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During embryonic nervous system assembly, mRNA localization is
precisely regulated in growing axons, affording subcellular auton-
omy by allowing controlled protein expression in space and time.
Different sets of mRNAs exhibit different localization patterns
across the axon. However, little is known about howmRNAs move
in axons or how these patterns are generated. Here, we couple
molecular beacon technology with highly inclined and laminated
optical sheet microscopy to image single molecules of identified
endogenous mRNA in growing axons. By combining quantitative
single-molecule imaging with biophysical motion models, we show
that β-actin mRNA travels mainly as single copies and exhibits dif-
ferent motion-type frequencies in different axonal subcompart-
ments. We find that β-actin mRNA density is fourfold enriched in
the growth cone central domain compared with the axon shaft and
that a modicum of directed transport is vital for delivery of mRNA to
the axon tip. Through mathematical modeling we further demon-
strate that directional differences in motor-driven mRNA transport
speeds are sufficient to generate β-actin mRNA enrichment at the
growth cone. Our results provide insight into how mRNAs are traf-
ficked in axons and a mechanism for generating different mRNA
densities across axonal subcompartments.
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Localizing mRNA to different subcellular locations is an evo-
lutionarily conserved mechanism to control protein expression.

For example, it facilitates axis patterning of the Drosophila embryo
and mating-type switching in budding yeast and promotes the
migration of mammalian fibroblasts (reviewed in ref. 1). In neu-
rons across different animal phyla, mRNA trafficking into neurites
plays an important role in brain development. During the estab-
lishment of neural connectivity, growing axons must navigate to-
ward their synaptic partners by responding rapidly to molecular
signals in the environment. With axons extending long distances
from the soma, local translation of trafficked mRNAs delivers
functional autonomy to these subcellular compartments by letting
them control their own proteome. Distal neurites can thus re-
spond quickly to particular extracellular signals with high spatio-
temporal precision as well as locally mediate requirements for
their growth and survival (reviewed in ref. 2). The importance of
transporting mRNAs into axons is highlighted by the sheer range
of roles their local translation plays in nervous system assembly,
spanning axon navigation, elongation, and synapse formation (3–
8). Not surprisingly, therefore, deregulated axonal mRNA traf-
ficking and translation are linked to the pathology of various
neurological disorders, including fragile X syndrome and amyo-
trophic lateral sclerosis (9).
mRNA localization has been demonstrated to be a primary factor

determining the local proteome in neurites (10) and consequently is
under meticulous control to prevent aberrant protein expression.
Tight regulation of mRNA-localization patterns ensures axons are
enriched with different sets of mRNAs to their cell body (11–14).
mRNA-localization patterns also vary across the axon itself, where

differential enrichment occurs between the sensing growth cone tip
and the axon shaft according to mRNA species (12, 15). Proper
targeting requires the mRNA to undergo a series of processing
events. mRNA transcribed in the nucleus is packaged into large
protein complexes called “ribonucleoproteins” (RNPs) through
association with RNA-binding proteins (RBPs) (reviewed in ref.
16). After nuclear export, RNPs may be further remodeled, and the
mRNA is trafficked to sites of translation (16). It is thought that
specificity in recognition by particular RBPs through cis-acting el-
ements in the mRNA determines where in the neuron an mRNA
becomes subcellularly localized (2). In the neuron’s dendritic
compartment, mRNA localization is achieved through bidirectional
directed transport of RNPs interspersed with long stationary periods
(see below) (17–19). Subsequent anchoring at dendritic synapses and
local translation are important for plasticity and long-term memory
formation (20). In contrast, the mechanism by which mRNAs be-
come localized in the axonal compartment remains less clear. We do
not know how mRNAs that localize to axons are packaged in RNPs
(for example, do multiple copies of the same mRNA travel to-
gether?), nor do we know precisely how they move and how this
movement links to intraaxonal mRNA localization patterns.
There are several ways by which mRNAs can be delivered to

their target destinations in eukaryotic cells. The simplest mechanism
is based on diffusion and entrapment and has been observed in
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Xenopus and Drosophila oocytes (21, 22); for example, Drosophila
nanos mRNA diffuses both freely and via microtubule-dependent
cytoplasmic flow and then becomes anchored posteriorly through
interaction with actin filaments (21). The second mechanism is bi-
ased directed transport by motor proteins. RNPs can associate di-
rectly with motor proteins that drive processive motion along
cytoskeletal tracks. In some instances, binding of opposing motors
occurs, which results in bidirectional behavior (23). Here, a bias in
movement frequency in one direction can drive polarized localiza-
tion (24, 25). Third, the “sushi belt” model of directed transport
coupled with local entrapment has been proposed to take place
in neuronal dendrites (20). Rather than specifically trafficking
mRNA to predetermined sites, the model proposes that mRNAs
continually circulate throughout dendritic trees by motor-driven
bidirectional transport before being captured at activated synap-
ses. Such a mechanism has been directly visualized for β-actin
mRNA docking at dendritic spines upon glutamate stimulation
(19). Finally, localized protection of mRNAs from degradation
may play a role in enforcing localization patterns (26). Although
mRNA degradation has already been shown to temporally regu-
late local translation during axon navigation (6), how it might
influence intraaxonal localization patterns is currently unknown.
One way to understand the contribution of these different mech-
anisms for mRNA localization in the axon is by using live-cell
imaging to quantify exactly how a differentially enriched mRNA
species moves. As one of the best-characterized mRNAs in neu-
rons, β-actin represents an attractive subject.
β-Actin mRNA is highly abundant in dendrites of adult neurons

and is enriched in the growth cone of axons during development
(27, 28). β-Actin mRNA in retinal axons is abundantly translated
in vivo (29) and in vitro in response to extrinsic cues (4) and
moreover is one of the most abundant basally synthesized nascent
proteins (30). The cis-acting sequences in β-actin mRNA and
interacting RBPs have been studied extensively (31), as have the
physiological roles for localized β-actin synthesis in neurons. Here,
subcellular localization of β-actin mRNA allows site-specific syn-
thesis of new actin monomers that is thought to promote localized
actin filament assembly, causing changes in cytoskeleton architec-
ture and hence morphology. In mature dendrites, β-actin mRNA
translation is associated with structural changes in dendritic spines
that underlie synaptic plasticity (32). In contrast, during develop-
ment axonal translation of β-actin mRNA is necessary for attractive
turning in vitro and for branching both in vivo and in vitro (4, 5, 29,
33). Given high translation levels and observations of differential
enrichment across distinct regions of the axon, β-actin mRNA
provides an interesting example for investigating the connection
between mRNA trafficking and intraaxonal mRNA-localization
patterns during development.
Live imaging provides an approach to decipher the mechanisms

behind mRNA trafficking in cells. Here, one can extract the
mechanisms driving mRNA localization through quantitative in-
formation held in their trajectories. Single molecules of endoge-
nous mRNA have previously been visualized in neurons through
genetically encoded reporters (reviewed in ref. 34). Here, we were
interested in visualizing endogenous mRNA dynamics in neuronal
compartments at a single-molecule level without genetic modifi-
cation. To do this, we adapted molecular beacon technology to
label single molecules of endogenous, unmodified β-actin mRNA
in growing Xenopus retinal ganglion cell (RGC) axons, visualized
with highly inclined and laminated optical sheet (HILO) micros-
copy. Using this system, combined with automated tracking, bio-
physical motion models, and single-molecule FISH (smFISH), we
characterize the stoichiometry and trafficking behavior of β-actin
mRNA in axons. We show that β-actin mRNA exhibits different
density distributions and motion-type frequencies within different
subcompartments of the growing axon. We further demonstrate
mathematically that diffusion alone cannot explain axonal mRNA
trafficking to peripheral regions but that the differences between

anterograde- and retrograde-directed transport speeds are suffi-
cient to confer the growth cone-enriched localization patterns
quantitatively observed.

Results
Chimeric Molecular Beacons Label Endogenous β-Actin mRNA Molecules
in Axons. To investigate how mRNAs move within growing axons,
we employed an approach using molecular beacons (MBs).
MBs are composed of a short antisense oligonucleotide loop
complementary to the mRNA of interest followed by a GC-rich
stem, placing a fluorophore and quencher in close proximity.
Hybridization of the antisense loop region to the mRNA of interest
generates a conformational change, releasing fluorophore from
quencher and subsequently labeling the mRNA of interest.
Although proposed 20 y ago (35), MBs are little used, because
robust methodologies have been developed to fluorescently tag
exogenous mRNA (36), as have genetically encoded alterna-
tives such as the MS2 system (36, 37), an approach in which
the mRNA of interest is engineered to contain multiple MS2-
binding sites visualized through MS2 coat protein (MCP)-GFP
coexpression that binds dimerically to each MS2 stem–loop.
MBs provide an alternative method for investigating the
movement of endogenous mRNA and have the advantage of
allowing us to follow single molecules of genetically unmodified
mRNA.
Several studies have elegantly examined the physicochemical

properties of MBs (38–40) and have demonstrated their ability to
mimic expected mRNA-localization patterns in living cells (41, 42).
However, their suitability for live-cell imaging has yet to be in-
clusively validated, as MBs have not directly been shown to label an
endogenous mRNA of interest within a living cellular context. We
addressed this question using two MBs (MB1 and MB2) comprised
of nuclease-resistant 2′O-methyl RNA/locked nucleic acid (LNA)
chimeras designed to target the coding sequence of β-actin mRNA
(Fig. 1A). Such chimeric design has been demonstrated to enhance
both hybridization efficiency and probe specificity (43, 44). In vitro
addition of full-length β-actin mRNA dramatically increased the
fluorescent intensity of solutions containing MB1 and MB2, by
ninefold and 20-fold, respectively (Fig. 1B). MB1 and MB2 gen-
erated different increases in fluorescence in response to the addi-
tion of β-actin mRNA, suggesting that different MB sequences
have different hybridization kinetics for labeling β-actin mRNA. In
contrast, γ-actin mRNA, an actin isoform with 87% coding se-
quence similarity to β-actin mRNA (www.xenbase.org/entry/) and
differing from the MB1 target sequence by only one nucleotide, did
not trigger an increase in fluorescent intensity (Fig. 1B). Moreover,
while the fluorescent signal was proportional to the concentration of
β-actin mRNA present, two MBs in combination increased fluo-
rescence by more than 30-fold 60 min after the addition of β-actin
mRNA compared with each MB alone without β-actin mRNA,
suggesting that signal-to-noise ratio (SNR) per mRNA could be
amplified by combining two MBs that target different regions of the
β-actin mRNA coding sequence (Fig. 1B and SI Appendix, Fig. S1A).
We next examined MB1 and MB2 in direct comparison with

fluorescently tagged Cy5-β-actin mRNA in live RGC axons. Elec-
troporation into eye primordia resulted in dynamic Cy3-MB puncta
within axons (SI Appendix, Fig. S1B and Movie S1). Codelivery of
MBs along with fluorescently tagged Cy5-UTP β-actin mRNA into
RGCs by eye electroporation followed by quantitative axonal
analysis revealed that on average 77 ± 20% of all Cy5-UTP β-actin
mRNA puncta colocalized with MB puncta, and 80 ± 20% of the
MB puncta population colocalized with Cy5-UTP β-actin mRNA
(Fig. 2 A and B). The colocalized signals shared the same dy-
namics, moving together for the duration of the movie. In contrast,
significantly less colocalization was observed between MB puncta
and Cy5-UTP γ-actin mRNA (17.6 ± 6.9% and 17.1 ± 6.7% for
exogenous mRNA and MB puncta, respectively, P < 0.0001 un-
paired t test) (Fig. 2 A and B). We then investigated the specificity

E9698 | www.pnas.org/cgi/doi/10.1073/pnas.1806189115 Turner-Bridger et al.

http://www.xenbase.org/entry/
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1806189115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1806189115/-/DCSupplemental
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.1806189115/video-1
www.pnas.org/cgi/doi/10.1073/pnas.1806189115


of MBs targeting β-actin mRNA further by comparing axonal
expression with that of control MBs targeting (i) Brn3a mRNA
that is not expressed in RGC axons (30) and (ii) a scrambled
sequence that was not predicted to target other mRNAs in the
genome. We found significantly decreased expression in our
control MBs compared with each β-actin mRNA-targeting MB
individually, indicating that while our mRNA of interest is in-
deed labeled, a level of background labeling may also occur (P <
0.001 and P = 0.001, unpaired t test for Brn3a- and scramble-
targeting MBs, respectively) (Fig. 2C).
To investigate whether MBs label endogenous β-actin mRNA in

RGC axons, we mapped MB puncta immediately postfixation in
relation to β-actin mRNA puncta visualized after performing
smFISH on the same axon. The MB signal does not survive the
smFISH protocol. Nonetheless, between these steps, samples
were bleached using the 561-nm laser line to avoid any possibility
of residual MB signal in smFISH images (as we found smFISH
worked best using the Cal590 fluorophore). By eye, MBs were
commonly observed at the same sites as endogenous β-actin mRNA
labeled by smFISH in the same axon between nonsimultaneous
images (Fig. 2D). This co-occurrence was similar to that observed
by comparing images from live Vg1RBP-EGFP puncta immedi-
ately postfixation to immunostaining against EGFP (Fig. 2D).
Because the smFISH protocol causes distortion in axon mor-

phology, the MB and smFISH images, which were acquired at two
separate time points in the protocol, were not entirely in register.
Therefore, to quantify the degree of colocalization between non-
simultaneous images, we developed a MATLAB-based script for
semiautomated registration as well as colocalization analysis. Our
registration script aligned two nonsimultaneous images to one
another based on brightfield images of the same axon pre- and
post-smFISH. Initially, user identification of brightfield land-
marks in the axon (such as branches) guides a point-based manual
registration; then an automated iterative closest point (ICP) al-
gorithm (45) is used for the final registration of images. The ICP-
transformed distance was then employed to quantify the proba-
bility of colocalization between MB and smFISH puncta (Fig. 2E
and SI Appendix, Fig. S2 A and B). As a positive control, we an-
alyzed colocalization between the fluorescent signal of the RNA-
binding protein Vg1RBP-EGFP immediately postfixation and the
immunohistochemistry (IHC) signal for GFP. These data were
then compared with a randomized negative control in which
Vg1RBP-EGFP puncta were registered to IHC that had been

randomized in the same axon. Comparison of the normalized cu-
mulative frequency showed a similar distribution of ICP distances
between matched MB and smFISH puncta to the positive control,
whereas substantially larger ICP distances were observed in the
randomized control (Fig. 2F). Likewise, after setting an ICP dis-
tance threshold for matched puncta as 1, and including the pop-
ulation of puncta that were initially identified as unmatched by the
script, similar fractions of puncta were predicted to be colocalized
between the MB:smFISH puncta and the positive control (33.8 ±
3.6% and 22.8 ± 3.9%, respectively) (Fig. 2F). In contrast, a sig-
nificantly smaller fraction of the randomized negative control was
predicted to colocalize (1.0 ± 0.8%, P < 0.001, unpaired t test).
These findings are more valuable as indications of relative rather
than absolute percentages of colocalization, as we cannot com-
pletely match the same axon in two nonsimultaneous images and
thus likely underestimate the number of colocalized puncta in the
positive control and MB:smFISH conditions. In addition, al-
though the relatively large degree of unmatched puncta in the first
MB images could suggest that some nonspecific labeling occurs, the
finding that levels of colocalization are not significantly different
from the positive EGFP control, and that we also observe fewer
puncta after IHC against EGFP compared with immediately after
fixation (the average decrease is 26 ± 8%) also indicates that
protein and RNA degradation occurs after the first images are
captured. Even with strict RNase-free conditions, some degradation
is inevitable during such protocols. Indeed, previous studies dem-
onstrating a high correlation between smFISH-determined tran-
script number and estimated mRNA levels, compare smFISH to
mRNA copy number estimations calculated using techniques such
as qPCR and RNA-sequencing (RNA-seq) (46–48) that predict
relative rather than absolute mRNA levels and thus cannot account
for mRNA degradation that might take place. Importantly, the fact
that we label β-actin mRNA with single-nucleotide specificity using
MBs in vitro and observe high levels of colocalization between
exogenous β-actin mRNA and MBs in living axons and levels of
colocalization to endogenous β-actin mRNA comparable to those
in our positive control strongly suggests that we label β-actin
mRNA in growing axons using MBs. In addition, we found that
endogenous β-actin protein levels remain the same in MB-labeled
axons and observed comparable fluorescence recovery after pho-
tobleaching using an EGFP protein synthesis reporter with MBs (SI
Appendix, Fig. S3 A–E). These data suggest that MB labeling does
not affect β-actin mRNA translation. During translation, however,
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it is possible that the MBs become detached as ribosomes progress
along the mRNA. Together, these findings demonstrate that MBs
provide a good method to label endogenous mRNA in axons.

Imaging β-Actin mRNA with Single-Molecule Sensitivity Reveals the
Majority of β-Actin mRNAs Exist Singly in Growing Axons. MBs have
not previously been considered a technique with single-molecule
sensitivity unless the mRNA of interest is labeled with multiple
fluorophores (49–52). As unmodified endogenous mRNA is highly
structured with few predicted single-stranded regions accessible as
MB-binding sites, labeling one mRNA with multiple MBs is, in
practice, possible only using engineered exogenous mRNA or
through genetic modification. How then might we visualize single,
unmodified mRNA molecules using a few MBs? One approach
would be to increase the SNR through single-molecule microscopy
methods such as HILO microscopy (53). Here, analysis of single-
protein dynamics in cells can be performed using a single geneti-
cally encoded fluorophore such as GFP, which is considerably less
bright and photostable than the organic fluorophores used with
MBs (54, 55). Theoretically, therefore, if appropriately spaced,
single mRNA molecules should also be trackable for short time
periods using only one organic fluorophore with MBs. To test
whether this was the case, we counted the number of fluorophores
associated with each observed mRNA granule through stepwise
photobleaching (56). Using a single MB (MB1), one fluorophore
would equate to one mRNA molecule; thus single stepwise photo-
bleaching events would suggest we were visualizing single molecules.
Reassuringly, we were able to detect single stepwise photobleaching
events, suggesting the detection of single mRNA molecules using
only one fluorophore (Fig. 3A). Interestingly, some examples of
multiple stepwise photobleaching events were also observed (Fig.
3B), indicating that multiple β-actin mRNAs could also exist
within RNPs. It has been widely reported that fluctuations in
background intensity generate noise in single-molecule photo-
bleaching data (57). The use of the HILO microscopy approach

here meant that the sizes of stepwise events depend on the plane
and field of illumination. Additionally, because one cannot accu-
rately count larger numbers of photobleaching steps using this
technique (57), we decided to explore β-actin mRNA RNP stoi-
chiometry in axons further using the smFISH approach, as de-
scribed below. Further experiments investigating single-molecule
sensitivity, such as a comparison of synthetic RNA-MB hybrids
(49), could not be conducted due to technical limitations of mi-
croinjection into RGCs within eye explants. However, taken to-
gether, the facts that we (i) detected single stepwise photobleaching
events, (ii) observed colocalization with smFISH puncta, and (iii)
used a single-molecule imaging approach capable of imaging the
dynamics of single fluorophores that are dimmer than the organic
Cy3 fluorophores used with MBs strongly suggest that we are able to
image endogenous β-actin mRNA molecules with single-molecule
sensitivity using the MB approach in RGC axons.
To further probe the stoichiometry of β-actin mRNA within

axonal RNPs independently, we used smFISH (Fig. 3C). Here we
counted mRNA copy number through Gaussian intensity distri-
butions of smFISH puncta using automated image-analysis soft-
ware to eliminate user bias (58). To ensure the lowest puncta
intensity was not a consequence of nonspecific labeling, we used
RNase A-treated axons as a negative control for background by
comparing the intensity distributions in the two conditions (SI
Appendix, Fig. S4A). Here, the intensity of one mRNA molecule
was calculated by subtracting the background observed from the
RNase A-treated population (SI Appendix, Fig. S4B). We found
that the great majority of β-actin mRNAs existed singly (84%), while
a smaller frequency was observed for packaging β-actin mRNA in
twos (12%). However, up to 20 β-actin mRNAs per RNP could be
observed occasionally (Fig. 3D). Because the brighter, higher-copy-
number puncta often appeared larger, it is possible that these might
constitute stress granules or p-bodies.
Our stoichiometry analysis also revealed that a large degree of

cell-to-cell variability existed for the total number of β-actin
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Fig. 2. Molecular beacons label β-actin mRNA in growing axons. (A) MBs colocalize significantly more with exogenous fluorescently tagged β-actin mRNA
than with exogenous fluorescently tagged γ-actin mRNA in growing RGC axons. (Scale bars: 5 μm.) (B) Quantification of colocalization between β-actin mRNA-
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mRNAs in axons, ranging from 0 to 32 molecules per axonal
growth cone, with most holding fewer than four (Fig. 3E and SI
Appendix, Fig. S4 D and E). However, the expected mRNA deg-
radation that we previously observed during our smFISH protocol
means that total copy number and stoichiometry may be under-
estimated. To test how the stoichiometry of smFISH datasets might
be affected by RNA degradation during our in situ hybridization
protocol, we performed binomial fitting using a relatively high ar-
bitrary degradation constant, P = 0.5 (50% probability of degra-
dation). Here, binomial fitting allows us to predict the frequency
of number of β-actin mRNAs existing within an RNP by solving
each possibility individually through an equation and then sum-
ming the frequency of expected values. For example, for two
β-actin mRNAs per RNP, there would be a certain probability of
observing smFISH puncta intensity representative of two, one, or
zero β-actin mRNAs per RNP, depending on how many have
degraded. To limit the number of equations, we performed bi-
nomial fitting for up to four β-actin mRNAs per RNP, which
comprises >98% of our original observed smFISH distribution.
After degradation is taken into account, the resulting distribution
of β-actin mRNA smFISH stoichiometry was slightly more right-
skewed, with a relatively small difference in copy number frequency
from that observed (less than 20% for estimated frequency distri-
butions of single- and double-copy-number–containing RNPs) (SI
Appendix, Fig. S4C). These data together show that, even with a
theoretically large degree of degradation during our smFISH
protocol, most β-actin mRNAs travel singly in growing axons.

Differences in Directed Transport Are Sufficient to Drive Differential
β-Actin mRNA-Localization Patterns Across Axonal Subcompartments.
Using smFISH, we further quantitatively examined how endog-
enous β-actin mRNA-localization patterns might change across
different axonal subcompartments (Fig. 4A). Consistently we
found a greater number of mRNA molecules per square mi-
crometer in the growth cone than in the axon shaft (Fig. 4B). No
difference in mean β-actin mRNA RNP stoichiometry was ob-
served (Fig. 4C), although more highly multiplexed RNPs tended
to reside in the growth cone (arrows in Fig. 4D). Probing these
localization patterns further, we found the greatest density of
β-actin mRNA molecules was located in the central domain,

where fourfold enrichment was observed, compared with the pe-
ripheral domain of the growth cone and axon shaft (n = 63 axons,
P < 0.0001, paired t test) (Fig. 4E).
We wondered whether mRNA trafficking might play a role in

conferring central domain-enriched localization of β-actin mRNA.
To address this question, we analyzed β-actin mRNA dynamics
in growing axons using MBs imaged under HILO microscopy. To
increase the SNR and enable longer-term imaging, we used two
MBs together in these live-imaging experiments. By adapting a
particle-tracking script (59), we were able to automatically detect
puncta, obtain trajectories, and classify the directionality of mRNA
moving anterograde or retrograde in the axon. MB-labeled β-actin
mRNA puncta frequently displayed complex motions in axons.
For example, puncta underwent fast directional transport inter-
spersed with periods of pausing or switching directionality mid-
trajectory (Fig. 5 A and B and Movies S2–S4). The biophysical
drivers behind each trafficking mode were consequently extracted
using HMM–Bayes, an approach that combines hidden Markov
modeling with Bayesian model selection to predict switches in
diffusive and directed transport states (60). Here, puncta dis-
placements within each β-actin mRNA trajectory are treated as a
finite series of hidden motion states, with the type of motion (i.e.,
different diffusive or directed transport states) depending on the
mean and SD of displacements within the trajectory (60). For
example, diffusion, by definition, has no net directionality and thus
would have a mean centered on zero, while different types of
diffusion would have different SDs in displacement that vary by
the level of puncta confinement. The script then uses Bayesian
statistics to predict the simplest stochastic set of motion states that
best fit the observed β-actin mRNA displacements within the
trajectory (60).
Using the HMM–Bayes approach, we found that while most

β-actin mRNA puncta assumed diffusive behavior at all axonal
regions analyzed, a modicum of trajectories containing directed
transport states occurred in the axon shaft (14.0 ± 3.3% SEM).
In contrast, directed transport was rarely observed in any region
of the growth cone (central domain 1.6 ± 0.8% SEM; peripheral
domain 2.0 ± 1.1% SEM). These differences resulted in signif-
icantly different motion-type frequencies in the axon shaft but
not between the peripheral and central domains of the growth

A
C

D

E

B

Fig. 3. Endogenous β-actin mRNA stoichiometry in growing axons. (A) Single stepwise photobleaching events were observed using MB1 and HILO mi-
croscopy. Black lines represent background-subtracted intensity trace of MB puncta; colored lines show the median intensity of each step after filtering. (Scale
bar: 5 μm.) (B) An example of two stepwise photobleaching events in one trace. (C) Representative image of β-actin mRNA distribution using smFISH. (Scale
bar: 10 μm.) (D) Frequency distribution of the number of β-actin mRNAs per RNP calculated from smFISH spot intensity distributions. (E) Variability in the
number of β-actin mRNAs within axonal growth cones was observed. n = 35 RNase-A–treated axons and n = 100 untreated axons.
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cone (P < 0.0001, n = 66 axons, χ2 test) (Fig. 5C). Further
characterization based on the predominant motion type of each
β-actin mRNA trajectory yielded similar results (Fig. 5D). Here,
we additionally characterized diffusive particles as “anchored”
based on the range of diffusion coefficients exhibited by sta-
tionary MB puncta in fixed axons.
While microtubule-dependent transport has been shown to be

important for directed motion in axons (28, 61, 62), we wondered
whether actin filaments might play a role in anchoring β-actin
mRNA, as has been observed in fibroblasts (18). In support of
this notion, we found that disrupting the actin cytoskeleton by
latrunculin A did not prevent directed transport but instead in-
creased the diffusive mobility of β-actin mRNA (P = 0.0387 and
P < 0.0001 for axon and growth cone, respectively, unpaired
t test) (Fig. 5E). Interestingly, the effect of actin destabilization
on diffusion was greater in the growth cone than in the axon
shaft, corresponding to increased F-actin levels at this region
(63). Triggering ribosome dissociation from mRNA by the ad-
dition of puromycin (64) was also able to increase the diffusion
coefficient, indicating that some MB-labeled RNPs were bound
to ribosomes (P < 0.0001, unpaired t test) (Fig. 5F).
There was no significant bias in the proportion of β-actin mRNA

puncta within the axon shaft traveling toward or away from the
growth cone. This suggests that the enrichment of β-actin mRNA
in the growth cone is not be due to an increase in the frequency
of anterograde-directed transport (Fig. 6A). However, this en-
richment could be fueled by the differences in the speed of di-
rected transport we observed for mRNAs moving anterogradely
versus retrogradely (1.1 ± 0.08 μm·s−1 and 0.81 ± 0.05 μm·s−1, re-
spectively, P = 0.0167, Mann–WhitneyU test) (Fig. 6B). Interestingly,

velocities for the pure directed-transport component of trajecto-
ries were non-unimodal for both anterograde and retrograde
transport (Hartigan’s dip test for unimodality, P = 0.96 and P =
0.70, respectively). Instead, these velocities together fitted a
quadmodal distribution (bimodal anterograde and bimodal ret-
rograde), indicating that two different transport modes drive di-
rected β-actin mRNA transport in each direction of the axon shaft
(Fig. 6C). As discussed below, these modes could represent dif-
ferent motors or regulatory proteins driving anterograde and
retrograde axonal β-actin mRNA transport.
Although most β-actin mRNA puncta displayed diffusive be-

havior, the sheer length of neuronal axons (up to 1 mm for RGC
axons in the Xenopus embryos we study) means that diffusion
alone may not explain how β-actin mRNA reaches the periphery.
Using a rearrangement of the mean squared displacement equa-
tion for a diffusing particle, we calculated it would take an average
of ∼48 d for one mRNA molecule to reach the tip of a 500-μm-
long axon in the optic tract by diffusion alone (SI Appendix, S1
Mathematical Modeling). Moreover, diffusion alone could not ac-
count for the enrichment of β-actin mRNA in the growth cone. It
is reasonable, therefore, to assume that directed transport must
play an important role in contributing to the flux of β-actin mRNA
trafficking throughout the axon shaft. To investigate how directed
transport might contribute to increased β-actin mRNA density in
the growth cone, we generated a mathematical model. Here, we
calculated the expected fold increase in mRNA from axon shaft to
growth cone through an advection-diffusion model (Fig. 6D, and
SI Appendix, Fig. S5). Parameters were obtained from our quan-
titative imaging data showing that 3.3% of β-actin mRNA RNPs
move with directed transport at a given time and that the total
average moving velocity (anterograde and retrograde) of mRNAs
is 0.004 ± 0.002 μm·s−1. In addition, we used a consensus for the
β-actin mRNA half-life of 8 h from previous publications (65, 66).
We found the observed velocity differences between anterograde
and retrograde transport yield a 4.8 ± 3.5-fold increase in β-actin
mRNA density at the growth cone (SI Appendix, S1 Mathematical
Modeling). This is within the range of increase we observe through
smFISH (fourfold). Together our results show that, despite rela-
tively few mRNA molecules being actively transported at a given
moment in time, directed motion provides the main flux for
β-actin mRNA trafficking throughout the axon shaft and that di-
rectional disparity in trafficking speeds provides a mechanistic
basis for localizing β-actin mRNA to the axon tip.

Discussion
Molecular Beacons as a Single-Molecule Method for Visualizing
Endogenous mRNA in Axons. How individual molecules move in the
cytoplasm holds a trove of information about the biological pro-
cesses regulating their kinetics. Previous methods for visualizing
single molecules of mRNA have yielded exciting insights into the
world of RNA trafficking, uncovering, for example, how particu-
lar mRNAs become localized in the Drosophila oocyte (25),
depolarization-linked messenger RNP disassembly in mammalian
dendrites (18), and even whether an mRNA is being translated by
changes in diffusive behavior (64). So far, single-molecule techniques
have focused on the idea that one mRNA molecule can be imaged
in vivo only if tagged by large numbers of fluorophores. These ap-
proaches allow weak fluorescence emission from a single molecule
to be multiplied, generating SNR above background associated with
cellular autofluorescence and other nonspecific signals (for instance,
from freely diffusing MCP-GFP complexes). For visualizing endog-
enous mRNA transcribed in vivo, these techniques are possible
only through genetic modification and run the risk of affecting
mRNA dynamics through heavy labeling. In contrast, single
protein dynamics are routinely analyzed by tagging the protein of
interest with only one fluorophore that is visualized using illumi-
nation techniques that increase SNR without high laser intensity or
exposure time (53, 67, 68). Here we have applied this principle to
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Fig. 4. smFISH reveals that the localization patterns of β-actin mRNA vary
according to axonal subcompartment. (A) Cartoon representation of the dif-
ferent axonal regions analyzed. (B) A comparison of the density of β-actin
mRNA molecules in the growth cone and axon shaft via smFISH shows signif-
icantly increased density of β-actin mRNA in the growth cone. (C) No difference
between β-actin mRNA RNP stoichiometry was observed in the different sub-
compartments. N.S. not significant. (D) Histogram of β-actin mRNA stoichi-
ometry. Arrowheads indicate more highly multiplexed copy numbers in the
growth cone. (E) Relative density of β-actin mRNA across subcompartments of
the same axon shows significant enrichment in the central domain of the
growth cone. ***P < 0.0001; paired Student’s t test; n = 63 axons.
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mRNA. We show that endogenous β-actin mRNA is labeled in
growing axons using two chimeric MBs and that a single MB is
capable of capturing single mRNA dynamics via HILO microscopy.
Imaging mRNA dynamics using MBs is not without caveats,

however. As previously reported (41), nonspecific signal in the
nucleus was also observed in our system. Because such signal
overrides MB fluorescence in the vicinity of the nucleus, it could be
difficult to image single-mRNA dynamics at proximal regions of
the axon without methods to prevent nuclear sequestration, for
example by coupling to streptavidin (42) or facilitating siRNA-like
nuclear export (69). Fortunately for the purpose of this study, the
remoteness from the soma of the peripheral axonal regions ana-
lyzed meant that the nuclear signal did not obscure detection or
localization patterns of mRNA puncta. Moreover, imaging the
axon periphery lends itself to single-molecule imaging because of
the relative sparsity of mRNA molecules in neurites and because
axon length limits potential diffusive background from unbound
MBs. Some studies have reported false-positive signal generated
from nuclease degradation and nonspecific interactions (70, 71).
We also found that a degree of background labeling occurred in
our control MBs. Although we cannot rule out the possibility that a
degree of false positives might remain, the use of nuclease-resistant
MBs, the short time period between electroporation and imaging,
and the extensive validation of the signal led us to be confident we
were labeling β-actin mRNA with reasonable specificity.

Packaging mRNAs Singly in the Axon Shaft. Using MBs and smFISH,
we counted the number of β-actin mRNA molecules within axonal
RNPs and found that the great majority existed singly, while less
than 30% traveled in twos. Such findings are in line with studies
investigating mRNA stoichiometry in dendrites (18, 72), indicating
that common strategies for mRNA packaging might exist across
neuronal compartments. Directed transport by motor proteins is an
ATP-driven process; therefore, in terms of energy efficiency, it
might seem somewhat illogical for mRNAs to travel long distances

singly. The median cellular translation rate has been estimated as
140 proteins per mRNA per hour (73) and has been hypothesized
to be even higher in neurites (74). Therefore careful regulation of
each mRNA individually might be necessary because their cumu-
lative translation would presumably have a potent effect at the
subcellular locality. Moreover, RNA copackaging has been linked
to translational repression (75, 76). As β-actin mRNA is translated
in the axon shaft in addition to the growth cone (77), the transport
of single mRNA molecules may additionally provide a mechanism
for continual protein synthesis at a basal level by the circulation of
translatable substrates.

Endogenous β-Actin mRNA Dynamics Explain Localization Patterns in
Growing Axons. In this study, we investigated how individual β-actin
mRNA molecules move and are distributed across growing axons.
Precise quantitation of mRNA levels allowed us to demonstrate
that β-actin mRNA-localization patterns vary according to the ax-
onal subcompartment. We observed significantly increased mRNA
density in the central domain of the growth cone compared with
peripheral domains and the axon shaft. Because of the growth
cone’s role as the sensing “nose” of a navigating axon, it is perhaps
not surprising that this region is enriched in β-actin mRNA, pro-
viding a local store for basal and cue-induced morphological
changes through the local synthesis of cytoskeletal proteins. In-
deed, nonquantitative observations from in situ hybridization im-
ages have previously indicated that this might be the case (28).
Other studies have demonstrated that different mRNA species
exhibit varying localization patterns across the axon. For example,
using laser capture microdissection followed by genome-wide
microarray analysis, we have previously shown that the growth
cone transcriptome is enriched with different sets of mRNAs com-
pared with the axon shaft (12). mRNA localization may be regulated
by mechanisms involving degradation, e.g., by nonsense-mediated
mRNA decay (6). However, the contribution of mRNA traffick-
ing to the spatial patterns of mRNA has so far remained elusive.
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mRNA trafficking in axons has previously been visualized indirectly
through the dynamics of RBPs bound to fluorescent proteins (4), by
the translation of fluorescent proteins conjugated to UTRs (62), and
by nonspecific labeling of all RNA (29, 78). These studies have
provided valuable insight into the factors regulating mRNA locali-
zation, e.g., changes in mRNA trafficking triggered by extracellular
cues (4, 62). However, because one cannot follow a particular mRNA
species in real time, the information about axonal mRNA trafficking
that we can glean using such indirect/nonspecific methods is limited.
To our knowledge, only two other studies have directly visualized
trafficking of a specific mRNA in axons. In the first, mutations in the
RBP TDP-43 were shown to modulate axonal trafficking of Nefl
mRNA (79). However, only the direction of mRNA trafficking was
analyzed, without quantitative analysis of motion type or single-
molecule sensitivity. In the second study, cue-induced changes in
trafficking of in vitro transcribed β-actin mRNA was investigated in
axons (80). Interestingly, a bias in anterograde transport speed of
mRNA was also reported. However, this study used exogenous
mRNA and did not quantitatively analyze biophysical motion states.
In this study, we characterized the dynamics of single endogenous
β-actin mRNA molecules in growing axons. We demonstrated that
while the great majority of β-actin mRNAs display diffusive behavior,
a modicum of directed transport exists in the axon shaft that is a
critical determinant of β-actin mRNA enrichment in the growth cone.
Our results show a motion-type distribution in growing axons

highly similar to β-actin mRNA transport in other neuronal
compartments and cell types (18, 81). That the great majority of
mRNAs exhibit diffusive/stationary behavior over our imaging
period does not, however, mean that these mRNAs display the
same behavior throughout their lifetime. Our calculations dem-
onstrated that it is highly improbable that β-actin mRNA mole-
cules traverse the length of the axon by diffusion alone, suggesting
that at one point they must undergo directed transport. In support
of this view, it has recently been shown by imaging over longer
acquisition times that β-actin mRNA in dendrites consistently
cycles between stationary and trafficking states (19). Directed
transport is thus a crucial component of axonal mRNA dynamics.
We demonstrate that this component of β-actin mRNA trafficking
becomes lost as mRNAs travel from the axon shaft to the growth
cone. Through mathematical modeling, we further show that the
differences between anterograde- and retrograde-directed trans-

port velocities are sufficient to cause β-actin mRNA enrichment in
the growth cone. In the future, it would be fascinating to de-
termine how these differences compare with mRNA species that
are enriched in the axon shaft [e.g., mRNAs encoding proteins
with roles in membrane trafficking and protein folding (12)] and
what relative roles mRNA transport and degradation might play in
conferring differential localization patterns.
The approach we employed, HMM–Bayes, to identify switching

between motion states (60) provided a unique opportunity to
analyze directed transport in axons. Here, it was possible to extract
the kinetic information behind pure directed transport states from
trajectories containing mixtures of motion behavior. Various
studies have suggested that long-range mRNA transport along the
axon shaft is microtubule-dependent (28, 61, 62). Because of the
highly polarized microtubule orientation in axons, anterograde
and retrograde microtubule-based transport are driven by differ-
ent microtubule-associated motor proteins: Plus-end–directed
kinesins drive anterograde transport, and cytoplasmic dynein
drives retrograde transport (82). Different motor proteins have
different kinetic characteristics (83); therefore it is likely that the
difference in speeds between anterograde- and retrograde-moving
β-actin mRNAs is due to the properties of different motor pro-
teins. However, it was surprising that bimodal distributions of
velocity were also observed in each direction. These data suggest
that different directed transport modes underlie anterograde and
retrograde transport. Indeed, the combined use of kinesin-1 and
kinesin-2 motor proteins has previously been observed for plus-
end–directed Vg1 mRNA transport in Xenopus oocytes (84), an
mRNA that shares the same RBP (Vg1RBP) for transport as
β-actin mRNA. Moreover, regulating the balancing between cargo
velocities driven by two different motor proteins has been shown
to provide a cargo-sorting mechanism at the proximal axon shaft
(85). Interestingly, these data reveal that the different velocities of
kinesin-1 and kinesin-3 motors are able to regulate vesicle distribu-
tion across the axon (85), suggesting a similar mechanism may un-
derlie the faster anterograde transport that drives increased β-actin
mRNA localization in the growth cone. However, cytoplasmic dynein
is the only motor protein likely to drive retrograde β-actin mRNA
transport; thus multiple motor types are unlikely to explain the bi-
modal retrograde velocity distribution. Instead, different numbers of
motor proteins attached to cargoes could cause differences in speeds
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(86–88). Dynein velocity can also be increased by association with the
regulatory protein Lissencephaly-1 (89, 90). How motor proteins and
their regulators might coordinately control directed mRNA transport
in axons is an intriguing avenue for future research that would help
us understand further the control of axonal mRNA-localization
patterns through mRNA trafficking.

Methods
MB Design and Validation. MB loop sequences were manually designed to bind
predicted single-stranded regions on Xenopus laevis β-actin mRNA with fa-
vorable MB:mRNA stability using the intersection of two secondary structure-
prediction algorithms: m-Fold (91) and OLIGOWALK (92). Sequences were
confirmed to be unique to the Xenopus genome by blasting with NCBI BLAST
(https://blast.ncbi.nlm.nih.gov/Blast.cgi) and confirming unannotated gene se-
quences by blasting again against β-actin mRNA. The only off-target with
100% minus/plus base-pairing to MB2 (Fam83h-like) was confirmed not to be
expressed in Xenopus RGC axons by performing RT-PCR using RNA extracted
from isolated axons (SI Appendix, Supplementary Methods).

MBs were designed as LNA (+N)/2′-O-methyl RNA (oN) chimeras (44) with
a GC-rich stem and Cy3:BHQ-2 fluorophore:quencher and were synthesized
by TIB Molbiol. In vitro tests for MB specificity were performed at 37 °C in
hybridization buffer (44) using a LightCycler 480 system (Roche). Sequences
(5′–3′) were as follows:

MB1: Cy3oCoGoAoCoGoCoU+CoAoGoUoU+AoGoG+AoUoUoUoUoC+
AoUoGoCoGoUoCoG BHQ2

MB2: Cy3oGoCoGoCoAoG+GoAoA+GoCoCoAoA+GoAoUoG+GoAoUo-
GoCoGoC BHQ2

Scramble: Cy3oCoCoGoCoGoGoCoGoGoA+AoAoCoUoU+AoUoA+CoA+
CoUoUoAoAoCoGoCoCoGoCoGoG BHQ-2

Brn3a: Cy3oCoCoGoCoGoGoCoGoUoUoUoU+AoU+AoUoA+AoCoUoUoUoUoU+
AoCoCoGoCoCoGoCoGoG BHQ-2

Electroporation and Culture. Electroporation was performed on stage 28 eye
primordia as described in ref. 93. MBs were electroporated at a concentration of
50 μM. The expression of each β-actin MB did not significantly differ when half
the concentration was used (25 μM), suggesting that we were electroporating
at saturating concentrations (SI Appendix, Fig. S6B). The Vg1RBP-EGFP plasmid
(4) and fluorescently tagged mRNA were electroporated at a concentration of
1.85 and 1 μg/μL, respectively. Eye explant cultures were performed as described
previously (94) but with the use of phenol red-free L15 medium (Life Technol-
ogies), with fixation or imaging within 24 h. Importantly, in X. laevis eye explant
cultures, only the axons of RGCs grow out from the retina; other protrusions,
such as dendrites, remain in the retina, as eye morphology is preserved in cul-
ture (94). As such, we were able to visualize RGC axons exclusively in fixed cells
and during live imaging. This research was performed under the Animals (Sci-
entific Procedures) Act 1986 Amendment Regulations 2012 following ethical
review by the University of Cambridge AnimalWelfare and Ethical Review Body.

smFISH. Explant cultures were fixed in 4% paraformaldehyde, 4% sucrose in
1× PBS for 5 min, washed in 4% sucrose, 1× PBS for 5 min, and then were
fixed further in ice-cold 100% MeOH at −20 °C for 10 min. After three
10-min washings in 1× PBS + 0.001% Triton X-100, cultures were per-
meabilized in 70% EtOH for 24 h at 4 °C. Cultures were subsequently rehy-

drated at room temperature in 1× PBS and then were preincubated for 30 min
in 50% formamide, 2× SSC at 40 °C, washed three times for 5 min each washin
in wash buffer (10% formamide, 2× SSC) preheated to 40 °C, and were hy-
bridized overnight at 40 °C in 2.5 μM Stellaris RNA FISH probes with CAL
Fluor Red 590 Dye (Biosearch Technologies) designed to target β-actin mRNA
using the online Stellaris probe designer in hybridization buffer described in
ref. 58. Cultures were then washed twice for 30 min each in washing buffer
at 40 °C and twice for 5 min each washing in 2× SSC before mounting in
FluorSave (Merck). Images were acquired on an Olympus IX81 inverted mi-
croscope equipped with a PerkinElmer Spinning Disk UltraVIEW VoX system
and a 100× oil immersion objective with an ORCA-Flash4.0 V2 CMOS camera
(Hamamatsu) using Volocity 6.3.0 software (PerkinElmer) and a 561-nm laser
line at 26.5% laser intensity and 400-ms exposure time. As a negative con-
trol, the smFISH protocol was performed as above, but the culture was
subjected to RNase A treatment at 37 °C for 1 h before hybridization. β-Actin
mRNA stoichiometry, based on intensity distributions of smFISH puncta, was
analyzed using the Spatzcells MATLAB script (58). Inverse binomial fitting to
generate corrected β-actin mRNA smFISH stoichiometry after degradation
was performed using Mathematica.

Live Imaging and Analysis. Stage 28 Xenopus eye primordia were electroporated
with 50 μM MB1 and MB2 and then were cultured for 18–22 h. Time-lapse
movies of MB dynamics were acquired via HILO microscopy using a 561-nm la-
ser line at 20% laser intensity with an Nikon TiiE inverted microscope using a CFI
Plan Apo total internal reflection fluorescence 100× 1.49 N.A. objective (Nikon)
and ILAS2-targeted laser illumination (Cairn Research). Images were acquired
using a Photometrics Evolve Delta EM-CCD camera and MetaMorph software
(Molecular Devices) at a frame rate of 0.25 s with 100-ms exposure time for 50 s
(200 frames). For axon shaft dynamics, only tracks within 20-μm sections of the
axon shaft 10 μm from the growth cone were analyzed. The central domain of
the growth cone was distinguished from the peripheral domains as the dense
central region under brightfield images of the axon. Some puncta observed
outside the axon were easily distinguished in brightfield images as remnants of
dead cells and thus were excluded from the analysis (SI Appendix, Fig. S6C).
Particle tracks were obtained using plusTipTracker software (59), and a custom-
made particle-tracking add-on script was developed to assess the directionality of
mRNA trajectories in the axon. After noise and duplicate tracks were discarded
by checking movies by eye, tracks were assessed for switching between motion
states using the HMM–Bayes script (60). Experiments examining the effects of
latrunculin A onMB dynamics were performed as above but with the addition of
either 10 μM latrunculin A (Sigma) in 2% DMSO or 2% DMSO only into the
culture medium and imaging 5–10 min after the addition. Puromycin experi-
ments were performed using 100 μg·μL−1 puromycin diluted in water (Sigma)
in the culture medium, and the dynamics of MBs were captured at 30–45 min.

Statistics. Statistical tests were performed using PRISM software (GraphPad).
The modality of velocity distributions for directed transport states was cal-
culated in R using the diptest and mclust packages.

Detailed descriptions of all other experimental procedures are given in SI
Appendix, Supplementary Methods.
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