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Abstract: In this paper, it is reported that a metal-free and non-conjugated polymer, MA-PEG
8000-BADGE (MP8B), exhibits an antireflective property and substrate-dependent photolumines-
cence (SDP). MP8B was constructed from maleic anhydride, poly(ethylene glycol) and bisphenol-A
diglycidyl ether. Self-assembled nanoparticles are found in MP8B and can prospectively act as scatter-
ing centers to improve light trapping and extraction. MP8B films prepared from MP8B solutions have
been characterized by photoluminescence (PL), atomic force microscopy (AFM), tunnelling electron
microscope (TEM), reflectance, transmittance, and UV-Vis absorption spectrum. MP8B films can
suppress light reflection and enhance light transmission. The PL spectrum of MP8B film on ITO peaks
at approximately 538 nm, spanning from 450 to 660 nm at a concentration of 25 mM. Meanwhile,
the effects of concentration and substrate on the PL of MP8B films are also investigated in this study.
Surface roughness becomes larger with concentration. A red shift of the PL spectrum is observed as
solution concentration increases. Meanwhile, aggregation-caused quenching (ACQ) is insignificant.
Moreover, the PL spectra of MP8B films show a substrate-dependent phenomenon due to dielectric
screening. The optical band-gap energy of MP8B is approximately 4.05 eV. It is concluded that MP8B
is a promising candidate for a host material, and its film can be utilized as a multifunctional layer
(i.e., antireflective and light-scattering functions) for optoelectronic applications.

Keywords: polymer films; antireflection; self-assembled nanoparticles; light scattering; wide band-gap

1. Introduction

Optoelectronic devices, such as solar cells, light-emitting diodes (LEDs), photodetec-
tors, and laser diodes, possess multilayer structures. Therefore, significant light reflection
occurs at the interfaces because of a refractive index mismatch between two media. Un-
fortunately, reflection causes light loss so that optoelectronic devices have an impact in
performance. For instance, most of the generated photons are trapped within organic light-
emitting diodes (OLEDs) at the substrate-air interface, in the transparent anode/organic
layer, and at the cathode-organic interface owing to total internal reflection and evanes-
cent coupling [1]. As a result, OLED usually exhibits an external quantum efficiency
(EQE) of only approximately 20% without utilizing light extraction (high transmission)
techniques [2]. Similarly, a polymer bulk heterojunction solar cell reflects approximately
30% of the light reaching the surface of the solar cell without using antireflective (AR)
technologies [3]. Hence, AR technologies are an important issue that can be utilized to
eliminate reflection and improve device performance in photovoltaic (PV) [4–10], light-
ing [9,11–15], displays [16–18], photodetectors [18,19], and laser [20–23] applications. An-
tireflective coatings (ARCs) are usually made of single-layer [24–27], multilayer [28,29],
or micro/nanostructured [30–43] coatings. Single-layer ARCs are facile but cannot suppress
reflection in a broadband solar spectrum [4], whereas multilayer ARCs are complicated to
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produce because of the requirements of the refractive index and the control of layer thick-
ness. Furthermore, thermal mismatch induced strain and material migration of multilayer
ARCs degrade the device performance in high power operation [42].

An alternative to multilayer ARCs are micro/nanostructured ARCs with structure
dimensions comparable with light wavelength. Micro/nanostructured ARCs are manufac-
tured by different technologies that involve photolithography [9,18], imprinting [7,17,39],
molding [10,30], etching [40–42], or vacuum processing [14,34]. However, these technolo-
gies are considerably complex or expensive for large scale and mass production. There-
fore, there has been much interest in polymeric thin films produced by wet-processable
and scalable techniques thanks to their simple and cost-effective methods. Similarly, mi-
cro/nanostructured antireflective polymeric thin films are also prepared by nanopatterning
methodologies, such as etching [7,10,40], imprint lithography [17], and microinjection
compression molding [30], which are not simple or cheap, as mentioned above. In our
previous report, we synthesized the non-conjugated polymer without using organometallic
reagents and solvents [44]. Self-assembled nanoparticles were observed in the polymer.
It was proposed that self-assembled nanoparticles are produced in a synthesis process
with bisphenol-A aggregates and poly(ethylene glycol) moieties. In addition, the average
size of the self-assembled nanoparticle in the polymer film increases with the concentra-
tion of the polymer solution [45]. Self-assembly is a cost-efficient and high-throughput
approach for manufacturing nanoscale architectures. In this study, MP8B polymer syn-
thesized by an environment-friendly method without utilizing any solvent is low-toxic
and bio-compatible, and its film, which is prepared by spin coating, exhibits antireflective
and high-transmission properties and substrate-dependent photoluminescence (SDP). Self-
assembled nanoparticles are also observed in MP8B films so that the production of MP8B
film with self-assembled nanostructures is low-cost. In particular, the major advantage of
such disordered nanostructures is that the spectrum is independent of viewing or incidence
angle. Furthermore, it has been shown in the literature that thin films with nanoparticles
can enhance light extraction and transmission for optoelectronic applications [27,46,47].
Moreover, scattering layers with nanoparticles are industrially relevant candidates that
can improve the light outcoupling of OLED [1]. Thus, MP8B films can prospectively act as
scattering layers to improve light trapping and extraction for optoelectronic applications.
On the other hand, conjugated polymers have not only raised concerns regarding environ-
mental issues but they also often suffer from aggregation-caused quenching (ACQ), [48]
so they are significantly restricted for optoelectronic applications. However, the emission
of MP8B film is not significantly quenched in this study. Meanwhile, a red shift in PL
and UV-Vis absorption spectra is observed with solution concentration. Furthermore,
the optical band-gap energy (Eg) of MP8B film is approximately 4.05 eV. It is, therefore,
expected that MP8B polymer can not only be applied to ARC and light transmission but
can also be used as a host material because of its metal-free and wide band-gap properties
for multifunctional optoelectronic applications.

2. Materials and Methods
2.1. Synthesis of Polymer

The polymer was synthesized according to the method reported in the literature [44].
All chemicals were purchased from commercial suppliers and used as received without
further purifications. First, 1 mmol of Maleic anhydride (CAS No. 108-31-6) and 0.5 mmol
of poly(ethylene glycol) 8000 (CAS No. 25322-68-3) were mixed and stirred under N2
atmosphere at 90 ◦C for 1.5 h without using any organic solvent. The product was recrys-
tallized twice from ether, followed by the addition of bisphenol A diglycidyl ether (1.57 g,
4.60 mmol, CAS No. 1675-54-3). The mixture was stirred at 180 ◦C for 3 h in N2 ambient,
and was then returned to an ambient temperature. Finally, a brown product was obtained
and named MA-PEG 8000-BADGE (MP8B). All synthesized processing was at a pressure
of one atmosphere.
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2.2. Thin-Film Preparation

MP8B polymer was dissolved in tetrahydrofuran (THF). MP8B films prepared from
MP8B solution were spin-coated for 40 s with 2000 rpm on ITO-coated glass, Si, and TiO2-
coated Si substrates, and then annealed at 80 ◦C in N2 ambient for 1 h. Moreover, to confirm
the influence of ACQ on the light emission of MP8B films, the samples prepared from using
various MP8B solutions (1, 5, 10, and 25 mM) were spin-coated for 40 s at 2000 rpm on
ITO-coated glass substrates, and then annealed at 80 ◦C in N2 ambient for 1 h.

2.3. Characterization

The thicknesses of MP8B films prepared from different solutions (1, 5, 10, and 25 mM)
were measured by surface profiler (Bruker Dektak XT, Billerica, MA, USA) and were 63 nm,
65 nm, 81 nm, and 84 nm, respectively. The morphology of the polymer films were observed
by atomic force microscope (Bruker, Dimension ICON, Tucson, AZ, USA). For the analysis
of self-assembled nanoparticles, TEM images were captured (JEOL JEM-2100 TEM, Tokyo,
Japan). PL properties were measured by a FluoroMax-4PL spectrometer (Horiba Jobin Yvon,
Kyoto, Japan) and recorded in the range of 400–700 nm at 325 nm excitation wavelength
at room temperature. UV-Vis absorption, reflectance, and transmittance spectra were
measured using an UV/VIS/NIR spectrophotometer (UV-3150, Shimadzu Corporation,
Tokyo, Japan). UV-Vis absorption spectra were also employed to estimate the optical
band-gap energy (Eg).

3. Results and Discussion

Figure 1 shows the chemical structure of the MP8B polymer. The chemical structure
of the MP8B polymer was confirmed by 1H nuclear magnetic resonance (NMR) and IR
spectra, as given in the Supplementary Materials, Figures S1 and S2, respectively.
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Figure 1. Chemical structure of MP8B polymer.

The elemental composition of MP8B film was investigated through XPS measurement.
Figure S3 displays the XPS spectrum of MP8B film deposited on an ITO-coated glass. C 1s
and O 1s peaks are obvious in the XPS spectrum. This shows that MP8B film is metal-free.
Furthermore, an N 1s peak is also visible, which most likely originates from contamination.

To observe the optical behaviors of MP8B film, it was spin-coated onto an ITO-coated
glass substrate (i.e., MP8B/ITO-coated glass). Figure 2a,b shows the reflectance and trans-
mittance spectra of MP8B/ITO-coated glass, respectively. The reflectance of MP8B/ITO-
coated glass decreases compared to that of the ITO-coated glass over a wide wavelength
range of 400–800 nm, as shown in Figure 2a. This shows that MP8B film possesses antire-
flection properties. Meanwhile, the transmittance of MP8B/ITO-coated glass increases
compared to that of the ITO-coated glass, as illustrated in Figure 2b. Notably, very little
light is absorbed in the MP8B/ITO-coated glass structure (transmittance > 90%), indicating
excellent optical quality. Moreover, the transmittance spectrum is relatively flat (93–95%) in
the visible range, which means the optical property is insignificantly varied when it is used
for lighting applications. These are attributed to the step gradient refractive-index distribu-
tion in constituent materials, i.e., air (n = 1)/ MP8B (n~1.61)/ITO (n ~ 1.82)/glass (n~1.52).
In the case of a single-layer ARC, one single coating is applied on the surface of a device,
such that the reflection from the air-ARC and ARC-device interfaces experience destructive
interference. To achieve this and zero reflection, the optical thickness of a single-layer ARC
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should be equal to an odd number multiple of a quarter of the wavelength of the selected
light, and its refractive index should equal the square root of the refractive index of the
surface of the device. In Figure 2, the thickness of MP8B film is approximately 152 nm and
is not optimized, so that the reflectance is not minimized.
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Figure 2. (a) Reflectance and (b) transmittance spectra of MP8B film.

Figure 3a demonstrates the TEM image of self-assembled nanoparticles. Obviously,
self-assembled nanoparticles are highly dispersive, and the size of the self-assembled
nanoparticle is not uniform, from 154 to 500 nm. The size distribution fitted by a Gaussian
curve is also shown in Figure 3b. It shows that the mean of the size is approximately
365.7 ± 127.9 nm. Generally, self-assembly processes of organic molecules to form nanos-
tructures are developed in solution. Therefore, it has been suggested that the nanoparticle
is produced in a self-assembly process with bisphenol-A aggregates and poly(ethylene
glycol) moieties serving as core and shell compartments, respectively [44]. On the other
hand, the nanoparticles in the film are able to scatter the incident light [46]. Therefore,
scattering caused by nanoparticles is more efficient than absorption for light trapping in
photovoltaic devices [49]. In addition, the larger the nanoparticle size, the more scatter-
ing [46]. It has also been published in the literature that the size of the self-assembled
nanoparticle increases with the concentration of the polymer solution [45]. Similarly, it is
expected that the size of the self-assembled nanoparticle can be tuned by the concentration
of MP8B solution. However, the introduction of larger nanoparticles in the antireflective
(AR) film leads to a further increase in the thickness of the AR film so that the absorption of
the AR film increases correspondingly. Thus, the control of the diameter of the nanoparticle
is an important issue. So far, many nanoparticles have been developed, which can be
categorized into metallic and dielectric nanoparticles. Although metallic nanoparticles are
strong light scatterers at wavelengths near their resonant frequency, their intrinsic losses
are significant. Furthermore, for metallic nanoparticles, the resonant scattering is only
dominated by the electric-type resonances, whereas dielectric nanoparticles have both
electric and magnetic dipole resonances simultaneously excited inside the same particle by
light incidence [50]. Thus, dielectric nanoparticles are more suitable for light scattering for
photovoltaic applications.
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Figure 4 depicts PL spectra of MP8B films spin-coated on ITO glass, Si, and TiO2-
coated Si substrates at an excitation wavelength of 325 nm. The PL peaks of MP8B films
on ITO, Si, and TiO2 are 538, 522, and 488 nm, respectively. The PL spectra of MP8B films
spin-coated on Si and TiO2 exhibit blue shifts (16 and 50 nm, respectively) compared with
that on ITO. It has been shown that the PL of nanostructures is affected by doping [51–55],
strain [54,56–60], and dielectric screening [61]. MP8B films are annealed at 80 ◦C after
spin-coating so that the doping effect on the PL of MP8B films is not significant in this
study. Moreover, the lattice constants of ITO, Si, and TiO2 are 10.12 Å, 5.43 Å, and 4.59 Å,
respectively. Thus, the induced strain of MP8B film on ITO is less than on Si and TiO2, which
arises from a relatively small lattice mismatch between MP8B film and ITO. Therefore, if
PL is dominated by lattice mismatch induced strain, a red shift in PL spectra should be
observed with increasing strain [56–59]. However, this is contradictory to our observations
in Figure 4. Furthermore, it has been shown that the PL may be intensively influenced
by the screening of the dielectric environment [61]. In this study, it is observed that the
wavelength of the peak decreases (blue shift) with the increase in the relative dielectric
constant of the underlying film, from 3.4 (ITO) to 63.7 (TiO2). This result may be ascribed to
the dielectric screening of the Coulomb interactions, which can affect the binding energies
of excitons [61]. Therefore, the larger the relative dielectric constant of the underlying layer
or substrate, the smaller the Coulombic interaction between electrons and holes, which thus
decreases the exciton binding energy [62,63], so that the wavelength of the luminescence
decreases (blue shift). Hence, if the effect of dielectric screening dominates PL, a blue
shift is expected with the relative dielectric constant of the surrounding dielectrics because
the PL peak energy can be estimated by subtracting the exciton binding energy from the
band-gap energy, which is in good agreement with our observations. Consequently, it is
suggested that the blue shift in PL results from dielectric screening in this study.

The AFM images in Figure S4 show that the roughness of MP8B film changes sig-
nificantly as the concentration of MP8B solution is varied. The root mean square (RMS)
roughness was estimated on an area of 30 × 30 µm2. Figure 5 illustrates RMS roughness
values vary at different concentrations. From the AFM measurements, we find the RMS
roughness values, which are 0.95, 1.84, 3.00, and 4.48 nm for MP8B films prepared from 1, 5,
10, and 25 mM of MP8B solutions, respectively, as shown in Figure 5. It is proposed that the
diameter of the self-assembled nanoparticle increases with the increase in the concentration
of MP8B solution. This is due to the formation of the self-assembled nanoparticle from
bisphenol-A aggregates and poly(ethylene glycol) moieties [45]. Therefore, the higher the
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solution concentration, the larger the size of the self-assembled nanoparticle, so that MP8B
film is rougher at higher concentrations.
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concentration of MP8B solution. This is due to the formation of the self-assembled na-
noparticle from bisphenol-A aggregates and poly(ethylene glycol) moieties [45]. There-
fore, the higher the solution concentration, the larger the size of the self-assembled na-
noparticle, so that MP8B film is rougher at higher concentrations. 
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Figure 6a illustrates the PL spectra of MP8B films prepared using various solutions
(1 mM, 5 mM, 10 mM, and 25 mM) and annealed at 80 ◦C. The PL peak of MP8B film
on ITO-coated glass is approximately 480 nm at a concentration of 1 mM. The PL peak is
gradually changed from 480 to 538 nm when solution concentration rises from 1 to 25 mM.
In other words, the PL peak shifts toward the longer wavelength (a red shift) with solution
concentration. It was generally suggested that the PL peak exhibits a blue shift when
lowering the size of the nanostructure due to the quantum size effect [64]. Hence, it is
proposed that the diameter of the self-assembled nanoparticle decreases with a decrease
in solution concentration in this study. That is, the higher the concentration of the MP8B
solution, the larger the size of the self-assembled nanoparticle. This can be attributed to the
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larger amount of MP8B (higher concentration), which leads to more formation of bisphenol-
A aggregates and poly(ethylene glycol) moieties so that the size of the self-assembled
nanoparticle increases. This is consistent with the result of Figure 5.
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On the other hand, it also indicates that the PL peak intensity of MP8B film is
concentration-dependent. As in the cases of lower concentrations (≤10 mM), PL peak inten-
sity increases with solution concentration. However, it slightly decreases at a concentration
of 25 mM, as shown in Figure 6a. Although traditional fluorescent conjugated materials
generally exhibit intensive emission in diluted solution, severe luminescence quenching
of the conjugated materials is usually observed in highly concentrated solutions or in the
solid state. This phenomenon is referred to as aggregation-caused quenching (ACQ) [48].

In general, it is known that the PL intensity depends on the sample thickness. To
study the concentration dependence of MP8B luminescence efficiency in more detail, the
PL intensity is normalized to film thickness to exclude the contribution of thickness shown
in Figure 6b. In this way, the normalized PL spectra are not dependent on the thickness.
No concentration quenching effects have been observed up to 5 mM. Unfortunately, there
is a slightly downward trend in PL peak intensity at higher concentrations (≥10 mM),
as illustrated in Figure 6b.

The UV-Vis absorption spectra of MP8B films prepared from different solutions are
shown in Figure 7. It is observed that the spectra of MP8B films are red-shifted with solution
concentration. This implies that more molecular aggregation and stronger intermolecular
interactions are present in the polymer film prepared from the higher concentrated solu-
tions [65]. That is, the higher the concentration, the more molecular aggregation. This is in
agreement with the results shown in Figures 5 and 6. On the other hand, the estimate of the
optical band-gap energy (Eg) is related to optical absorption edge. An exciton is generated
as a photon is absorbed. The optical Eg is, therefore, derived from the onset of the optical
absorption. The absorption onset is determined by linear extrapolation of the low energy
edge of the UV-Vis absorption spectrum. Consequently, as solution concentrations are 1, 5,
10, and 25 mM, the onset wavelengths (λonset) are 305.2 nm, 306.3 nm, 306.5 nm, and 306.8
nm, respectively. The optical Eg is evaluated by [66,67]:

Eg = 1240/λonset (1)
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where λonset is the onset wavelength. Thus, the optical Eg of MP8B film decreases from 4.06
to 4.04 eV as solution concentration is increased from 1 to 25 mM. This result indicates that
the optical Eg of MP8B film slightly decreases with the increase in solution concentration.
Therefore, this also implies that MP8B with a wide Eg (around 4.05 eV) can be a promising
candidate for a host material for polymer light-emitting diode (PLED) applications.
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4. Conclusions

MP8B is a metal-free and non-conjugated polymer. MP8B film prepared from MP8B
solution can lower reflectance and improve transmittance. The PL peaks of MP8B films on
Si and TiO2 show blue shifts (16 and 50 nm, respectively) compared to that on ITO. The SDP
is probably due to the dielectric screening in this study. The TEM image of MP8B film has
shown the existence of a size distribution of self-assembled nanoparticles ranging between
154 and 500 nm. Furthermore, the RMS roughness of MP8B film becomes larger with
solution concentration. It is suggested that the increase in the size of the nanoparticle with
increasing solution concentration can be ascribed to the more self-assembled formation of
bisphenol-A aggregates and poly(ethylene glycol) moieties in the higher concentrated solu-
tion so that the RMS roughness of MP8B film increases correspondingly. Accordingly, the
control of the diameter and density of self-assembled nanoparticles is an important issue for
future work. On the other hand, the PL peak exhibits a blue shift (~54 nm) with decreasing
concentration, from 25 to 1 mM, owing to the quantum size effect. Therefore, it is deduced
that the diameter of the self-assembly nanoparticle decreases with a decrease in solution
concentration so that the PL peak shifts toward the shorter wavelengths (a blue shift) with
decreasing solution concentration. This is consistent with the results of the RMS roughness.
In addition, PL peak intensity is concentration-dependent. No concentration quenching
effect has been observed up to 5 mM, excluding the contribution of film thickness. Never-
theless, as in the cases of higher concentrations (≥10 mM), there is a slightly downward
trend in PL peak intensity. A red shift in UV-Vis absorption spectra is also observed with
the increase in solution concentration. This indicates that more molecular aggregation and
stronger intermolecular interactions exist in MP8B films prepared at higher concentrations.
The optical band-gap energy is around 4.05 eV. These results illustrate that MP8B is a
promising candidate for a host material, and its film can be utilized as a multifunctional
layer (i.e., antireflective and light-scattering functions) for optoelectronic applications.
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