ionic current expression in any specific neuron type should lead to

great variability in network output. Yet, network output in general, and specifically the output

of the crustacean pyloric network is remarkably stable across animals [30, 53, 54]. Our results

suggest that in oscillatory networks the interaction among ionic currents in an individual neu-

ron may be tuned in a way that the variability of the output is reduced in response to oscil-

latory inputs. Although our computational study may provide some insight into how such

stability is achieved, it also indicates a need for additional mathematical analysis to elucidate

the underlying mechanisms.

Methods

Electrophysiology

The stomatogastric nervous system of adult male crabs (Cancer borealis) was dissected using

standard protocols as in previous studies [14]. After dissection, the entire nervous system

including the commissural ganglia, the esophageal ganglion, the stomatogastric ganglion

(STG) and the nerves connecting these ganglia, and motor nerves were pinned down in a

100mm Petri dish coated with clear silicone gel, Sylgard 186 (Dow Corning). The STG was

desheathed to expose the PD neurons for impalement. During the experiment, the dish was

perfused with fresh crab saline maintained at 10–13˚C. After impalement with sharp elec-

trodes, the PD neuron was identified by matching intracellular voltage activity with extracellu-

lar action potentials on the motor nerves. After identifying the PD neuron with the first

electrode, a second electrode was used to impale the same neuron in preparation for two-elec-

trode voltage clamp. Voltage clamp experiments were done in the presence of 10−7 M tetrodo-

toxin (TTX; Biotium) superfusion to remove the neuromodulatory inputs from central

projection neurons (decentralization) and to stop spiking activity [13, 14].

Intracellular electrodes were prepared by using the Flaming-Brown micropipette puller

(P97; Sutter Instruments) and filled with 0.6M K2SO4 and 0.02M KCl. For the microelectrode

used for current injection and voltage recording, the resistance was, respectively, 10-15MΩ
and 25-35MΩ. Extracellular recording from the motor nerves was carried out using a differen-

tial AC amplifier model 1700 (A-M Systems) and intracellular recordings were done with an

Axoclamp 2B amplifier (Molecular Devices).

Measuring the Z-profile

During their ongoing activity, the PD neurons produce bursting oscillations with a frequency

of ~1 Hz and slow-wave activity in the range of -60 to -30 mV. Activity in the PD neuron is

abolished by decentralization. The decentralized PD neuron shows MPR in response to ZAP

current injection when the current drives the PD membrane voltage to oscillate between

-60mV and -30mV, which is similar to the slow-wave oscillation amplitude during ongoing

activity [12]. The MPR profiles are not significantly different when measured in current clamp

and voltage clamp [14]. Since the MPR depends on the dynamics of voltage-gated ionic cur-

rents, it will also depend on the range and shape of the voltage oscillation. Therefore, to exam-

ine how Z(f) in a given voltage range constrains the properties of voltage-gated currents and

how factors that affect the voltage range change MPR, we measured Z(f) in voltage clamp [10].

To measure the Z-profile, the PD neuron was voltage clamped with a sweeping-frequency

sinusoidal impedance amplitude profile (ZAP) function [55] and the injected current was mea-

sured [14]. To increase the sampling duration of lower frequencies as compared to the larger
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ones, a logarithmic ZAP function was used:

ZAPðtÞ ¼ v0 þ v1sinð2pFðtÞÞ; FðtÞ ¼ flot
fhi
flo

� �t=T

:

The amplitude of the ZAP function was adjusted to range between -60 and -30 mV (v0 = -45

mV, v1 = 15 mV) and the waveform ranged through frequencies of flo = 0.1 to fhi = 4 Hz over a

total duration T = 100 s. Each ZAP waveform was preceded by three cycles of sinusoidal input

at flo which smoothly transitioned into the ZAP waveform. The total waveform duration was

therefore 130 s.

Impedance is a complex number consisting of amplitude and phase. To measure imped-

ance amplitude, we calculated the ratio of the voltage and current amplitudes as a function of

frequency and henceforth impedance amplitude will be referred to as Z(f). To measure φZ(f),

we measured the time difference between the peaks of the voltage clamp ZAP and the mea-

sured clamp current. One can also measure Z(f) by taking the ratio of the Fourier transforms

of voltage and current. However, spectral leakage, caused by taking the FFT of the ZAP func-

tion and the nonlinear response, often resulted in a low signal-to-noise ratio and therefore in

inaccurate estimates of impedance. Such cases would lead to less accurate polynomial fits com-

pared to the cycle-to-cycle method described above and we therefore limited our analysis to

the cycle-to-cycle method.

Because the average Z-profile may not be a realistic representation of a biological neuron,

we used the attributes of Z and φ measurements from a single PD neuron as our target. We

characterized attributes of Z into five objective functions used for fitting by specifying five

points of the profile (Fig 11a). These five points were:

• (f0, Z0), where Z0 = Z(f0) and f0 = 0.1 Hz,

• (fres, Zmax), thereby capturing Qz = Zmax—Z0,

• (f1, Z(f1)) where f1 = 4 Hz,

• The two frequencies at which Z = Z0 + QZ / 2. Pinning the profile to these points captures

the frequency bandwidth Λ½ which is the frequency range for which f> Z0 + QZ / 2 (Fig 1a).

We also constructed five objective functions to capture the attributes of φ(f) at five points

(Fig 11b):

• (f0, φ(f0)),

• (fφ = 0, 0), where fφ = 0, is the phasonant frequency

• (fφmax, φmax) where φmax is the maximum phase advance,

• (fφmin, φmin) where φmin is the maximum phase delay,

• (2 Hz, φf = 2) capturing the phase at 2Hz.

Single-compartment model

We used a single-compartment biophysical conductance-based model containing only those

currents implicated in shaping Z and φ [12]. We performed simulations in voltage clamp and

measured the current as:

Iclamp ¼ ICm þ IL þ ICa þ IH

where ICm is the capacitive current (C dV
dt in nA), Cm is set to 1 nF and IL is the voltage-
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independent leak current in nA. The voltage-dependent currents Icurr (ICa or IH) in nA are

given by

Icurr ¼ �g currm
p
currh

q
currðV � EcurrÞ

where V is the ZAP voltage input (see below), mcurr is the activation gating variable, hcurr is the

inactivation gating variable, �g curr is the maximal conductance in μS, Ecurr is the reversal poten-

tial in mV, and p and q are non-negative integers. For ICa, p = 3, q = 1 and, for IH, p = 1 and

q = 0. The generic equation that governs the dynamics of the gating variables is:

dx
dt
¼

1

tx
ðx1ðVÞ � xÞ

Fig 11. Characterization of impedance amplitude Z(f) and phaseφ(f) into target objective functions

was performed to constrain the model parameters. The individual objective functions which collectively

measure goodness-of-fit were taken as the distance away from characteristic points along the Z(f) and φ(f)

profiles (green circles). a. The attributes used along Z(f) were Z0 = Z(f0) at f0 = 0.1 Hz, Z(f1) at f1 = 4 Hz,

maximum impedance Zmax = Z(fres) and the two points of the profile at Z0+QZ/2. QZ = Zmax-Z0. Λ½ is the width

of the profile at Z0+QZ/2. b. The attributes used along φ(f) were φ(f0), maximum advance φmax, zero-phase

frequency fφ = 0, φf = 2 at 2 Hz and maximum delay φmin.

https://doi.org/10.1371/journal.pcbi.1005565.g011
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where x = mcurr or hcurr, and

x1ðVÞ ¼ 1=½1þ expððV � VxÞ=kxÞ�

The sign of the slope factor (kx) determines whether the sigmoid is an increasing (negative)

or decreasing (positive) function of V, and Vx is the midpoint of the sigmoid.

A total of 8 free model parameters were defined (Table 2), which were optimized in light of

the objective functions introduced above, to yield a good fit to the Z-profile attributes as

described below. The slope factors kx of the sigmoid functions mCa
1
ðVÞ, hCa

1
ðVÞ, and mh

1
ðVÞ

were fixed at -8 mV, 6 mV, and -7 mV, respectively. VHm
1

1=2 was fixed at -70 mV, using data from

experimental measurements in crab [44]. The voltage-dependent time constant for IH was also

taken from [44] to be where the range of tHm is given in Table 2.

tHm=½1þ expððV þ 110Þ= � 13Þ�

Fitting models to experimental data

Computational neuroscience optimization problems have used a number of methods, such as

the “brute-force” exploration of the parameter space [51] and genetic algorithms [56]. How-

ever, the brute-force method is computationally prohibitive for an 8-dimensional model

parameter space, which would require potentially very fine sampling to find optimal models.

[57]. We used an MOEA (evolutionary optimization) to identify optimal sets of model param-

eters constrained by experimental Z and φ attributes. MOEAs are computationally efficient at

handling high-dimensional parameter spaces and other studies have used them to search for

parameters constrained by other types of electrophysiological activity [57]

Evolutionary optimization finds solutions by minimizing a set of functions called objective

functions, or simply objectives, subject to certain constraints. In our problem, each objective

represents the Euclidean distance between the target and the model attributes of Z and φ. When

optimizing multiple (potentially conflicting) objectives, MOEA will find a set of solutions that

constitute trade-offs in objective scores. For instance, an optimal parameter set may include

solutions that are optimal in fres but not in Qz or vice versa and a range of solutions in between

that result from the trade-offs in both objectives. In this paper, we used the non-dominated sort-

ing genetic algorithm II (NSGA-II) [38, 58] to find optimal solutions, which utilizes concepts of

non-dominance and elitism, shown to be critical in solving multi-objective optimization prob-

lems [58]. Solution x1 is said to dominate solution x2 if it is closer to the target Z(f) and φ(f) pro-

files in at least one attribute (e.g., fres) and is no worse in any other attributes (e.g., QZ, Z0, etc.).

NSGA-II begins with a population of 100 parameter combinations created at random

within pre-determined lower and upper limits (Table 2). The objective values for each parame-

ter combination are calculated and ordered according to dominance. First, the highest rank is

assigned to all of the non-dominated, trade-off solutions. From the remaining set of parame-

ters, NSGA-II selects the second set of trade-off solutions. This process continues until there

are no more parameter combinations to rank. Genetic operators such as binary tournament

Table 2. Limits of parameter values allowed for the PD neuron models. VH
m
1

1=2 was fixed at -70 mV since there is little variability in the reporting of this

experimental measurement [45, 61]. Voltages are in mV, maximal conductances in μS and time constants in ms.

�gL �gH �gCa tHm VCa
m
1

1=2
tCam VCa

h
1

1=2
tCah

Low 0 0 0 0 -75 0 -75 0

High 0.15 0.35 0.35 3000 -30 100 -30 1000

https://doi.org/10.1371/journal.pcbi.1005565.t002
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selection, crossover, and mutation form a child population. A combination of the parent and

child parameter sets form the population used in the next generation of NSGA-II [38, 58].

NSGA-II favors those parameter combinations—among solutions non-dominating with

respect to one another—that come from less crowded parts of the parameter search space (i.e.,

with fewer similar, in the sense of fitness function values, solutions), thus increasing the diver-

sity of the population. The crowding distance metric is used to promote large spread in the

solution space [38].

We ran NSGA-II multiple times (3–5 times, until the mean values of the distributions of

optimal parameters was stable) each time for 200 generations with a population size of 100,

and pooled the solutions at the end of each run to form a combined population of ~9000

parameter combinations. The algorithm stopped when no additional distinct parameter com-

binations were found. The Z and φ values associated with the optimal parameter sets match

the target features (objectives) defining Z and φ to within 5% accuracy.

To test whether two parameters were significantly correlated in the population of 9000 PD

models, we calculated the Pearson’s correlation coefficients for each pair of parameters and

used a permutation test to determine the number of times the calculated correlation coefficient

(using a random subset of 20 models). The p-value was given as the fraction of R-values for the

permuted vectors greater than the R-value for the original data [51]. We also used a t-test to

determine whether the calculated slope of the linear fit differed significantly from zero, which

gave us identical results. We repeated both procedures 2000 times, each time with a random

subset of 20 models and calculated the percentage of times we obtained a p-value < 0.01.

Sensitivity analysis

We assessed how the values of fres and QZ depend on changes in parameter values by perform-

ing a sensitivity analysis as in [59]. We split the model parameters into two categories: additive,

for the voltage-midpoints of activation and inactivation functions, and multiplicative, for the

maximal conductances and time constants. We changed the parameters one at a time and fit

the relative change in the resonance attributes as a linear function of the relative parameter

change. We changed the multiplicative parameters on a logarithmic scale to characterize

parameters with both low and high sensitivity.

Multiplicative parameters were varied as pn+1 = exp(±Δpn) p0 with Δpn = 0.001�1.15n and

the sign indicating whether the parameter was increased or decreased. To ensure approximate

linearity, we added points to the fit until the R2 value fell below 0.98. The sensitivity was

defined as the slope of this linear fit (Fig 12). For example, if a resonance attribute has a sensi-

tivity of 1 to a parameter, then a 2-fold change in the parameter results in a 2-fold change in

the attribute. We changed additive parameters by ±0.5 mV.

We assessed the sensitivity of fres and Qz to parameter pairs (p1 and p2) that were correlated.

We first fit a line through the correlated values in the p1-p2 space. We then shifted this line to

pass through a subset of 50 random points in p1-p2 space, resulting in a family of parallel lines,

Lk. For each point, we also produced a line perpendicular to a line L┴. For each model, we per-

formed a sensitivity analysis as before but used the linear fit equation Lk or L┴ to calculate

value of p2. We fit the relative change in the Z(f) attribute as a linear function of the correlated

change in p1 and p2. We used the slope of the linear fit to represent the sensitivity. We used a

2-and 3-way repeated measures ANOVA and the lsmeans function in R to perform pairwise

comparisons of means in testing for significant differences between each group of gCa, each

direction, Lk and L┴, and between each Z attribute, fres and QZ.

For each model, we solved a system of three differential equations for mH, mCa and hCa

(voltage was clamped). All simulations were performed using the modified Euler method [60]
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with a time step of 0.2 ms. The simulation code, impedance calculations, and MOEA were

written in C++. MATLAB (The MathWorks) and R were used to perform statistical analyses.

Supporting information

S1 Fig. Changing the value of VHm
1

1=2 does not change the correlations observed among the

model parameters. a. Correlations shown in Fig 8b with VHm
1

1=2 at -70 mV. b. Correlations

obtained with VHm
1

1=2 set to -96 mV (red dots). MOEA was run only once in this case, compared

to 5 times in panel a (hence the difference in the number of points). Black dots are the same as

panel a. Note that the values of gH in this case are about 10 times larger than those in panel a,

but the correlations (green boxes) remain intact. More importantly, the range of parameters

other than gH is exactly the same in both cases.

(TIF)

S2 Fig. IH extends the dynamic range of ICa parameters over which ICa-mediated MPR

occurs. Parameter values for the optimal models in �gCa � VCah1
1=2 space shown for all models

(grey dots) and those without IH (blue dots). We removed IH by setting �gH = 0, and ran the

MOEA multiple times using the same Z- and φ-profiles to constrain the ICa parameters. A lin-

ear fit (green) shows that, when �gH = 0, the relationship between �gCa � VCah1
1=2 is linear and

matches a narrow range of the high �gCa values in Fig 6c.

(TIF)

Fig 12. Linear fits used to assess the sensitivity of impedance attributes on changes in parameters.

Each model parameter was changed from the optimal value (origin) in both directions on a logarithmic scale to

characterize parameter sensitivity. The slope of a linear fit of the relative change in the Z(f) attribute and the

parameter was measured as sensitivity. The parameter was changed until the fit was no longer linear

(R2<0.98).

https://doi.org/10.1371/journal.pcbi.1005565.g012
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