
I. Introduction

Internet of Things (IoT) systems are considered by some 
authors to constitute the fourth (4.0) industrial revolution, 
promising several changes in all aspects of human life [1]. 
Over the last decade, the IoT paradigm [2] has boosted sci-
entific interest in diverse applications and economy fields as 
well as in various populations; thus, it has become a globally 
innovating technology trend. IoT has gradually become a 
part of health, agriculture, and industrial research [3].
 There are multiple IoT application scenarios. Devices or 
physical/virtual things are used to perform functions or 
recognize the physical world and its context, for example, 
in home services and intelligent industries, health care ser-
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vices, self-care, environmental monitoring, logistics, defense, 
transportation and safety [4,5].
 These technologies may become adaptability catalysts, 
leading to the evolution of a new generation of services and 
devices that will dominate technological and social ecosys-
tems [6]. It is possible to foresee that the systems and ser-
vices conceived by these next-generation technologies will 
absorb various domains, such as home healthcare, clinical 
healthcare, medical follow-up, online government services, 
transportation, supply chains, energy supply, and other es-
sential public services [7,8].
 The development of next-generation devices and services 
results in the increased generation of huge amounts of data 
that must be stored, processed, analyzed and presented 
in an efficient, transparent, and easy-to-interpret way [9]. 
For this purpose, the systems in the cloud will provide the 
necessary infrastructure for the processing and subsequent 
presentation of the supplied information. In this way, they 
will integrate large sections of monitoring, storage, analysis, 
visualization, and delivery of information to the final user 
[10,11]. The trends indicate that the healthcare and medical 
industry will support and encourage the growth of these new 
technologies, based on the precedent of the cost of imple-
mentation and operation of devices. In this context, IoT 
technologies can establish an impact point for health control 
via an affordable and efficient method [12]. 
 Pulse oximetry was first implemented in 1972 by Takuo 
Aoyagi [13]. Since its introduction, it has been based on 
arterial oxygen saturation (SaO2). This method has become 
crucial for the clinical routine, because it provides important 
information about the cardiovascular function of patients. 
Pulse oximetry can use two types of measurements, namely, 
the SaO2, which is a direct measurement of the oxygen 
contents, and the blood oxygen saturation (SpO2), which is 
an indirect measurement of the blood oxygen [14,15]. The 
SpO2 is one of the vital survival parameters; it is used in the 
follow-up of elderly patients and newborns, among others 
[16]. This method is complemented by the measurement of 
heart rate (HR); this is the repetition in a time interval of the 
beats generated by the heart (heartbeats). These heartbeats 
are produced because the heart behaves as a muscular tissue 
pump [17,18].
 The saturation of blood oxygen is the measurement of the 
percentage of oxygen available in the bloodstream. When the 
blood flows from the heart to the rest of the body, it passes 
through the lungs first, where the blood cells meet oxygen 
molecules [19,20]. For the development of the prototype, the 
option to conduct partial blood oxygen saturation measure-

ments using SpO2, was considered. It was also considered in 
previous works [21-25]. In this case, pulse oximetry was con-
ducted through the measurement of the oxygen transported 
by hemoglobin in the interior of the blood vessels; this was 
added to the measurement of the peripheral heart frequency 
and rhythm through the measurement of the partial oxygen 
saturation parameters and the HR [14,20]. 
 This study focused on the development of SpO2 and HR 
measurements that will allow the monitoring and estimation 
in real time of the user’s state and health related to the estab-
lished parameters, all framed inside the trend of using even 
more energy-efficient devices that are also environmentally 
friendly, taking other developments as a reference point 
for heart rate telemonitoring using the SpO2 technique. For 
our case, the development of Bluetooth low-energy (BLE) 
devices was taken into account, which comply with low-
cost and open-hardware solutions operated via http requests 
for data transmission and reception from a cloud server to 
an edge device. Finally, the required network performance 
assessment was conducted to guarantee the availability and 
integrity of the acquired values and signals. 

II. Case Description

To obtain the blood oxygen saturation (SpO2), and HR sig-
nals for oximetry, the sensor used was MAXREFDES117#. 
This sensor is an optical HR monitor and pulse oximeter; 
it features the MAX30102 with integrated red and IR LEDs 
for HR and SpO2 detection, with 1.8 V power, LED color 
reading, infrared LED, and delivery of data via I2C with an 
approximate value of US $20. To achieve the reading of the 
variables, a reading sequence was established, as shown in 
Figure 1.
 Once the reading sequence was established, the architecture 
for the system of acquisition, transmission, and monitoring 
of the signals of the IoT system was formulated (See Figure 
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Figure 1. Acquisition sequence of SpO2 and heart rate data.
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2). Subsequently, a Wi-Fi LoRa 32 card model, manufactured 
by Heltec-China, was used for the implementation, with an 
approximate value of US $20. It provided the advanced LoRa 
spread spectrum communication technology, transmission 
reception of ultra-long-distance and low-power-consump-
tion BLE. Table 1 shows the specifications of the Heltec card.
 The calculation from the SpO2 is based on Equation (1), 
where the determination of the K1, K2, and K3 constants 
is required, which depend on the records from previous 
measurements. At start time, the system takes readings and 
stores the records for exactly 5 seconds, as seen in Figure 1:

SpO2 = K1 × (Avg radius)2 + K2 × (Avg radius) + K3       (1)

Where SpO2 is calculated through the average radius, this 
average radius is calculated, with the average ratio of IR and 
red LED [16]. The average is obtained from the infrared 
LEDs and the K1, K2, and K3 constants, as previously ex-
plained. It is important that for the average calculation, 25 
readings are made. The measurements delivered by the car-

diac monitoring system correspond to the readings from the 
red LED, infrared LED, validation of the measurement, HR 
and SpO2, as shown in Table 2.
 An actuator with two states, normally closed-NC and 
normally open-NO, was used for the activation once the 
monitoring system detected a heart rate under 70 beats or 
over 90 beats per minute, this according to the HR interval 
maximum and minimum provided by specialized personnel 
in the physical performance center where the tests were car-
ried out.
 The results obtained from the four measurements and their 
corresponding validations are sent through LoRa, which 
supports the frequency bands of 433–470 MHz and 868–915 
MHz with the maximum sensitivity of -139 dBm. The com-
munication distance of the measured open area is 3.6 km 
(packet loss rate <0.3%; Wi-Fi up to data rate: 150 Mbps 
@ 11n HT40, 72 Mbps @ 11n HT20, 54 Mbps @ 11 g, 11 
Mbps @ 11 band 200 m of distance), the last BLE up to 35 
m, with a consumption of 20% less, on average, than the two 
reference systems. The saving in energy consumption was 
obtained in comparison to other oximeters models available 
on the market. As a comparison case, the jzk-301 presented 
an average consumption of 90 mW, the ESAMACT with a 
consumption of 108 mW, while the proposed system had an 
average consumption of 76 mW. The system operates via an 
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Figure 2.  Proposed architecture for 
IoT monitoring system.

Table 1. Heltec card specifications

Part Characteristic

Microcontroller ESP32 TensilicaLX6 dual-core processor
LoRa SX1278
Wi-Fi bandwidth 150 Mbps
Display OLED 0.96-inch
Bluetooth BLE low-power dual-mode Bluetooth

Table 2. Measured heart rate (HR) and SpO2

Validation of the 

HR measurement  

(HRValid)

SpO2

Validation of the 

SpO2 measurement 

(SpO2Valid)

 HR = 87 1 43 1

Table 3. Fields of IoT health table in database management system 

Field Type Extent

IdSensor Whole 256
KeySensor Whole 256
TimeStampServer Date -
IdGroup Whole 256
Variable Varchar 256
Value Float 256
Alarm Timestamp -
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HTTP request made to the server. These results are stored 
in a database implemented in MySQL through a PHP script. 
Data is stored in its corresponding table called IoT health as 
seen in Table 3.
 The data is available in the server and visualized via the 
web. Measurement parameters were obtained for the avail-
ability and performance of the prototype and connectivity 
with the server where the remote monitoring and control 
module is. The assessed metrics were the following: end-
to-end delay, latency, jitter, and throughput. Figure 3 shows 
the end-to-end calculated delay from the beginning of the 
capture of the variable to the received confirmation from the 
server. Figure 3A shows how the initial events when estab-
lishing their connection with the server, present a delay of 
over 30 ms, but once the connection time passes, the delays 
tend to remain under 30 ms. Figure 3B shows the network 
latency, which matches the network delays shown in Figure 
3A. According to what it shows regarding the initial connec-
tion times with the server, the latency is elevated, but once 
the connection is established, latency decreases. Finally, 

Figure 3C shows the jitter behavior during the assessment 
period, which reflects a behavior similar to that of end-to-end 
delay and latency, since jitter is based on the previous metrics.
 The result obtained in the remote visualization module 
via the web was compared to the result shown in the OLED 
screen of the local monitoring module, presenting an aver-
age visualization time difference of 27.8 ms on an internet 
channel with 2048 kbps from the remote visualizer com-
pared to the local visualizer. The validation of the delivered 
data versus the remotely visualized data was conducted, and 
the results are shown in Table 4.
 To validate the data acquired by the new developed sys-
tem, it was compared with two different SpO2 measurement 
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Figure 3. The assessed metrics: (A) end-to-end delay, (B) latency, and (C) jitter.

Table 4. Average visualization error for the delivered data

Visualizer Number of records %Visualization error 

Local 10,000 0.003
Remote (web) 10,000 0.010
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devices on the market. The first was the MD300C20_OTC 
oximeter manufactured by Omron-India; the second device 
was an ESAMACT LED fingerprint oximeter, manufactured 
by ESAMACT-China; all validation was done under con-
trolled laboratory conditions. A hundred local readings were 
conducted per device during six reading sessions for the 
same individual. The results are shown in Table 5.
 Results from the comparison of such two reference devices 
were obtained from three precision bands: lower to 5%, be-
tween 5% and 10%, and higher than 10%. In these two cases, 
the system achieved at least 90% success for 5% lower preci-
sion regarding both devices. The results are shown in Table 5.

III. Discussion

The work done in this study allowed the verification of the 
possible implementation of IoT systems in the health sector 
and home healthcare through open hardware, with a visual-
ization error of 1% and latency times under 600 ms. 
 The visualized results and the average measured percentage 
errors, allow the verification of the system’s efficiency, which 
may indicate an opportunity for the analysis and processing 
of medical data for the subsequent construction of control, 
forecast, and estimation methods for patients receiving 
healthcare or healthy individuals in real time. 
 Due to the characteristics of the used components, greater 
port availability for the activation of a greater number of 
actuators and controllers is possible. This contributes to the 
prevention of events, control of the user’s body variables, 
control of environmental variables, and effective follow-up 
after medical procedures.
 Measurements obtained by this low-cost hardware were al-
ways above 90% at the highest precision interval. This allows 
us to conclude that these open, low-cost systems are a real 
alternative to the existing systems with the potential to pro-
vide higher access to services and resources at lower costs.
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