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Paternal high fat diet (HFD) consumption triggers unique gene signatures, consistent with premature aging and
chronic degenerative disorders, in both white adipose tissue (RpWAT) and pancreatic islets of daughters. In ad-
dition to published data in Nature, 2010, 467, 963–966 (GSE: 19877, islet) and FASEB J 2014, 28, 1830–1841
(GSE: 33551, RpWAT), we describe here additional details on systems-based approaches and analysis to develop
our observations. Our data provides a resource for exploring the complex molecular mechanisms that underlie
intergenerational transmission of obesity.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Specifications
Organism/cell
line/tissue
Sprague–Dawley rat
Sex
 Female

Sequencer or array
type
Affymetrix Rat GeneChip Gene 1.0 ST arrays (Affymetrix)
Data format
 Quantile Normalized Log2

Experimental factors
 Islet and white adipose tissue (RpWAT) harvested from F1

daughters from F0 fathers fed on high fat diet (HFD) vs F1
daughters from F0 fathers fed on normal diet
Experimental features
 Genome-wide expression analysis comparing islet and
RpWAT in F1 daughters from F0 fathers fed on either HFD
or normal diet.
Consent
 N/A

Sample source
location
Sydney, Australia
Direct link to deposited data

Effects of dietary obesity in fathers on gene expression of white adi-
pose tissue in the female offspring, http://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE33551.

Effects of dietary obesity in fathers on gene expression of islets in
the female offspring, http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE19877.
. This is an open access article under
Experimental design, materials and methods

Male Sprague–Dawley ratswere fed high fat diet (HFD) for 11 weeks
prior to mating with females consuming control diet [1]. Females con-
sumed regular chow prior to mating and throughout gestation and lac-
tation. Offspring were weaned at 21 days onto control diet, and were
killed at 14 weeks of age after an overnight fast. Here female offspring
from 7 controls and 6 HFD fathers are included; one animal per litter
was used in the analysis. This protocol was approved by the Animal
Care and Ethics Committee, University of New South Wales, Australia.

The offspring of obese fathers showed impaired glucose tolerance at
both 6 and 12 weeks of age, and reduced total islet area as a result of
lost of large-sized islets. Isletswere isolated and retroperitonealwhite ad-
ipose tissue (RpWAT) dissected at 14 weeks of age; total mRNA was
extracted using a miRNeasy Mini kit (Qiagen) according to the manufac-
turer's protocol. RNA concentration andpuritywere assessed spectropho-
tometrically (Shimadzu BioSpec-nano; Kyoto, Japan) and RNAwith a RIN
(RNA integrity number) (Agilent) N7.5 were selected for transcriptomics
using Affymetrix Rat GeneChip® Gene 1.0 ST arrays (Affymetrix).

Microarray study design

Islet and RpWAT tissues

100 ng of total RNA from islet was labeled and hybridized onto
Affymetrix Rat GeneChip® Gene 1.0 ST arrays (Affymetrix; n = 7
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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(control) and n=6 (HFD)) according to themanufacturer's instructions
(Ramaciotti Centre for Genomics, UNSW, Australia). Affymetrix data
were processed using the standard approachdescribed in theAffymetrix
I GeneChip Expression Analysis TechnicalManual; 2006 [2]. This dataset
is deposited onGene ExpressionOmnibus (www.ncbi.nlm.nih.gov/geo),
accession number: GSE19877. RpWAT tissuewasprocessed as described
above and the GEO accession is http://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE33551.

Robust Multiarray Averaging (RMA) was used for background cor-
rection; this adjusts for probe intensities for a number of properties
such as fragment length, GC content and sequence allele position [3].
Next RMA normalized data [4], n = 13 was subjected to one-way
ANOVA to examine differential gene expression between HFD and con-
trol (Partek Genome Suite v6.5). Partek has summarization algorithms
to compile the data of a probe set to a transcript, yielding a single num-
ber that represents a central tendency for that probe set. In this instance,
we usedmedian polish summarization,which is a commonly used sum-
marization algorithm for Affymetrix probesets for arrays of this size (de-
tailed in Bioconductor; https://stat.ethz.ch/pipermail/bioconductor/
2003-September/002498.html).

ANOVA, analysis of variance, was used to test for differences in
means of gene expression between HFD and Control animals. The only
assumptions here are that the HFD and Control data are normally
distributed and that the variance is approximately equal between the
groups (homogeneity of variance). Thus ANOVA is very powerful and
robust to detect differential gene expression between these 2 groups.
Configuring the ANOVA in Partek allowed an adjustment for factors
such as batch differences between the arrays, systematic technical
errors, tissue type and treatment (HFD vs Control) thus allowing speci-
fication of main effects, i.e., diet. This also takes into account of Random
vs Fixed effects, i.e., one factor is diet (HFD vs Control) and another
factor is subject, which is the rat selected for the experiment. So in
Fig. 1.We used an integrated system biology approach to interrogate the islet and RpWAT tran
ternal HFD consumption. Some of the main findings and key players are illustrated above. Of in
RpWAT transcriptome [12]. Therewere 411 differentially expressed genes in common between
significantly enriched (P = 0.0003) [12]. Many of the differentially expressed molecules/enric
common molecular networks between islet and RpWAT tissues, i.e., Cell cycle also shares a com
affects common network topologies in islets and RpWAT, thus implicating crosstalk or develop
this case, Diet is a fixed factor, since levels of Control and HFD represent
all conditions of interest. Subject, however is a random effect, since the
rats are only a random sample of all the levels of that factor. In addition,
Least Squares Mean (LS Mean) is calculated as the linear combination
(sum) of the estimated means from a linear model e.g. ANOVA, regres-
sion. In an unbalanced experiment, i.e., HFD and Controls, n=13, the LS
means are preferred because they reflect the model being fitted to the
data. We log transformed data prior to statistical analysis in order to
transform a multiplicative effect into an additive effect.

False discovery rate

When ANOVA is used to test for a difference between three or more
groups, a post hoc analysis is performed to see which groups are differ-
ent. In this instance, we only looked at one factor, i.e., Diet (HFD vs Con-
trol), hence we did not carry out False Discovery Rate analysis. In
addition, we interrogated the differentially expressed gene lists in the
context of biological processes and systems, thus a post hoc adjustment
was not applied, as this would bias the gene list to only statistically sig-
nificant genes at the expense of biologically significant genes.

Systems network analysis

We used a network-based approach to enable a global view of
molecular connectivity and their coordinated program in both islet
and RpWAT tissues, which complements the conventional ‘one variant
at a time’method of linear causalitymodels. The importance of drawing
protein–protein interaction networks has recently been recognized
in cancer systems analysis whereby differentially expressed genes
with strong discriminatory power tend to be “passenger” or bystander
genes whereas subtle changes of insignificant genes determined by
pairwise statistics and threshold (gene–gene effect) can be the “drivers”
scriptome [1,12] in order to understand themolecular events underlying the impact of pa-
terest, there was an over-representation of olfactory receptor (Olr) genes in both islet and
RpWAT and islet, of whichOlr belonging to the olfactory transduction pathway is themost
hed pathways or networks in both tissues belong to the MAPK/ERK pathway; one of the
mon hub gene, Myc [12]. Taken together, these findings indicate paternal HFD exposure
mental changes that persist between these two metabolically related tissues.
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of an integrated network response that regulate and sustain the func-
tioning of multiple disease pathways on the proteomic scale [5–8]. It
was suggested that geneswith differential expression levels deemed in-
significant have an effect on the molecular network through protein–
protein interactions [9]. Similarly, the magnitude of differentially
expressed genes encoding highly connected protein hubs has been
found to be small in schizophrenia and Parkinson's disease based on
humanprotein–protein interactome [10]. As a consequence, biologically
significant genes may have been filtered out. Thus this practice under-
mines a biological discovery because small changes to nodes central to
a network have the potential, by the nature of their connectivity, to ini-
tiate a greater impact than large changes to the peripheral nodes of the
network. This phenomenon is likely to be true in complex diseases such
as obesity, type 2 diabetes and cardiovascular diseases. More recently, a
network-based analysis has been used in the field of developmental
programming to understand the mechanisms of inter-generational
transmission of disease risk [11]. We therefore, used the gene lists
from unadjusted P b 0.01 and P b 0.05 in Nature [1] and P b 0.05 in
FASEB J [12] for our systems network analysis in IPA (Ingenuity). False
Discovery Rate was applied in the molecular network modeling using
IPA. The data processing and discovery process is outlined in Fig. 1.
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