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ABSTRACT

Sequence similarity search is a fundamental way of
analyzing nucleotide sequences. Despite decades
of research, this is not a solved problem because
there exist many similarities that are not found by
current methods. Search methods are typically
based on a seed-and-extend approach, which has
many variants (e.g. spaced seeds, transition seeds),
and it remains unclear how to optimize this
approach. This study designs and tests seeding
methods for inter-mammal and inter-insect
genome comparison. By considering substitution
patterns of real genomes, we design sets of
multiple complementary transition seeds, which
have better performance (sensitivity per run time)
than previous seeding strategies. Often the best
seed patterns have more transition positions than
those used previously. We also point out that
recent computer memory sizes (e.g. 60 GB) make it
feasible to use multiple (e.g. eight) seeds for whole
mammal genomes. Interestingly, the most sensitive
settings achieve diminishing returns for human–dog
and melanogaster–pseudoobscura comparisons,
but not for human–mouse, which suggests that
we still miss many human–mouse alignments. Our
optimized heuristics find �20 000 new human–
mouse alignments that are missing from the
standard UCSC alignments. We tabulate seed
patterns and parameters that work well so they
can be used in future research.

INTRODUCTION

Genome comparison is not solved

Genome alignments have been used for many years to
study DNA evolution, and identify functional elements,
positive selection, etc. So it may come as a surprise that
genome alignment is not a solved problem. For example,

there are thousands of human–mouse alignments that
are missing from the standard UCSC alignments, one of
which is shown in Figure 1. This alignment is highly sig-
nificant (score=5852, E-value=5� 10�6), and does not
contain repetitive sequence, so is likely a true homology.
Moreover, it is colinear with other alignments and is ap-
parently a reciprocal best hit between the genomes, so is
likely a one-to-one orthology. The human sequence
contains a protein-coding exon of tetraspanin 19
(TSPAN19), and the alignment reveals its evolutionary
fate in mouse: the frameshifting insertions/deletions
suggest it has decayed into a pseudogene. Thus, each
alignment tells an evolutionary story, and we would like
to find them all.

Aim of this study

The aim is to optimize search for distantly related nucleo-
tide sequences, between large data sets (e.g. genomes).
This is useful not only for genome comparison. Another
application is analyzing DNA reads from a species
without a reference genome, by aligning them to a
genome of a different species. Yet another is alignment
of metagenomic DNA reads to a set of microbial
genomes. On the other hand, our results will not be
relevant for finding close similarities, such as aligning
human DNA reads to a human genome. We also do not
focus specifically on protein-coding DNA, which other
complementary studies have done (1,2).
We should also mention that there is more to genome

alignment than similarity search: in particular, removal of
paralogs. This study just optimizes the similarity search
component.

Scores and seeds

The standard approach to sequence similarity search has
two steps:

(1) Define an alignment scoring scheme.
(2) Search for alignments with optimal scores.

Both are important, but this study considers only
step 2. There are dynamic programming algorithms that
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guarantee to find alignments with optimal scores, but un-
fortunately they are too slow for large genomes, and so
heuristic algorithms are used instead. The standard heur-
istic approach is ‘seed-and-extend’: this first finds ‘seeds’
(i.e. short matches that can be found quickly), and then
looks for high-scoring alignments around each seed (3,4).

Spaced seeds

The simplest kind of seed is an exact match of a given
length, e.g. 11 bases. A ‘spaced seed’, on the other hand,
is a match within which certain positions are allowed to
mismatch. As an example, here is a spaced seed pattern
of length 8 and ‘weight’ 6: 11101011. This means that
we seek matches of length 8, but the fourth and sixth
positions are allowed to mismatch.
It is not obvious that spaced seeds have any advantage

over same-weight unspaced seeds, but it turns out that
they can have higher sensitivity (1,5–7). The reason is
subtle, but roughly speaking it is because overlapping
seed hits are more independent.

Transition-constrained seeds

Transitions (a$g or c$t) are often more common than
transversions (all other substitutions). This motivates
‘transition-constrained seeds’ (8), which are represented
by patterns like this: 11T0TT010T. Positions with T
tolerate transitions but not transversions.

Adaptive seeds

‘Adaptive seeds’ do not have a fixed length: instead, they
have a rareness threshold (9). Specifically, starting from
each position in the ‘query’ sequence, they are minimum-
length matches that occur at most m times in the ‘refer-
ence’ sequence(s).
Adaptive seeds are advantageous because genomes are

rife with nonuniform composition. They avoid getting a
huge number of seeds in repetitive sequence, and they
adapt to the information content (i.e. rareness) of the
sequence.
Adaptive seeds can be combined with spaced and tran-

sition-constrained seeds, as follows. First, we (conceptu-
ally) extend the seed pattern to infinite length by cyclic
repetition (e.g. 110T ! 110T110T110T . . .). Then, we
find minimum-length matches that occur at most m times,
using prefixes of the pattern.

Sparse seeds

‘Sparse seeds’ are a simple idea: instead of looking for seed
hits starting at every position, we look for hits starting at

(e.g.) every second position, or every third position (in
either the query or the reference).

Sparse seeding affects speed, sensitivity and memory
usage. Aligners typically use a memory-consuming index
of the reference: sparse seeding in the reference reduces
this memory usage. With fixed-length seeds, sparse
seeding in either query or reference reduces the number
of seed hits, decreasing both sensitivity and run time. With
adaptive seeds, sparse seeding in the query similarly
reduces the number of seed hits, but sparse seeding in
the reference does not necessarily do so, because it
makes seeds rarer. In all cases, it is not obvious whether
the sensitivity will decrease for a given run time.

Sparse seeds have long been used to reduce memory
consumption and/or run time (10,11), but no one seems
to have investigated whether they increase sensitivity for a
given run time. This seems conceivable because, like
spaced seeds, overlapping hits are more independent of
each other.

Extension and score drop

For each seed, aligners such as BLAST and LAST first
extend a gapless alignment, and only if the alignment score
achieves a threshold d do they proceed to the much slower
gapped alignment (4,9,12). The gapless extension termin-
ates when the score drops more than y below its
maximum. The value of y is potentially important: lower
values make the algorithm faster but less sensitive.

Seed design

Spaced and transition-constrained seeds come with
the problem of designing an effective seed pattern. The
standard approach is to specify an alignment ‘model’,
and then design a pattern with high sensitivity for that
model. An example of a model is gapless align-
ments of length 64 where each position is a match with
probability 0.7, a transition with probability 0.15 or a
transversion with probability 0.15. This approach has
several limitations:

. For transition-constrained (and/or multiple) seeds, it is
often infeasible to find in reasonable time a guaranteed
optimum pattern for a given model (13). Hence we
resort to heuristic optimization.

. It is unclear how relevant such a model is to real align-
ments (particularly the length).

. All existing design methods are for fixed-length seeds,
whereas we wish to use adaptive seeds.

. Good patterns for sparse seeds are likely different
from good patterns for dense seeds, but this has not

ATGAAATTTTCATTTTTAATACAATTTTCTACAGGTTCAGCAACTATGGCATGACAAAATTGATTTTGTCATTTCTGAGTA
||| | |||||||||| ||  |||| ||  |||||||     ||   ||  |||  ||  |||  |  |||||||  |   
ATGGAGTTTTCATTTTCAAGGCAATATTA-ACAGGTTGCCTGACG--GGTGTGATCAATCTGACCTAATCATTTCCAA---

TGGATCTAAAGATAAG--CCTGAAGATATAACCAAGTGGACTATTCTGAATGCCTTACAGAAAACAGTAAGATGAAATTA
|||  |||| |||||   ||  |||||| |  ||||| |   ||||||||| |||| || | ||||||||||||||||||
TGGCACTAAGGATAAAGCCCCAAAGATACATTCAAGTTGGAGATTCTGAATACCTTGCAAAGAACAGTAAGATGAAATTA

Figure 1. Example of a human–mouse alignment missing in the UCSC genome database. The upper sequence is from human chromosome 12, and
the lower from mouse chromosome 10. The shading indicates a protein-coding exon of TSPAN19.
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been investigated before. Fortunately, the design
software Iedera (14) has options for sparse seeds.

Because of these issues, after designing seeds, we per-
form brute-force tests of their effectiveness with real
sequences.

MATERIALS AND METHODS

Seed design

We designed 48 single transition seed patterns
(Supplementary Tables S1, S5, S6), using Iedera version
1.05 with these options:

-A 3 -B 3 -b 0.5,0.25,0.25 -r 100000 -k
-BSymbols’0T1’
-f $f -c $c -l $l -w $w,$w -s $w,$w2

-A and -B give the size of the alignment alphabet and
the seed alphabet, respectively. Combined with
-BSymbols’0T1’, it means that seed symbol 0 (called
‘don’t care’) detects any alignment letter, whereas T
accepts only transition and match letters, and 1 only
accepts match letters.
-b and -f set the background and foreground

probabilities of the alignment letters (transversion, transi-
tion, match). -r is the number of seed random trials, which
are optimized by a hill-climbing heuritic (-k). Seeds
are designed with fixed weight (number of 1 s plus half
the number of Ts), and span (-s) ranging from $w to
$w2=$w�2.

Based on real data (see below), we set $f to either
0.12,0.18,0.7 or 0.15,0.15,0.7. $c sets the sparsity: we
used f1, 2, 3g. $l sets the length of gapless alignment for
which the pattern is optimized: we used f40, 64g. $w sets
the weight: we used f9, 10, 11, 12g.

We also made 48 sets of multiple codesigned seed
patterns (Supplementary Tables S2, S3, S4), using the
same options as above, except that we omitted -c $c,
and added -n $n. $n sets the number of patterns: we
used f2, 4, 8g.

Genome data

We used the following genomes from UCSC (with repeti-
tive regions indicated by lowercase): human (hg19), mouse
(mm10), dog (canFam3), chicken (galGal3), Drosophila
melanogaster (dm3) and Drosophila pseudoobscura
(dp4) (15).

Test procedure

Our test procedure is to take 10 000 random 1kb chunks
from one genome, and align them to another genome.
These alignments are repeated using many different algo-
rithm parameters, but a fixed scoring scheme. For each
chunk, we record the highest alignment score ever seen.
Then, for each alignment procedure, we count the number
of chunks for which it failed to find the highest score.

Because these genomes contain large runs of NNN . . . ,
we required the random chunks to have no non-ACGT
uppercase letters. Then, before aligning, we replaced each

lowercase letter (in both the chunks and the target
genome) with N.
The test data sets, and detailed results, are available at:

http://last.cbrc.jp/dna-seed-test/.

Alignment scoring schemes

To check the generality of our results, we used two scoring
schemes.

. LAST’s default scheme: match/mismatch=+1/�1,
gap exist/extend=�7/�1. In this case we used
minimum alignment score=35. An N aligned to
anything gets a score of �1.

. LASTZ’s default scheme: HoxD70 matrix (16), gap
exist/extend=�400/�30. In this case we used
minimum alignment score=4000. An N aligned to
anything gets a score of �100.

E-values

We calculated E-values of alignment scores (Table 1) using
ALP 1.91 (17). The E-value of score S is the expected
number of alignments with score � S between two
random sequences. Here, the length and base composition
of one random sequence equals all ACGT letters (both
upper- and lowercase) in one whole genome. We
multiplied the E-values by 2, to reflect comparison of
both DNA strands.
It is not clear what E-value threshold should be used for

genome comparison. An E-value of (e.g.) 400 may seem
high, but genome comparison typically produces � 400
alignments, which means that only a small fraction of
them are expected to be spurious. The UCSC genome
alignments often have even higher E-values (18). In any
case, the thresholds in our tests are not wildly
unreasonable.

LAST alignments

Most of the alignments were performed with LAST
version 320. We tried all combinations of these LAST
parameters:

. m (rareness threshold)=10, 100, 1000. This varies
sensitivity and run time because larger values of m
get shorter and more frequent seeds, which is more
sensitive but slower.

. y (gapless score drop)= ‘high’ or ‘low’ (see the
figures).

. One hundred thirteen seed patterns:

– Ninety-six patterns designed with Iedera.
– Nine pairs of patterns suggested in the YASS
README file (Supplementary Table S7).

– Six single patterns from previous studies
(Supplementary Table S8).

– The trivial exact-match pattern: 111 . . .
– The all-transition pattern: TTT . . .

Some of the Iedera patterns are designed for sparse
seeding: in these cases, we used either sparse genome
indexing (w) or sparse seeding in the query (k).
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Because LAST cyclically extends the seed patterns,
we first trimmed each pattern to its shortest prefix
that recovers the original pattern on cyclic extension
(Supplementary Tables S9–S16).

LASTZ alignments

We also performed alignments with LASTZ version
1.03.42, compiled with allowBackToBackGaps=ON,
which permits adjacent insertions and deletions (19).
First we tried these options:

lastz_32 $genome[multiple] $queries
--gappedthresh=4000 --ydrop=3999
--format=maf-

Here, ydrop is the maximum score drop for gapped exten-
sion: we set it to LAST’s default value.
Then we tried varying the d parameter, by adding

–hspthresh=$d: we used f2000,1900,1800,1700,1600g.
Finally, we tried using some Iedera-designed seeds, by

adding –seed=$seed –notransition.

Whole human–mouse genome comparison

We compared the lowercase-repeat-masked genomes.
From human, we first discarded alternate haplotypes,
and hard-masked (replaced with N) the pseudoautosomal
regions of the Y chromosome (because they are identical
copies of the X chromosome). We additionally lowercase-
masked simple/tandem repeats with tantan v13, to reliably
avoid nonhomologous alignments (20). We then found
alignments using LAST with the LASTZ scoring
scheme, y=962 (the default), a set of eight seeds (the
second-last in Supplementary Table S12), and m=100.
Finally, we kept alignments with score � 4500 (E-value
1.6), which are likely almost all true homologs, though
not necessarily orthologs.

RESULTS

Real transition and transversion rates

Effective seed patterns depend on the rates of transitions
and transversions. We therefore counted transitions and
transversions in a selection of ‘net’ genome alignments
from UCSC (Table 2) (15). We should bear in mind that
these alignments may not be perfect and unbiased.
All cases show excess transitions:transversions,

compared with the unbiased ratio of 1:2 (because there
are twice as many possible transversions as transitions).
Mammals have a greater excess than Drosophila, presum-
ably because they have more methylcytosine, which

mutates rapidly to thymine (21). Less-similar genomes
have a lower excess of transitions: this is as expected
because the transitions cannot keep increasing linearly
but instead tend to an asymptote.

Seed design

Based on the results above, we used Iedera to design
transition-constrained seeds for an alignment model with
identities:transitions:transversions=either 70:18:12 or
70:15:15 (Supplementary Tables S1–S6).

Interestingly, the resulting seed patterns have more Ts
than those used previously (22,23). It seems that seeds
were previously designed with a fixed, low number of Ts,
perhaps because that simplifies their design.

Tests of alignment heuristics

Our first test was to align 10 000 random 1-kb chunks of
the human genome against the dog genome. The results
are shown in Figure 2, where each point is one alignment
procedure, and the nine panels are identical, apart from
the color scheme, which picks out various algorithm
parameters.

Firstly, we examine the effect of the rareness threshold.
As expected, higher values make the alignment more sen-
sitive but slower (Figure 2A).

Secondly, we focus on the nonsparse Iedera seeds. As
expected, using more codesigned seed patterns makes the
alignment more sensitive but slower (Figure 2B). The
interesting point, though, is that using more seeds beats
increasing the rareness threshold. For example, using four
seeds with m ¼ 10 is both faster and more sensitive than
one seed with m ¼ 100. The downside is that more seeds
require more memory (Table 3).

Thirdly, we compare seed patterns designed for differ-
ent transition:transversion ratios. The 3:2 seeds perform
better than the 1:1 seeds (Figure 2C), which is not
surprising, as the actual ratio is �3:2 (Table 2).
However, this difference decreases when we use more
patterns or less-rare seeds: we do not know why.

Next we examine the effect of the gapless score drop
limit (y). As expected, the higher value makes the align-
ment slower and more sensitive (Figure 2D). The differ-
ence is not great, however, and there seems little reason to
favor either of the tested values.

Subsequently, we check the performance of previously
suggested seed patterns. Surprisingly, we could find no pre-
vious publication that describes a set of codesigned
transition seeds. However, the YASS documentation pro-
vides several pairs of codesigned seeds (Supplementary
Table S7): these perform slightly worse than our Iedera

Table 2. Transition and transversion rates for some UCSC ‘net’

genome alignments

Genomes Identities
(%)

Transitions
(%)

Transversions
(%)

Human/dog 76 15 9
Human/mouse 69 18 13
Human/chicken 67 17 16
Melanogaster/pseudoobscura 71 14 15

Table 1. Alignment E-values

Genomes Scoring Score E-value

Human/dog LASTZ 4000 150
Human/mouse LASTZ 4000 120
dm3/dp4 LASTZ 4000 0.24
Human/dog LAST 35 400
Human/mouse LAST 35 370
dm3/dp4 LAST 35 0.66
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n ¼ 2 patterns (Figure 2E), presumably because they have
too few Ts.

The previous single-seed patterns also perform worse
than our Iedera n ¼ 1 patterns (Figure 2F). Exact-match
seeds are significantly worse than anything else, which is
not surprising. All-transition seeds are slightly better, but
still not competitive. The patterns suggested by Yang and
Zhang perform well, presumably because they have more

Ts than other previously suggested patterns, but our
Iedera 3:2 patterns are better.
Next, we examine the effect of sparse seeding. With

exact-match seeds, the sensitivity per run time becomes
neither better nor worse overall (Figure 2G). To be com-
petitive, we need to use transition seeds designed for
sparsity. Sparse transition seeds, however, perform signifi-
cantly worse than nonsparse seeds (Figure 2H).
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Figure 2. Sensitivity versus speed for aligning human queries to the dog genome with the LASTZ scoring scheme. Each point represents one
alignment method. Each panel shows the same points, but highlights a different selection of them, according to: rareness threshold m (A),
number of seeds n (B), transition: transversion ratio (C), extension threshold y (D), predefined seeds (E and F), sparse seeding (G and H), and
software implementation choices (I) (see text). Points that are not highlighted are gray. Each point’s X coordinate indicates the time to align all
10 000 queries, and the Y coordinate indicates the error rate, i.e. the number of queries with suboptimal alignment score. Better performance is
toward the lower-left.

PAGE 5 OF 8 Nucleic Acids Research, 2014, Vol. 42, No. 7 e59

quite 
-
In order 
-


Comparison with LASTZ

A previous study found that the seeding strategy of
LASTZ (and its predecessor BLASTZ) is especially effect-
ive (22). LASTZ uses this fixed-length spaced seed:
1110100110010101111, and it allows any one match
position to be a transition instead. Because LASTZ is also
the engine behind the UCSC genome alignments, we ran it
through our test.
With default algorithmic parameters, LASTZ per-

formed poorly, with high run time but low sensitivity
(Figure 2I). However, its performance was greatly
improved by simply reducing d (the score threshold for
the gapless alignment phase) from 3000 to 2000. Still, it
is not as good as LAST with multiple seeds: for example,
using eight seed patterns with m=100, we can get better
sensitivity with less than half the run time.
Because d has such a large effect, we should de-

scribe its setting for LAST. By default, LAST uses
d ¼ t ln½ð1000rÞ=ðmnÞ�, where m is the rareness threshold,
n is the number of seed patterns, r is the number of
unmasked bases in the target genome and t (a.k.a. 1=�)
is the scale factor of the score matrix (24). This crudely
attempts to make the number of alignments passed to the
gapped alignment phase be proportional to the running
time of the gapless phase. In our test, r=1363 595 724
and t=96.1735, so that d ranges between 2466 and 1823.
Because LASTZ and LAST are independent implemen-

tations with presumably many small differences, it is hard
to interpret the different results. As a further comparison,
we ran LASTZ with the four weight-11 Iedera seeds
(Supplementary Table S1), and d=2000. This performed
slightly worse than LAST with the same four patterns
(Figure 2I), perhaps because LAST uses adaptive seeds.

Generality of the results

To check the generality of the above results, we re-
peated the test using the LAST scoring scheme instead
of the LASTZ scheme. The conclusions remain similar
(Figure 3), but there are two slight differences. Firstly,
the advantage of the 3:2 over the 1:1 patterns is reduced
(presumably because the LAST scheme scores transitions
the same as transversions), but not eliminated (presum-
ably because there are actually more transitions than
transversions). Secondly, it is easier to find these align-
ments: the optimal alignment scores are missed less
often, and the slowest methods give hardly any improve-
ment (i.e. diminishing returns).
We then tried aligning the same human queries to

mouse instead of dog (Supplementary Figures S1, S2).
The conclusions remain similar. Interestingly, there is no
clear sign of diminishing returns with the LASTZ scheme,

which suggests that even our most sensitive methods miss
many optimal alignments.

We also tried aligning 10 000 random 1-kb chunks of the
melanogaster genome to the pseudoobscura genome
(Supplementary Figures S3, S4). In this case, the 1:1 seeds
perform better than the 3:2 seeds, as expected. In addition,
the seed patterns from YASS are much more competitive
because they are suited to the lower transition:transversion
ratio. Finally, the exact and all-transition seeds exchange
places for worst and second-worst.

Human–mouse genome comparison

To see how much difference our optimized heuristics make
in practice, we compared the whole human and mouse
genomes (see ‘Materials and Methods’ section). The re-
sulting alignments include 27 013 whose human sequence
has zero overlap with the UCSC human–mouse align-
ments. This number is a bit misleading because it
includes alignments of the same human region to different
parts of mouse. If we then merge alignments whose human
regions overlap, we end up with 19 019 human segments
that are unaligned in UCSC. Some of our new alignments
may be paralogs, which are typically not wanted, but
because these human regions are otherwise unaligned, it
is plausible that many of them are orthologs.

DISCUSSION

This study’s contributions are practical rather than theor-
etical. Although we mainly just tested known techniques
in a systematic way, we were able to significantly improve
large-scale DNA similarity search. The main reason seems
to be that previous studies did not thoroughly explore
transition seeds. In fact, there are rather few publications
on transition seeds, despite their obvious advantage for
DNA comparison, and even fewer that consider multiple
transition seeds. All these previous studies seem to have
considered only seeds with a fixed, low number of transi-
tion positions, whereas we show that it is often best to use
many transition positions.

One potential shortcoming is that we, of necessity, used
Iedera in a heuristic mode that does not guarantee to
find optimal seeds for the specified model. The resulting
patterns are empirically effective, but we do not know
how much more effective they might be with better
design, especially for multiple seeds.

It seems best to use as many codesigned patterns as
possible, but pushing this further has several difficulties.
More patterns need more memory, but terabyte memories
exist nowadays, which would allow >100 simultaneous
patterns. Perhaps a bigger problem is the difficulty of
codesigning so many patterns. Iedera has options to
trade run time against how thoroughly it explores the
space of patterns, but it is unclear how many patterns it
can codesign reasonably well in a feasible time. Finally,
our alignment test results exclude the run time needed to
preprocess the target genome, which increases linearly
with the number of patterns.

We obtained some informative negative results: sparse
seeding does not improve performance, and varying the

Table 3. Memory usage for alignment to the dog genome

Seeds Memory (GB)

1 8
2 14
4 25
8 48
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gapless score drop threshold (y) has little effect. On the
other hand, the gapless score threshold (d) is surprisingly
important: insertions and deletions are frequent enough
that there is often no high-scoring gapless alignment.

An intriguing idea is to use multiple codesigned sparse
seeds. For example, we might use two seed patterns at
odd-numbered genome positions, and another two at
even-numbered positions. This would use the same
memory as two nonsparse seeds, but it might improve
alignment. (It cannot be any worse because it includes

two nonsparse seeds as a special case.) However, some
preliminary Iedera results (not shown) suggest that (in
the case of spaced seeds) the sensitivity gain obtained is
small for this computationally intensive design problem.
Memory can still be a problem (because not everyone

has terabyte memories yet, and we may wish to search
huge DNA databases), so low-memory indexes (e.g. com-
pressed suffix arrays) are of interest. There has been
much research into such indexes (25), but unfortunately
little that relates to spaced or transition seeds (9).
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Figure 3. Sensitivity versus speed for aligning human queries to the dog genome with the LAST scoring scheme. Each point represents one com-
bination of algorithmic parameters. Each panel shows the same points, but highlights a different selection of them, according to: rareness threshold
m (A), number of seeds n (B), transition: transversion ratio (C), extension threshold y (D), predefined seeds (E and F), and sparse seeding (G and H).
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An interesting possibility is that it might be easier to
compress a multiple-seed index than a single-seed index.
Another interesting idea for saving memory is ‘neighbor
seeds’ (26,27).
Our results also suggest that comparing distant

genomes is a hard and unsolved problem. In particular,
the human–mouse alignments with the LASTZ scoring
scheme (Supplementary Figure S1) do not seem to
approach perfect sensitivity even at the longest run
times. On the other hand, the easier human–dog and
melanogaster–pseudoobscura alignments do seem to
approach perfection (though we cannot be certain
because we do not know the guaranteed-maximum align-
ment scores). The longest run times in these tests extrapo-
late to �12 days for aligning two mammal genomes (if the
query chromosomes are aligned in parallel).
We did not consider ‘interpolation’, which is an option

in LASTZ to look harder for alignments between previ-
ously found alignments. This boosts sensitivity because
genomic similarities are often colinear (12). However,
some similarities are noncolinear (often the most interest-
ing ones); for many genomes we have only incomplete
‘draft’ sequences with poor contiguity, and in any case
interpolation is orthogonal to optimized seeding, so their
benefits can be combined.
We hope these results will help to elucidate the evolu-

tionary story of DNA sequences, and also spur other
researchers to further improve DNA similarity search,
which is still not fully solved.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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