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Abstract

Introduction

Annexin A1 (ANXA1) is an anti-inflammatory protein reported to play a role in cell prolifera-

tion and apoptosis, and to be deregulated in breast cancer. The exact role of annexin A1 in

the biology of breast cancer remains unclear. We hypothesized that the annexin A1 plays

an oncogenic role in basal subtype of breast cancer by modulating key growth pathway(s).

Methods

By mining the Cancer Genome Atlas (TCGA)-Breast Cancer dataset and manipulating

annexin A1 levels in breast cancer cell lines, we studied the role of annexin A1 in breast

cancer and underlying signaling pathways.

Results

Our in-silico analysis of TCGA-breast cancer dataset demonstrated that annexin A1 mRNA

expression is higher in basal subtype compared to luminal and HER2 subtypes. Within the

basal subtype, patients show significantly poorer overall survival associated with higher ex-

pression of annexin A1. In both TCGA patient samples and cell lines, annexin A1 levels

were significantly higher in basal-like breast cancer than luminal and Her2/neu-positive

breast cancer. Stable annexin A1 knockdown in TNBC cell lines suppressed the mTOR-S6

pathway likely through activation of AMPK but had no impact on the MAPK, c-Met, and

EGFR pathways. In a cell migration assay, annexin A1-depleted TNBC cells showed de-

layed migration as compared to wild-type cells, which could be responsible for poor patient

prognosis in basal like breast cancers that are known to express higher annexin A1.

PLOS ONE | DOI:10.1371/journal.pone.0127678 May 22, 2015 1 / 19

OPEN ACCESS

Citation: Bhardwaj A, Ganesan N, Tachibana K,
Rajapakshe K, Albarracin CT, Gunaratne PH, et al.
(2015) Annexin A1 Preferentially Predicts Poor
Prognosis of Basal-Like Breast Cancer Patients by
Activating mTOR-S6 Signaling. PLoS ONE 10(5):
e0127678. doi:10.1371/journal.pone.0127678

Academic Editor: Ming Tan, University of South
Alabama, UNITED STATES

Received: November 13, 2014

Accepted: April 17, 2015

Published: May 22, 2015

Copyright: © 2015 Bhardwaj et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: The authors have no support or funding to
report.

Competing Interests: The authors declare no
competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0127678&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Conclusions

Our data suggest that annexin A1 is prognostic only in patients with basal like breast can-

cer. This appears to be in part due to the role of annexin A1 in activating mTOR-

pS6 pathway.

Background
Breast cancer is a heterogeneous disease, and treatment options, response, and prognosis vary
greatly with breast cancer subtype. Basal-like breast cancers represent about 10–15% of all
breast cancers, and have a high potential for metastasis [1]. While basal- like breast cancer is
defined by its genomic signature, the majority of these cancers are negative by immunohis-
tochemistry for estrogen receptor (ER), progesterone receptor (PR), and Her2/neu, and hence
are commonly referred to as triple negative breast cancer (TNBC). Currently no targeted thera-
pies are available for this tumor subtype and thus these tumors are also characterized by a rela-
tively lower survival rate.

Identification of biological markers of disease prognosis that can be targeted for therapy
may help improve outcomes for basal like breast cancer patients. One such potential marker,
annexin A1 (encoded by ANXA1), is a calcium-dependent phospholipid binding protein that
shows phospholipase A2-inhibitory activities, is induced by glucocorticoids [2], and possesses
anti-inflammatory activities [3]. To effect anti-inflammatory activities, annexin A1, which is
expressed on the cytosolic face of the plasma membrane, is secreted by neutrophils upon cell
adhesion to the endothelium, induces cell detachment, and inhibits transmigration of leuko-
cytes [4]. ANXA1 expression has been reported to be deregulated in tumor development and
progression, but the exact mechanisms remain unknown. To date, numerous reports have sug-
gested differential expression of ANXA1 depending on cancer type: up-regulation in esophage-
al cancer [5], pancreatic cancer[6], skin squamous cell carcinoma [7], and colon cancer [8] and
down-regulation in cervical cancer [9], oral squamous cell carcinoma [10], and prostate cancer
[11]. Thus, annexin A1 seems to play an oncogenic role in some cancers and a tumor-suppres-
sive role in others in a context specific manner.

There are conflicting reports in the literature about the role annexin A1 plays in breast can-
cer. Several studies have reported higher levels of annexin A1 expression in ductal carcinoma
compared to normal ducts [12, 13]. Others have reported decreased annexin A1 expression in
ductal carcinoma in situ and invasive ductal carcinoma compared to normal and benign tissues
[14–17]. The role and regulation of annexin A1 in the biology and prognosis of breast cancer
remain unclear and may be due to the lack of consideration of the different subtypes of breast
cancer. Thus, in this study, we hypothesize that annexin A1 plays an oncogenic role in basal
like breast cancer.

Materials and Methods

Ethics Statement
N/A

TCGA breast cancer data mining
We evaluated the association between ANXA1 gene expression and overall patient survival in
breast cancer dataset (TCGA, https://tcga-data.nci.nih.gov/tcga/) in a subtype-specific fashion.
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For each breast cancer subtype, Basal, Her2/neu-enriched, and luminal, specimens were first
sorted according to the expression of the ANXA1 gene expression from the RNA Seq dataset
(total patient samples = 890) of TCGA breast cancer, then association with overall survival was
evaluated by comparing the top 50% of the specimens and the bottom 50% of the specimens
using the log-rank test (p<0.05). Overall, survival significance was evaluated by employing the
package survival [18] in the R statistical system.

Cell culture
The following cell lines were obtained from the American Type Culture Collection (ATCC): i)
TNBC lines MDA-MB-157, MDA-MB-436, MDA-MB-468, HCC70, BT-549, ii) ER+ /HER2/
neu negative cell lines T-47D, ZR-75-1, MCF-7, MDA-MB-415, HCC1428, BT-483, iii) ER+/
Her2/neu+ cell lines BT474, and MDA-MB-361 and iv) ER-/Her2/neu+ cell lines AU565,
HCC1954, and SKBR3. All cells except HS578T were cultured in DMEM-F12 containing 10%
FBS. The TNBC line, HS578T also obtained from ATCC, was grown in DMEM with reduced
NaHCO3 (ATCC) containing 0.1 mM insulin and 10% FBS. The ER+/ Her2/neu-overexpres-
sing MCF7 (MCF7-Her18) cells were a kind gift from Dr. Elizabeth Mittendorf. All the cell
lines used in here were strictly with in ten passages after buying from ATCC and thus were not
authenticated again.

Generation of stable annexin A1 knockdown cells
For annexin A1 knockdown, six lentiviral small hairpin RNA (shRNA) clones and a GIPZ non
silencing lentiviral shRNA control clone (RHS 4348) were bought from Open Biosystems
through The University of Texas MD Anderson Cancer Center’s shRNA and ORFeome Core
Facility. The six annexin A1-silencing clones were as follows: clone A, V2LHS_112102, that
generates a mature antisense transcript of sequence ATCTTCATCAGTTCCAAGG; clone B,
V3LHS_413324, mature antisense sequence TCAGCTACATAGACATCTT; clone C, V3LHS_
392260, mature antisense sequence AGCAGAGCTAAAACAACCT; clone D, V3LHS_413326,
mature antisense sequence AGCTTGAGACCATCAAGGG; clone E, V3LHS_413325, mature
antisense sequence AGAACAACTTGTATAGGGT; and clone F, V3LHS_392259, mature
antisense sequence ATTTCTGAAACACTCTGCG. Stable MDA-MB-436 and MDA-MB-468
cell lines with annexin A1 knockdown were generated as described elsewhere [19]. Briefly, the
A293T cell line was used to package the virus by transfecting the shRNA plasmids pCMV-
Δr8.2 and pCMV-VSVG with Lipofectamine 2000 (Invitrogen) at a 10:10:2 ratio. The medium
was replaced with fresh medium 18 hours later, and the supernatant containing the virus was
collected 48 and 72 hours after the medium was changed. The supernatant was mixed with
PEG-it precipitation solution (System Biosciences) and stored at 4°C for 24–48 hours. Virus
was concentrated 100× by centrifuging the samples at 1500 × g for 30 minutes and resuspend-
ing the pellets in PBS. The virus-packaged annexin A1 shRNAs were then used to infect the cell
lines. Positive clones were selected by using 2-μg/ml puromycin. After selection, short-term
cultures of stable cell clones were maintained using 1 μg/ml puromycin.

Transient transfections
For transient transfection studies, stable Annexin A1 shRNA clones D, E and F were trans-
fected using Lipofectamine 2000 (Invitrogen Technologies) following the manufacturer's in-
structions. Briefly, Cells were plated on 6-well culture dishes and then cotransfected with 1.5 μg
of the mTOR-containing plasmid (mTOR-pcDNA 3) or 1.5 μg of empty vector using 4 μl lipo-
fectamine 2000. After a 6-h incubation in reduced serum medium optiMEM, the medium was
replaced with DMEM-F12 supplemented with 10% FBS. Forty-eight hours after the
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transfection either cell lysates were prepared to extract proteins for westerns or the wells were
processed for wound healing assay, as described later. pcDNA3-Flag mTOR wt was a gift from
Dr. Jie Chen (Addgene plasmid # 26603) [20].

Western blotting
Thirty to 40 μg of total cellular proteins was subjected to sodium dodecyl sulfate–polyacryl-
amide gel electrophoresis; transferred to Hybond ECL nitrocellulose (Amersham); and probed
with either ANXA1, pAKT (S473), AKT, S6, or pS6 (S240/244), p44/42 MAPK, phospho- p42/
44 MAPK (Thr202/Tyr204), mTOR, pmTOR (S2448), cmet, p-cmet (Tyr1234/1235), AMPK,
Pampkα (Thr172), EGFR, pEGFR (Tyr1068) antibody or the loading control, vinculin. Pro-
teins were detected by using the “Odyssey classical Imager” Infrared Imaging System (Li-Cor
Biosciences). We were able to probe a single Western blot membrane for more than two pro-
teins of interest (of different sizes, by cutting the membrane) and vinculin because of the ability
of the Odyssey system to detect signals from antibodies raised in mouse and rabbit on the same
membrane at separate wavelengths. As a result, in our Western blots, one common vinculin
band is shown for multiple proteins if the proteins came from same membrane. Phospho pro-
teins and total proteins were probed on different membranes because we found nitrocellulose
membranes to be incompatible for re-probing followed by detection of fluorescence signal
through odyssey in our hands. To ensure equal protein loading each membrane was probed
with a loading control protein vinculin. Relative changes in phopho proteins levels were calcu-
lated by a two-step process: in the first step a ratio of each protein was calculated by normaliz-
ing against their respective vinculin. In the second step, a ratio of phospho protein with respect
to the total protein was calculated to determine changes in phospho proteins.

Scratch assay/wound-healing assay
MDA-MB-468 and MDA-MB-436 cells were plated in six-well dishes at a cell density of about
80% (500,000 cells/well) in DMEM-F12. Cells were scratched with a fresh sterile pipette tip
(200 μl), and detached floating cells were washed out to ensure that they did not stick back to
the wound. Subsequently, the cells were washed with PBS, and fresh cell culture medium was
added to the wells. Pictures of the wound were taken at a 20× magnification, and the area of
the wound was marked. Twenty-four hours later, pictures of the cells were taken in the same
area. To quantify cell migration, the average widths of the wound were measured at time zero
and at 24 hours (by using Image J) and the average distance covered by the untreated cells was
set as 100% and the mean % distance covered by the annexin knock down cells clones and non-
specific shRNA clone was calculated with respect to the untreated cells. The following formula
was used for this conversion: = (mean distance covered by the untreated cells/ mean distance
covered by the annexin depleted clones (treated))�100.

Electrophoretic mobility shift assay (EMSA) for NF-κB
To determine NF-κB activation, nuclear cellular proteins were analyzed by electrophoretic mo-
bility gel shift assay (EMSA) as described elsewhere[21]. Briefly, 10 μg nuclear extracts were in-
cubated with 32P-end-labeled 45-mer double-stranded NF-κB oligonucleotide (16 fmol of
DNA) representing NF-κB consensus sequence from the human immunodeficiency virus long
terminal repeat, 50-TTGTTACAAGGGACTTTCCGCTGGGGACTTTCCAGGGAGGCGTG
G-30 (NF-κB binding sites are underlined) for 15 min at 37°C, and the DNA-protein complex
formed was separated from free oligonucleotide probe on 6.6% native polyacrylamide gels. An
overnight exposure was obtained on radiographic film by placing it on dried gel in an
autoradiography cassette.
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RNA extraction and QPCR
Total cellular RNA was extracted from exponentially growing cells by Trizol extraction
(BioRad) method as described previously[22]. cDNA was prepared from RNA by using iscript
cDNA synthesis kit (BioRad). The basal MMP9 mRNA levels were measured with respect to a
loading control ribosomal protein L19 by SYBR green based QPCR method as described previ-
ously [22]. The primer sequences used for human MMP-9 were: forward, 50-ttgacagcgacaaga
agtgg-30; and reverse, 50-gccattcacgtcgtccttat-30.

Statistical analyses
Student’ unpaired t test was performed to measure the statistical difference between various
groups. P values< 0.05 were considered statistically significant. Log Rank test was used to
measure the statistical difference between the high annexin A1 and low annexin A1 groups for
Kaplan-Meier curves. To measure the differences in expression of annexin A1 in breast cancer
patients of different subtypes one-way ANOVA was used.

Results

High levels of annexin A1 mRNA are associated with poor prognosis in
basal-like breast cancer
Our survival analysis of 890 TCGA breast cancer patient samples revealed that amongst the 139
patients with basal-like breast cancer tumors, high annexin A1mRNA expression was associated
with significantly shorter 5-year overall survival than patients with low annexin A1 expressing
basal tumors (Fig 1A). Overall survival was 87% in low annexin A1 expressing patients with
basal tumors at 100 months versus 43% in the high annexin A1 expressing group (p<0.001, Fig
1A). Whereas, in patients with both luminal and Her/neu positive tumors annexin A1 levels did
not show any significant association with survival (Fig 1B & 1C). These data suggest a subtype
specific role to annexin A1, and in particular an oncogenic role of annexin A1 in TNBC.

Basal-like breast cancers express higher levels of annexin A1 protein
than other subtypes
We looked at overall expression levels of annexin A1 protein using a panel of cell lines and
annexin A1 mRNA using TCGA data. Our Western blot analysis of TNBC, ER+ (correspond-
ing to luminal A like in TCGA dataset), and Her2/neu positive breast cancer cell lines revealed
that TNBC cell lines had higher endogenous levels of annexin A1 protein than the non-TNBC
cell lines. All seven TNBC cell lines tested expressed high annexin A1 levels (at least twice the
level in the MCF7 reference cell line), whereas only one of five ER+ (20%), and two of six Her2/
neu+ (33%) breast cancer cell lines had higher expression of annexin A1 relative to reference
MCF7 cell line ((Fig 2A–2D, S1 Fig). Consistent with this laboratory based findings; annexin
A1 mRNA levels were significantly higher in basal-like breast cancer patients (n = 139) than in
samples from patients with luminal (n = 685) or Her2/neu+ positive (n = 66) cancers (TCGA
breast cancer dataset) (Fig 2E). Fig 2E shows the annexin A1 levels that are normalized by
quantile normalization within each breast cancer subtype.

High annexin A1 expression activates breast cancer-relevant pathways
in TNBC cell lines
To investigate the mechanism by which high expression of annexin A1 contributes to poor
TNBC prognosis, we studied endogenous expression of several breast cancer-relevant
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pathways, including the PI3K pathway, since TNBC have high levels of PI3K/AKT pathway ac-
tivity resulting from a number of alterations including PI3KCA mutations and loss of PTEN

Fig 1. High levels of annexin A1 are associated with low overall survival rates in basal-like breast cancer. The Kaplan-Meier curves indicate the
overall survival rates for basal-like (A), luminal (B), and Her2/neu+ (C) cancers. The p values refer to comparisons between patients with annexin A1 levels
above the median (top 50%) and patients with annexin A1 levels below the median (bottom 50%); in the basal group, p = 0.019.

doi:10.1371/journal.pone.0127678.g001
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Fig 2. TNBC cell lines and basal-like breast cancer patients express high annexin A1. (A–C)Western blots showing annexin A1 protein expression
relative to vinculin loading control in TNBC cell lines (A), ER+ cell lines (B), and ER-,Her2/neu+ and ER+, Her2/neu+ cell lines (C). (D) Proportion of cell lines
in which annexin A1 protein was expressed at a level that was at least twice as high as the level in the MCF7 reference (ER+) cells. For this analysis, all the
Her2+ lines (whether ER+/Her2+ or ER-/Her2+) were combined). (E) Box plots showing annexin A1 mRNA levels that are normalized by quantile
normalization within basal, luminal, and HER2/neu+ breast cancers subtype patients. * indicates that basal subtype is statistically different than others at
p<0.001. Cell line based experiments were repeated three times.

doi:10.1371/journal.pone.0127678.g002
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and INPP4B [23]. We found TNBC cell lines expressing higher endogenous levels of annexin
A1 to be associated with overactivation of EGFR, c-Met, and pAKT pathways compared to ex-
pression levels in ER+ breast cancer cell lines (Fig 3A).

Annexin A1 knockdown inhibits mTOR-S6 signaling
To determine whether the observed associations between high annexin A1and high EGFR, c-
met, and pAKT levels in TNBC cells were causal, we generated annexin A1 knock down in the
TNBC lines, MDA-MB-436, and MDA-MB-468. Six different clones with stable knockdown of

Fig 3. Activation status of oncogenic pathways and knockdown of annexin A1 in TNBC cell lines. (A) Western blot showing expression of EGFR, c-
Met, pAKT, annexin A1, and MAPK relative to vinculin (loading control) in TNBC and ER+ cell lines. (B) Western blot showing annexin A1 knockdown in the
MDA-MB-436 and MDA-MB-468 cell lines.—ve, scramble control. Representative figures frommultiple experiments are shown here.

doi:10.1371/journal.pone.0127678.g003
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annexin A1 in MDA-MB-436 cell background were generated initially, along with a scramble
control shRNA-containing cell line under control of a constitutive cytomegalovirus promoter.
Of the six clones tested, three (clones D, E, and F) showed near complete knockdown of
annexin A1, as confirmed by Western blotting and fluorescence imaging in live cell cultures
(the vector used to create the shRNA clones is tagged with green fluorescent protein) (Fig 3B
and S2 Fig). Analyses of these clones revealed that stable annexin A1 knockdown inhibited the
mTOR-S6 pathway (Fig 4) in MDA-MB-436 and MDA-MB-468 cells. Specifically, the average
inhibition in phosphorylation of mTOR across three annexin A1 depleted clones was 35% in
MDA-MB-436 cells and 37% in MDA-MB-468 cells relative to scramble shRNA control
(p<0.01, S3 and S4 Figs). Similarly a significant inhibition in phosphorylation of ribosomal
protein S6 was noted across three annexin A1 knock down clones (53% in MDA-MB-436 and
37% in MDA-MB-468) (p<0.01, Fig 4 and S3 & S4 Figs). Although annexin A1 depletion led
to a significant inhibition in pEGFR levels in MDA-MB-468 cell clones (p<0.01, S4 and S5
Figs) relative to scramble shRNA control, this inhibition could not be tested in MDA-MB-436
cells because of undetectable levels of pEGFR at baseline (data not shown). In addition, annexin
A1 knock-down did not inhibit total levels or phosphorylation of AKT, MAPK, or c-Met (Fig 4
and S3, S4 and S5 Figs) as compared to the scramble shRNA control. Next, we asked if the inhi-
bition in mTOR-S6 signaling caused by annexin A1 knock down is mediated by NF-κB, a path-
way that is known to cross talk with mTOR [24]. By performing electrophoretic mobility shift
assay, we did not find any change in NF-κB activation in nuclear lysates of wild type and
annexin A1 depleted cell clones in either MDA-MB-436, or MDA-MB-468 cells (S6 Fig) indi-
cating that suppression in mTOR-S6 signaling in annexin A1 depleted cells is not mediated by
NF-κB and other mechanisms may be at play.

mTOR pathway suppression by annexin A1 depletion is associated with
the activation of AMPK
Annexin A1 has been reported to be activated under stress conditions [25], and so is AMP- ac-
tivated protein kinase (AMPK). The latter is also known to suppress mTORC1 (a multi-protein
complex consisting of mTOR, raptor and mLST8) activity under stress conditions such as hyp-
oxia or DNA damage and has a role in down regulating protein synthesis and arresting growth
[26]. Thus we tested the possibility that annexin A1 works through a stress pathway, activating
AMPK to suppress downstream pathways such as mTOR. Indeed, the annexin A1 depleted cell
clones showed an increase in phosphorylation of AMPK (Fig 5). Specifically, there was at least
1.8 fold increase (p<0.01) in phosphorylation of AMPKα across all three annexin A1 clones
relative to scramble shRNA control in both MDA-MB-436 and MDA-MB-468 (S3 and S4
Figs) cells.

Annexin A1 knockdown inhibits breast cancer cell migration
To determine whether the inhibition of mTOR-S6 signaling caused by annexin A1 knockdown
has any functional relevance, we investigated the effects of annexin A1 knockdown on cancer
cell migration. A scratch assay showed that migration was impaired in the annexin A1 knock-
down with 2 of the 3 MDA-MB-468 and MDA-MB-436 cell clones having overall migration
distances that were significantly shorter (on average 21% to 63%) than in wild-type cells
(p<0.05; Fig 6). One of the annexin silenced clone (clone E) in both cell lines, did not show a
statistically significant impairment in cell migration but still had a trend towards impaired cell
migration. To further demonstrate that impairment in cell migration exhibited by annexin A1
depleted cells is directly mediated through mTOR, we performed a gain of function experiment
by overexpressing flag tagged full-length mTOR gene (in pcDNA 3 vector backbone) in
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Fig 4. Annexin A1 knockdown blocks mTOR-S6 signaling. (A and B) Western blot showing levels of pAKT, AKT, pmTOR, mTOR, S6, pS6, and annexin
A1 relative to vinculin (loading control) in MDA-MB-436 and MDA-MB-468 parental cells and annexin A1 silenced clones. Representative images from
multiple experiments are shown. Quantitation of these westerns is summarized in S3 & S4 Figs

doi:10.1371/journal.pone.0127678.g004
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annexin A1 depleted cells. mTOR transfected cells showed an increased mTOR protein expres-
sion (S7 Fig) and significantly increased cell migration as compared to vector controls (about
1.8- to 3.9-fold compared to controls, p< 0.001) (Fig 7A & 7B). These results indicate that sup-
pression in mTOR signaling caused by annexin A1 depletion directly impairs cell migration in
TNBC cells.

Fig 5. Annexin A1 knockdown activates AMPK. (A and B) Western blot showing levels of pAMPK, AMPK and annexin A1 relative to vinculin (loading
control) in MDA-MB-436 and MDA-MB-468 parental cells and annexin A1 silenced clones. Representative images frommultiple experiments are shown.
Quantitation of these westerns is summarized in S3 & S4 Figs

doi:10.1371/journal.pone.0127678.g005
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Fig 6. Annexin A1 depletion inhibits cell migration in TNBC cells.Migration was measured by scratch assays of annexin A1 shRNA-transfected
MDA-MB-436 (A) and MDA-MB-468 (B) cells. The mean distances covered in 24hrs (in %, relative to the untreated cells, with standard errors) are shown.
Scramble clone indicates non-silencing shRNA. Experiments were repeated three times.

doi:10.1371/journal.pone.0127678.g006
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Discussion
In this study, we sought to clarify the role of annexin A1 in the biology of breast cancer by ex-
amining its role in basal like subtype. We found that basal like tumors express the highest levels
of annexin A1 and that this high expression of annexin A1 is correlated with poor prognosis.
Using cell line models of annexin A1 depletion, we demonstrated for the first time that annexin
A1 is associated with activation of mTOR-S6 signaling likely to be mediated through AMPK
thus providing a mechanism by which high annexin A1 expression may result in the poorer
survival outcomes of women with basal like breast cancer.

In contrast to our findings, Wang et al reported that annexin A1 appeared to be functioning as
a tumor suppressor with low expression levels corresponding with poorer survival [27]. In a series
of 135 cancer cases, they also found no specific association between ER, PR and Her2/neu expres-
sion and annexin A1 levels. Yom et al reported that although loss of annexin A1 was seen across
the continuum of progression fromDCIS to invasive cancer; amongst invasive cancer cases those
with high expression of annexin A1 had poorer prognosis [17]. Although this was not born out on
multivariate analysis, data from Yom et al would suggest that annexin A1 functions as an oncogene
[17]. In both these series, the number of basal like tumors was limited and thus a robust analysis of
annexin A1 and its association with subtype was not feasible. Our findings that ER+ tumors are
generally low in expression of annexin A1 and that this gene is highly expressed in the basal sub-
type may explain the findings from prior reports. Because ER+ tumors account for the majority of
all breast cancer cases, a review of breast cancer without consideration to subtype would support
the view that annexin A1 levels in general are low in breast cancer, suggesting a role as a tumor
suppressor. However, when viewed through the lens of tumor subtype, the full relevance and im-
pact of annexin A1 becomes clear. Our data suggests that annexin A1 functions as an oncogene in
TNBC subtype. In the other subtypes of breast cancer annexin A1 did not seem to play a role, as it
did not predict prognosis in patients with ER+ and Her2/neu positive tumors in TCGA breast can-
cer samples. These findings are in concordance with those reported by de Graauw et al [28], who
showed that taking into account annexin A1 levels can help physicians to accurately diagnose
basal-like breast cancers in patients, the authors also found annexin A1 to promote metastasis in
mice. Building on the link between annexin A1 and basal-like breast cancers that was described by
de Graauw et al, we have demonstrated that high expression of annexin A1 has functional implica-
tions and is associated with shorter survival in basal-like breast cancer patients.

Our findings also provide the first evidence for the role of annexin A1 in regulation of
mTOR-S6 signaling. The mTOR pathway and its downstream effectors ribosomal protein S6
kinase (S6K), and S6 are known to play a role in development and cancer by regulating transla-
tion of mRNA transcripts containing oligopyrimidine tract in their 5’ untranslated regions
[29–31]. Phosphorylated S6 (pS6) is also reported to be over activated in several cancers and as-
sociated with cancer progression [32]. In addition, pS6 has been reported to be a marker of the
mTOR activity, and predictive of early clinical response to targeted mTOR therapy [33, 34]. Al-
though, mTOR has been previously reported to mediate growth factor induced cell migration
in a wide variety of cell lines [35–39], our study has further added that mTOR signaling is regu-
lated by annexin A1 leading to alterations in cell migration in TNBC cells. Previously,
mTORC1, a complex containing mTOR itself, has been reported to regulate cell migration via
S6K1 or 4E-BP1 pathways [36]. S6K pathway in turn is reported to cause alterations in F-actin

Fig 7. Ectopic expression of mTOR reverses impaired cell migration in annexin A1 deficient TNBC cells.Migration was measured by scratch assays
of annexin A1 shRNA-transfected with vector control plasmid or with a pcDNA3-mTOR plasmid in MDA-MB-436 (A) and MDA-MB-468 (B) cell background.
The mean distances covered in 25hrs (in %, as compared to the vector control treated cells, with standard errors) by the cells are shown. * indicates p<0.001
of mTOR transfected cell clones in comparison to vector control cells. Experiments were repeated three times.

doi:10.1371/journal.pone.0127678.g007
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reorganization, focal adhesion formation, tissue remodeling through the proteolytical digestion
of extracellular matrix via up-regulation of MMP-9 [39–41]. In contrast, the effects of 4E-BP1
on cell migration are reported to be mediated through changes in mRNA translation and pro-
tein synthesis of a wide array of targets, including cyclinD1 and MMP-9 [42]. Thus, S6K1 and
4E-BP1 (two downstream effectors of mTOR pathway) seem to regulate multiple processes
and targets including regulating the expression and activity of MMP-9 during migration.
Using MDA-MB-231, a TNBC cell line, Kang et al [43] have previously shown annexin A1 to
regulate MMP9 expression at both RNA and protein level. In our efforts to determine the in-
volvement of MMP9 in cell migration in the present study, we observed a decrease in MMP9
mRNA levels in annexin A1 depleted clones (S8 Fig), but the alterations in MMP9 protein lev-
els and activity could not be confirmed by immunofluorescence or zymography as the endoge-
nous levels of MMP9 in MDA-MB-436 and MDA-MB-468 cells were barely detectable and
seem to be below the detection limit of the western blotting and zymography (Data not
shown). Therefore, we speculate that the impairment in cell migration caused by decreased
mTOR-S6 signaling in our annexin A1 depleted TNBC cells could be mediated through other
mechanisms as detailed above. In concordance with our studies, previously, Bist et al [44] have
also reported ectopic expression of annexin A1 to increase cell migratory properties of TNBC
cells albeit through a NF-κB dependent mechanism that we did not find to be implicated in
our study (S6 Fig). Very elegantly, Bist et al further demonstrated annexin A1 deficiency to re-
duce metastasis and improve survival in mice models, which is in support of our findings that
higher annexin A1 correlates with poor overall survival in basal like breast cancer patients [44].

Annexin A1, a protein that is mainly expressed on the cytosolic side of the plasma mem-
brane, endosomal and phagosomal membranes[45–47], is likely to regulate mTOR (that is
known to be present in both cytoplasmic or nuclear locations as a part of mTORC1 complex,
[48]) through AMPK. Annexin A1 has been known as a stress sensor and upon oxidative stress
has been reported to translocate to the nucleus[25]. AMPK is also known as a stress induced
protein and is known to feed into the mTOR pathway [49, 50]. Indeed we found AMPK to be
activated through phosphorylation in our annexin depleted TNBC cells. If annexin A1 directly
interacts with AMPK to regulate mTOR signaling or it does indirectly is still unknown, one
possibility is through activation of pATM that is known to be activated upon stress and is also
known to activate AMPK[51]. And since annexin A1 is also known to play anti-inflammatory
roles[52], its depletion in TNBC cells could lead to more stress that could trigger the activation
of pATM, pAMPK and mTOR suppression. High annexin A1, low stress, and high mTOR-S6
signaling might seem contradictory in TNBC but there are several molecules that play distinc-
tive roles in different stages of development and cancer and it is the overall effect of these alter-
ations that determines the outcome of the process. This annexin-AMPK-mTOR-cell migration
axis that we have described in here potentially explains the association between high annexin
A1 levels and poor breast cancer prognosis in basal like breast cancer.

Conclusions
Our data suggest that basal like tumors express high levels of annexin A1, which is associated
with poor prognosis. However, the role of annexin A1 in the other subtypes of breast cancer is
not as clear. Our Annexin A1 depletion in TNBC cell lines further suggests its tumorigenic role
by promoting tumor cell migration through increased mTOR signaling.

Supporting Information
S1 Fig. Normalization with 2 different loading control proteins (vinculin and β-actin)
show TNBC cell lines to express high annexin A1. (A–C) Western blots showing annexin A1
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expression levels relative to vinculin or β-actin (loading control) in TNBC cell lines (A), ER+

cell lines (B), and ER-,Her2/neu+ and ER+, Her2/neu+ cell lines (C).
(TIFF)

S2 Fig. Knockdown of annexin A1 in TNBC cell lines. Immuno fluorescence detection of
annexin A1 shRNAs (clones D, E, and F, tagged with green fluorescent protein) and scramble
control shRNA in MDA-MB-436 cells.
(TIFF)

S3 Fig. Effect of annexin A1 knockdown on oncogenic pathways in MDA-MB-436. (A, B,
C) Bar graphs showing the ratios of indicated phopsho protein to the total protein. Each pro-
tein was normalized first with its respective vinculin loading control and then to its scramble
(negative) control [(protein of interest in annexin A1 clone/vinculin)/(protein of interest in
negative clone/vinculin)]. A ratio was then taken of the normalized phoshoprotein to the nor-
malized total protein. The bar length represents average values from 3 individual annexin A1
clones and 2 separate membranes. The error bars show SEM, and � indicates p<0.01.
(TIFF)

S4 Fig. Effect of annexin A1 knockdown on oncogenic pathways in MDA-MB-468. (A, B,
C) Bar graphs showing the ratios of indicated phopsho protein to the total protein. Each pro-
tein was normalized first with its respective vinculin loading control and then to its scramble
(negative) control [(protein of interest in annexin A1 clone/vinculin)/(protein of interest in
negative clone/vinculin)]. A ratio was then taken of the normalized phoshoprotein to the nor-
malized total protein. The bar length represents average values from 3 individual annexin A1
clones and 2 separate membranes. The error bars show SEM, and � indicates p<0.01.
(TIFF)

S5 Fig. Effect of annexin A1 knockdown on oncogenic pathways. (A and B) Western blot
showing levels of pEGFR, pMAPK, p c-met, EGFR, MAPK, and c-met relative to vinculin
(loading control) in MDA-MB-436 and MDA-MB-468 parental cells and annexin A1 silenced
clones. Representative images from multiple experiments are shown.
(TIFF)

S6 Fig. Annexin A1 depletion does not affect constitutively active NF-κB in TNBC cells.
NF-κB binding was measured by performing EMSA of wild type and annexin A1 shRNA-
transfected MDA-MB-436 and MDA-MB-468 nuclear proteins. The NF-κB binding, non-spe-
cific binding and free probes are shown. Scramble clone indicates non-silencing shRNA. The
results shown are representative of 3 independent experiments.
(TIFF)

S7 Fig. mTOR overexpression in annexin A1 depleted cells.Western blot showing overex-
pression of flag tagged mTOR, and loading control vinculin in clone D, E, and F of MDA-MB-
436 cells.
(TIFF)

S8 Fig. Annexin A1 knock down inhibits MMP9 expression.mRNA levels of MMP9 mea-
sured by QPCR in wild type and annexin A1 depleted clones of MDA-MB436 and MDA-MB-
468 cells. All annexin A1 depleted clones were significantly different (p<0.05) relative to un-
treated/ parental cells. Experiments were repeated three times.
(TIFF)
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