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Abstract

Long noncoding RNAs (lncRNAs) are primarily regulated by their cellular localization, which is responsible for their molecular
functions, including cell cycle regulation and genome rearrangements. Accurately identifying the subcellular location of lncRNAs from
sequence information is crucial for a better understanding of their biological functions and mechanisms. In contrast to traditional
experimental methods, bioinformatics or computational methods can be applied for the annotation of lncRNA subcellular locations
in humans more effectively. In the past, several machine learning-based methods have been developed to identify lncRNA subcellular
localization, but relevant work for identifying cell-specific localization of human lncRNA remains limited. In this study, we present
the first application of the tree-based stacking approach, TACOS, which allows users to identify the subcellular localization of
human lncRNA in 10 different cell types. Specifically, we conducted comprehensive evaluations of six tree-based classifiers with 10
different feature descriptors, using a newly constructed balanced training dataset for each cell type. Subsequently, the strengths of the
AdaBoost baseline models were integrated via a stacking approach, with an appropriate tree-based classifier for the final prediction.
TACOS displayed consistent performance in both the cross-validation and independent assessments compared with the other two
approaches employed in this study. The user-friendly online TACOS web server can be accessed at https://balalab-skku.org/TACOS.
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Introduction
RNA is one of the main components in the central dogma
of molecular biology and plays vital roles in different bio-
logical processes [1]. Early sequencing data have shown
that >80% of the mammalian genome is transcribed
into noncoding regions, whereas only a smaller portion
is transcribed into protein coding RNAs [2, 3]. Owing to
the advancements in sequencing technologies and bioin-
formatics analysis, an increasing number of noncoding
RNAs (ncRNAs) have been identified, including circular
RNAs, long ncRNAs (lncRNAs) and small ncRNAs [4–6].
ncRNAs are the largest constituent of the transcriptome

that do not possess functional open reading frames, but
play potent roles in several biological processes, includ-
ing disease pathogenesis [1]. Genomes undergo exten-
sive transcription, resulting in thousands of lncRNAs
that are >200 nucleotides in length and do not undergo
translation to become functional proteins. They func-
tion as decoys, enhancer RNAs, guide, scaffold, signal
and short peptides [7, 8]. lncRNAs can modulate chro-
matin function, affect signaling mechanisms, alter the
stability of cytoplasmic mRNAs translation and regulate
the assembly and function of nuclear bodies based on
their localization and interactions with other biological
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macromolecules. Several of these functions affect gene
expression in diverse biological and pathophysiological
pathways such as in cancer, immune responses and neu-
ronal diseases [9].

As evidenced, the human genome constitutes >16 000
lncRNA genes [10]; however, other sources have predicted
>100 000 lncRNAs [11]. To date, only a small portion
of lncRNAs have been characterized; hence, it is neces-
sary to identify the functional characterization of others
[9, 12]. Furthermore, the versatile functions of lncRNAs
are determined by their subcellular localizations. Hence,
understanding the cellular localizations of lncRNAs will
help decipher their potential molecular mechanisms.

In situ hybridization (ISH) is a popular technique to
identify the cellular localization of candidate lncRNAs
using labeled complementary oligonucleotide probes [13,
14]. Single-molecule fluorescence ISH is the gold stan-
dard method, in which multiple probes are utilized to
amplify the fluorescent signal for the detection of target
RNAs, which are present in low levels [15]. In contrast,
fluorescent in situ RNA sequencing method provides in
situ information at high-throughput levels [16]. Spatially
resolved transcript amplicon readout mapping is another
method in which three-dimensional locational informa-
tion on RNA expression in intact tissue samples is pro-
vided [17]. As the identified lncRNAs outnumber those
with known localizations, it is necessary to implement
rapid, efficient and cost-effective computational meth-
ods to assist in their identifications.

To date, only a few computational approaches have
been developed to predict lncRNA subcellular local-
ization across tissues/cell lines [18–22]. Cao et al. [19]
proposed a predictor named lncLocator, which was devel-
oped based on the RNALocate database [23], to determine
five localizations. This predictor adopts k-mer frequency
information features with random forest (RF), support
vector machine (SVM) and an autoencoder. To construct a
balanced training model dataset, lncLocator utilized the
synthetic minority oversampling technique [24]. In 2018,
Gudenas and Wang [20] developed DeepLncRNA, which
predicts lncRNA subcellular localization directly from
transcript sequences. They analyzed 93 strand-specific
RNA-seq samples from multiple cell types by extracting
k-mer frequencies using deep neural networks. Su et al.
[22] developed iLoc-lncRNA by incorporating 8-tuple
nucleotide features into the general Psuedo k-tupler
composition (PseKNC) using SVM. Recently, Ahmad et al.
[18] developed Locate-R by extracting k-mer features
using a deep local SVM to classify four locations.
Recently, Lin et al. developed lncLocator 2.0 [21] as
a cell-line-specific subcellular localization predictor
using an interpretable deep-learning approach. Among
the existing predictors, lncLocator 2.0, is the only cell-
specific predictor available, but it has sufficient room for
improvement. To develop a machine learning (ML)-based
predictor, it is necessary to devise appropriate encoding
approaches to represent the lncRNA sequence fragments
surrounding subcellular localization across tissues/cell
lines.

In this study, we developed a Tree-based Algorithm for
Cell-specific long nOn-coding RNA Subcellular location
(TACOS) for the accurate detection of cell-specific human
lncRNA subcellular locations, an overview of which is
shown in Figure 1. First, we constructed a balanced train-
ing datasets for each of the 10 different cell types, includ-
ing A549, GM12878, H1 human embryonic stem cell line
(HESC), HeLa.S3 (HELA), Hep G2 (HEPG), HT1080, HUVEC,
NHEK, SK.MEL.5 (SKMEL) and SK.N.SH (SKNS). Utiliz-
ing a balanced training dataset for each cell type, we
tested six different tree-based classifiers [RF, extremely
gradient boosting (XGB), AdaBoost (AB), gradient boost-
ing (GB), light GB (LGB) and extremely randomized tree
(ERT)] using 10 different feature descriptors (which cover
composition and physicochemical properties) and iden-
tified appropriate classifier-based baseline models. Sub-
sequently, we integrated these 10 baseline models pre-
dicted probability values with an appropriate tree-based
classifier through stacking strategy to make the final
prediction. Notably, TACOS is the first application of tree-
based algorithms employed for identifying cell-specific
lncRNA subcellular locations. TACOS will be able to assist
experimentalists in identifying novel lncRNA locations
and elucidating their functions on a larger scale.

Materials and methods
Dataset construction
To develop a prediction model based on sequence infor-
mation, lncRNA nucleotide sequences and localization
information are required. Recently, Lin et al. [21] recently
constructed a high-quality dataset based on nucleotide
sequences with variable lengths obtained from the GEN-
CODE project [25] and localization information obtained
from lncATLAS [26]. In order to determine the location of
lncRNA, the authors used the cytoplasm/nucleus relative
concentration index (CNRCI) for different cell types and
determined that if CNRCI is >1, the lncRNA is located
within the cytoplasm, and if it is <−1, it is located within
the nucleus. These data are available through the follow-
ing link: https://github.com/Yang-J-LIN/lncLocator2. For
each cell type, they generated nonredundant datasets by
applying the CD-HIT [27] threshold of 0.8, which means
that none of the sequences shared >80% sequence iden-
tity. Specifically, the total dataset was divided into 8/1/1
sets and used as train/dev/test sets, where train and dev
sets were used for parameter optimization and model
building, and the test sets were used to evaluate the
model.

We utilized the same sequence and respective classi-
fication information in the current study with the fol-
lowing modifications: (i) the train and dev datasets were
combined to generate new training dataset for each cell
type, resulting in a greater proportion of negative sam-
ples than positive samples. By utilizing an imbalanced
dataset, any classifier will ultimately introduce class
biases during cross-validation/training. (ii) To avoid such
circumstances, we considered all positive samples and
an equal number of negative samples randomly selected

SK.N.SH
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Figure 1. An overview of TACOS. It involves the following steps: dataset construction, feature extraction, baseline model construction and final model
construction.

Table 1. A statistical summary of the cell-specific dataset
employed in this study

Cell types Training Independent

Positive Negative Positive Negative

A549 4523 4523 432 1682
GM12878 3130 3130 365 5841
HELA 3356 3356 317 2653
HESC 5961 5961 677 3869
HT1080 4505 4505 459 1499
HUVEC 3739 3739 492 6038
HEPG 4129 4129 511 5300
NHEK 3439 3439 483 4025
SKNS 4587 4587 506 5984
SKMEL 3593 3593 408 3829

from the original samples. (iii) The leftover negative sam-
ples from the new training dataset were considered as
negative samples for the independent dataset and sup-
plemented with the same positive samples from the test
set. A statistical summary of the dataset employed in this
study is provided in the Table 1, where the training sam-
ples comprise equal numbers of positives and negatives.
In contrast, an independent dataset that replicates the
actual scenario contains an imbalanced data.

Feature extraction
Feature extraction is one of the most critical steps
in constructing an ML model. In general, multiple
feature encodings [28–31] should be explored on a single
dataset, rather than exploring on collection of specific
encodings. In this study, we investigated 10 different
encodings for each cell type and assessed their ability
to distinguish positive samples from negative samples. A
brief description of each encoding calculation is provided
below.

Composition of k-spaced nucleic acid pairs
(CKSNAP)
The CKSNAP algorithm calculates the frequency of din-
ucleotides separated by k nucleic acids (k was set to
3). As an example, if k is equal to 0, it generates 16 0-
spaced dinucleotide pairs (‘CU’, ‘CA’, ‘GC’, ‘GA’, ‘GG’, ‘GU,
‘CG’, ‘UG’, ‘CC’, ‘AA’, ‘AU’, ‘AG’, ‘AC’, ‘UG’, ‘UU’, ‘UA’). The
feature vector is defined as:

CKSNAP =
(

RCG

S
,

RAU

S
,

RUU

S
,

RCA

S
, . . . ,

RAA

S

)
16

(1)

For each descriptor, the value corresponds to the dinu-
cleotide in the given sequence. From the given sequence,
the frequency of dinucleotide mn is represented by Rmn,
and the sum of 0-spaced dinucleotides is represented by
S. Here, k is set in the range of 0–3 with an interval of 1
that generates a 64D feature vector.

KC is a combination of Kmer and other features. (i)
Kmer: Kmer encoding determines the number of possible
nucleotides or nucleotide pairs that are present in a given
sequence. Previous studies have provided mathemati-
cal formulations for Kmer calculations [32, 33]. Setting
Kmer >4, one can generate many features and suffer
from dimensional disasters. We set Kmer = 1 (monomer),
2(dimer), 3 (trimer) and 4(teramer) to avoid irrelevant and
redundant information. Finally, all of these Kmers were
combined, resulting in 340-D (=4 + 16 + 64 + 256) features
for the given input sequence.

(ii) Other features, including Z-cure, GC content, AUGC
ratio and GC skew, are mathematically represented as
follows:

curve =
⎧⎨
⎩

X = (FA + FG) − (FC + FU)

Y = (FA + FC) − (FG + FU)

X = (FA + FU) − (FG + FC)

(2)
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GC = FA + FC

FA + FU + FG + FC
(3)

AUGC = FA + FU

FG + FC
(4)

GCskew = FG − FC

FG + FC
(5)

where FX represents the frequency of the nucleotide X.
In the end, KC combined Kmer and other features to
produce a 346D feature vector.

Dinucleotide physicochemical properties (DPCP)
Using 21 physicochemical properties of RNA listed in the
iLearn package (excluding one of the free energies) [28],
we computed the DPCP as follows:

DPCP = f (m) × RNA_PCP(Xm)n, (6)

Xm is the value of the nth (b = 1,2, . . . ,21) RNA din-
ucleotide physicochemical properties (RNA_PCP). Ulti-
mately, DPCP provides a 336D vector.

PseKNC
K-tuple composition is incorporated by PseKNC, which is
defined as follows:

V = (r1, r2, . . . , r16, r16+1, . . . , r16+λτ )
T, (7)

where

ru =

⎧⎪⎪⎨
⎪⎪⎩

fm∑4k
a=1 fa+σ

∑λ
b=1 θb

, (1 ≤ m ≤ 4)

σθ
m−4k

∑4k
a=1 fa+σ

∑λ
a=1 θb

,
(
4k ≤ m ≤ 4k + λ

) (8)

where fm (m = 1, 2, 3, . . . ,4k) represents the normalized
dinucleotide frequency of the ath nucleotide in the
sequence. σ and τ represent the weight factor and
number of physiochemical indices, respectively. We
set the default values of the six indices for the RNA
sequences. θb (b = 1, 2, . . . , λ) is the b-tier correlation
factor. A detailed description of PseKNC was provided
in a previous study [34], and the same procedure was
employed to generate a 261D feature vector with the
following parameters: σ = 0.8, k = 4 and λ = 5.

X-mer K-spaced Y-mer composition frequency
This method was used to determine the composition of
a sequence of nucleotides composed of X and Y consec-
utive nucleotides with intervals k. Using k = 2, we calcu-
lated the Mono–Mono, Mono–Di, Mono–Tri, Di–Mono, Di–
Tri and Di–Di compositions, which encode 32, 128, 128,
256, 256 and 256D feature vectors, respectively. These six
descriptors are referred to as F1, F2, F3, F4, F5 and F6,
respectively. Notably, RNA sequences were converted into
vectors using the PyFeat tool [35].

Tree-based ML algorithms
The present study focused on predicting subcellular
localization of lncRNAs, which is a binary classification
problem. The purpose of this study was to determine
whether lncRNAs are located in the cytoplasm or the
nucleus. To identify the optimal ML algorithms, we
investigated six tree-based approaches: RF [36], ERT
[37], XGB, AB, LGB and GB. All of these classifiers have
been widely applied to diverse bioinformatics sequence-
based function prediction tasks [38–40]. Importantly,
these classifiers are capable of handling unnormalized
features more efficiently than SVMs and deep learning
algorithms that use normalized features. Grid search
and 10-fold cross-validation were used to optimize
the hyperparameters for each classifier [41, 42], the
parameter search ranges of which are provided in
Supplementary Table S1. In fact, we repeated this
procedure 10 times reported the average performance
and selected the median parameter for constructing the
final model. This study used the scikit-learn package
in Python [43] to implement RF, ERT, GB and AB. LGB
was implemented in python using the lightgbm package
(https://github.com/Microsoft/LightGBM) and XGB in
python using the xgboost package (https://xgboost.
readthedocs.io/en/stable/python/python_api.html).

Performance evaluation
There are several widely used performance metrics
[44–46] that can be used to measure each model’s
performance, including accuracy (ACC), sensitivity (Sn),
specificity (Sp), Matthew’s correlation coefficient (MCC)
and area under the receiver operating curves (AUC). The
mathematical equations for ACC, Sn, Sp and MCC are
given below:

ACC = TP + TN
TP + FN + FP + FN

(9)

MCC = TP × TN − FP × FN√
(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)

(10)

Sn = TP
TP + FN

(11)

Sp = TN
TN + FP

(12)

The number of true positives, true negatives, false
positives and false negatives is represented by TP, TN, FP
and FN, respectively.

Results and discussion
Evaluation of trees-based algorithms for 10
different cell types using training datasets
We carried out a comprehensive analysis of the pre-
diction performance of six classifiers (RF, ERT, LGB,
GB, XGB and AB) using 10 different feature descrip-
tors and 10-fold cross-validation. Furthermore, the
10-fold cross-validation was repeated 10 times and

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac243#supplementary-data
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the average metrics for 10 cell types was reported
(Supplementary Figures S1–S10). According to Supple-
mentary Figures S1–S9, five different encodings F4, F5,
F6, KC and PseKNC in nine different cell types (except
HESC) have similar performances regardless of the
classifier, which is superior to the remaining encod-
ings. Nevertheless, eight different encodings for HESC
(Supplementary Figure S10) showed comparable perfor-
mance (except F1 and DPCP) regardless of the classifier.
In order to obtain an overview of the performances and to
understand the level of dataset difficulty, we averaged 10
feature-descriptors-based models for each classifier, and
the results are shown in Figure 2. Considering that we
deal with a balanced training datasets and imbalanced
independent datasets, MCC is an appropriate metric that
has been recommended in previous studies [47, 48]. The
average MCC of the different classifiers for the three
cell types (A549, HESC and SKNS) was above 0.48, which
indicates that it is relatively easier to distinguish the
cytoplasm from the nucleus when compared with the
remaining seven cell types. However, the average MCC of
the two cell types (HUVEC and SKMEL cells) was below
0.35, indicating that they are the most challenging cell
types for classifying cytoplasm/nuclei. Furthermore, on
average, the AB classifier consistently performed well on
the training datasets for 10 different cell types.

To obtain a clearer picture of the best-performing
model for each cell type, we selected the best single-
feature-based model or baseline model for each of
the six classifiers. Supplementary Table S2 shows the
performances of the best baseline models for each
classifier in each cell type. Evidently, AB-PseKNC model
consistently produces the best overall metrics, including
MCC, ACC and AUC values. Specifically, it achieved MCC
scores of 0.629, 0.455, 0.534, 0.485, 0.619, 0.484, 0.411,
0.492, 0.394 and 0.561, respectively, for A549, GM128,
HELA, HEPG, HESC, HT1080, HUVEC, NHEK, SKMEL and
SKNS. It is noteworthy that the majority of the remaining
classifiers also achieved their best performance with
PseKNC encoding, yet the metrics were lower than the
AB, indicating that the level of discriminative pattern
between cytoplasm and nucleus exhibited in PseKNC
is higher than that of the other encodings. Among the
tree-based algorithms used, the AB classifier effectively
identified hidden patterns from PseKNC, resulting in
superior performance for all cell types.

Evaluation of baseline models for each cell type
using independent dataset
We evaluated all 60 models (6 classifiers × 10 encodings)
on independent datasets for each cell type. Figure 3
shows the average performances of each classifier with
respect to different cell types. Generally speaking, the
average performance of each classifier declined com-
pared with the cross-validation performance regardless
of the cell type. Interestingly, the average MCC of the
AB classifier consistently achieved the best performance
compared with other classifiers in all cell types, which

is consistent with the AB superiority observed during
cross-validation. It is noteworthy that not only the
average MCC, but also the best AB-based single model
outperformed their counterparts across all cell types
(Supplementary Table S2). Specifically, single models
AB-F4, AB-PseKNC, AB-PseKNC, AB-PseKNC, AB-KC, AB-
PseKNC, AB-F6, AB-KC and AB-PseKNC each achieved
the MCC values of 0.472, 0.277, 0.384, 0.320, 0.464, 0.316,
0.199, 0.271, 0.258 and 0.399 for A549, GM128, HELA,
HEPG, HESC, HT1080, HUVEC, NHEK, SKMEL and SKNS.

It is interesting to note that three encodings (F4, F6 and
KC) were able to achieve their best performance on four
different cell types during independent evaluation, but
their performance was relatively average during cross-
validation. However, the AB-based best baseline model
(AB-PseKNC) for six species (GM128, HELA, HEPG, HESC,
HUVEC and SKNS), obtained based on cross-validation
performance or training, maintained a similar level of
performance (in terms of ACC) during the independent
evaluation. The absolute difference in ACC for these
six species models was <6%, indicating their robustness
compared with the other models. In general, it is straight-
forward to select the most consistent model for each
cell type. By contrast, we employed different strategies
to enhance the robustness of the model.

Exploration of three different strategies to
improve the model performances
In this section, we summarize the three strategies fol-
lowed by their performances as follows:

(i) Strategy (S1): We combined all the feature descrip-
tors linearly and created a hybrid feature, which was
fed into a tree-based algorithm for the development
of respective prediction models using 10-fold cross-
validation. Subsequently, we compared the six models
and selected the one with the highest MCC. The feature
selection technique described in a previous study [49]
was applied to the hybrid features, but it did not improve
the prediction performance as much as anticipated (data
not shown). Therefore, the control (hybrid feature based)
was considered as the final model.

(ii) Strategy 2 (S2): The AB-based classifier achieved the
best performance on both cross-validation and indepen-
dent datasets; therefore, we only considered AB-based
baseline models based on 10 feature descriptors for each
cell type. The predicted probability values of the cyto-
plasmic location derived from these 10 models were
integrated, and stacked model was developed using an
appropriate classifier derived from tree-based classifiers.

(iii) Strategy 3 (S3): Unlike in S2, all six classifiers-based
baseline models were considered. In total, we obtained
60 baseline models (6 classifiers × 10 encodings), whose
predicted probability of cytoplasmic location was con-
catenated and considered as the novel feature vector
for training six different classifiers, and the appropriate
meta-model for each cell type was identified.

The performance of different strategies (S1–S3) for
each cell type, based on both cross-validation and

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac243#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac243#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac243#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac243#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac243#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac243#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac243#supplementary-data
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Figure 2. Average performance of tree-based algorithms with 10 different feature descriptors for 10 different cell types, based on the training datasets.
Each of the A–J columns represents a different cell line, namely: A549, GM128, HELA, HEPG, HESC, HT1080, HUVEC, NHEK, SKMEL and SKNS.

independent assessments is shown in Table 2. We
observed that in addition to AB, other classifiers (GB and
XGB) achieved a superior performance for S1 in a few
cell types. In the case of S2, most tree-based algorithms
(except RF) were used at least once in the stacking
approach. However, for S3, only three classifiers (RF, GB
and ERT) were used for each cell type. These results
suggest that it is important to conduct experiments
using different tree-based classifiers while employing a
variety of strategies. In terms of MCC, S3 consistently
outperforms S2 and S1 approaches on the training
datasets of the 10 cell types (Figure 4A). In contrast,
S2 consistently performed better than both S1 and S3
approaches on independent datasets (Figure 4B). The
S2 approach demonstrates greater consistency than the
other two approaches. Therefore, we selected S2-based
models for 10 cell types and named them TACOS.

Our objective was to improve the performance of
the best baseline model. Therefore, we compared their
performances with that of TACOS. To get an overview,

we computed the average metrics from 10 different cell
types for both the baseline and TACOS models. Figure 5
shows that TACOS improved MCC by 1.48% during
cross-validation and 2.61% during independent dataset
validation, suggesting that the stacking strategy improved
the overall predictive performance on both datasets.

Comparison of TACOS with the existing method
We compared the performance of TACOS with that of
lncLocator 2.0, which is the only available cell-specific
predictor. It is important to note that lncLocator 2.0
used different training datasets for model development,
assessed using very small independent datasets and
reported only AUC values [21]. Therefore, we compared
the reported values with those of TACOS. Figure 6 shows
that TACOS consistently outperformed lncLocator 2.0
across all 10 cell types. Specific improvements of AUC
values for A549, GM128, HELA, HT108, HUVEC, HEPG,
NHEK, SKMEL, SKNS and HESC are 1.1, 13.5, 7.6, 10.7,
10.6, 10.2, 6.4, 15.5, 9.0 and 3.4%, respectively. According
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Figure 3. Average performance of tree-based algorithms with 10 different feature descriptors for 10 different cell types, based on the independent
datasets. Each of the A–J columns represents a different cell line, namely: A549, GM128, HELA, HEPG, HESC, HT1080, HUVEC, NHEK, SKMEL and SKNS.

to this analysis, TACOS’s improvement is remarkable
compared with the existing method.

Feature relevant analysis between the 10
probabilistic features
The TACOS model has 10 different feature descriptors,
each of which was used to generate a probabilistic fea-
ture using an AB classifier. Next, we evaluated whether
the 10 feature models were equally relevant to differ-
ent species. Figure 7 illustrates a cluster heat map of
the correlations between the 10 probabilistic features,
which provides answers to the question raised above. The
results showed that the probabilistic features based on
F2, F3, F4, F5, F6 and KC descriptors were highly corre-
lated with each other. Nevertheless, the two probabilistic
features based on PseKNC and CKSNAP were moderately
correlated with the other features. Accordingly, these fea-
tures complement each other to improve the prediction
accuracy. Meanwhile, it is evident that the pattern of
feature correlation is similar among all the cell types.

Further analysis based on different cell types is required
to confirm the levels of different features contributions
in the final prediction.

Feature visualization
We used t-distributed stochastic neighbor embedding
(t-SNE) to transform high-dimensional data into two-
dimensional maps. On the training datasets, we applied t-
SNE to hybrid features as well as to probabilistic features
for all 10 cell types. Supplementary Figure S11 illustrates
that the hybrid features of the positive and negative
samples are highly overlap, regardless of the cell type.
In contrast, the probabilistic features (predicted output
of AB-based baseline models) depicted two distinct clus-
ters, with little overlap between the two samples for
A549 and HESC cells (Supplementary Figure S12). The
feature distribution was directly correlated with the per-
formance, where A549 and HESC produced ACC val-
ues of 0.823 and 0.813, respectively. The remaining cell
types achieved an ACC in the range of 70–80.0%, but

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac243#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac243#supplementary-data
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Table 2. Comparison of the performance of different strategies for different cell types using the training and independent datasets

Training Independent

Cell types Strategy Classifier MCC ACC Sn Sp AUC MCC ACC Sn Sp AUC

A549 S1 GB 0.616 (0.010) 0.806 (0.005) 0.854 (0.021) 0.759 (0.019) 0.885 (0.005) 0.452 0.752 0.803 0.739 0.836
S2 AB 0.649 (0.010) 0.823 (0.004) 0.855 (0.019) 0.792 (0.013) 0.902 (0.002) 0.476 0.786 0.757 0.794 0.861
S3 XGB 0.656 (0.003) 0.827 (0.001) 0.857 (0.014) 0.797 (0.011) 0.906 (0.001) 0.442 0.784 0.692 0.807 0.848

GM12878 S1 GB 0.416 (0.023) 0.706 (0.012) 0.774 (0.020) 0.638 (0.037) 0.784 (0.011) 0.227 0.701 0.756 0.697 0.787
S2 XGB 0.466 (0.015) 0.732 (0.008) 0.746 (0.017) 0.719 (0.032) 0.816 (0.010) 0.312 0.809 0.734 0.814 0.832
S3 GB 0.484 (0.013) 0.742 (0.006) 0.741 (0.007) 0.742 (0.015) 0.830 (0.008) 0.264 0.810 0.634 0.823 0.816

HELA S1 AB 0.519 (0.017) 0.759 (0.009) 0.788 (0.001) 0.729 (0.011) 0.836 (0.010) 0.327 0.782 0.666 0.796 0.802
S2 XGB 0.550 (0.018) 0.775 (0.009) 0.792 (0.015) 0.757 (0.009) 0.855 (0.009) 0.369 0.811 0.672 0.828 0.805
S3 RF 0.556 (0.019) 0.778 (0.009) 0.792 (0.014) 0.764 (0.009) 0.862 (0.011) 0.358 0.814 0.643 0.834 0.818

HT1080 S1 AB 0.477 (0.021) 0.738 (0.010) 0.742 (0.038) 0.734 (0.023) 0.825 (0.007) 0.311 0.697 0.634 0.716 0.746
S2 GB 0.493 (0.027) 0.746 (0.014) 0.735 (0.017) 0.758 (0.016) 0.835 (0.008) 0.327 0.718 0.608 0.753 0.762
S3 RF 0.512 (0.010) 0.756 (0.005) 0.745 (0.016) 0.767 (0.014) 0.847 (0.006) 0.303 0.701 0.608 0.731 0.746

HUVEC S1 AB 0.400 (0.023) 0.700 (0.011) 0.737 (0.046) 0.662 (0.034) 0.782 (0.012) 0.173 0.698 0.598 0.707 0.727
S2 ERT 0.435 (0.035) 0.717 (0.017) 0.701 (0.029) 0.734 (0.022) 0.800 (0.013) 0.200 0.772 0.526 0.792 0.741
S3 RF 0.438 (0.030) 0.719 (0.015) 0.704 (0.023) 0.733 (0.026) 0.808 (0.010) 0.182 0.755 0.524 0.774 0.738

HEPG S1 AB 0.467 (0.010) 0.732 (0.005) 0.785 (0.016) 0.679 (0.016) 0.812 (0.007) 0.298 0.761 0.705 0.766 0.807
S2 LGB 0.490 (0.007) 0.741 (0.004) 0.829 (0.019) 0.653 (0.022) 0.829 (0.006) 0.314 0.775 0.705 0.782 0.806
S3 GB 0.517 (0.016) 0.758 (0.008) 0.785 (0.007) 0.731 (0.014) 0.841 (0.009) 0.307 0.787 0.663 0.800 0.810

NHEK S1 AB 0.479 (0.021) 0.739 (0.011) 0.759 (0.018) 0.719 (0.030) 0.830 (0.010) 0.233 0.742 0.573 0.763 0.767
S2 XGB 0.508 (0.022) 0.754 (0.010) 0.755 (0.019) 0.752 (0.014) 0.845 (0.010) 0.289 0.774 0.611 0.794 0.764
S3 GB 0.522 (0.028) 0.761 (0.014) 0.758 (0.023) 0.764 (0.013) 0.850 (0.013) 0.207 0.749 0.516 0.777 0.733

SKMEL S1 XGB 0.341 (0.013) 0.670 (0.006) 0.697 (0.027) 0.644 (0.030) 0.735 (0.015) 0.229 0.688 0.681 0.688 0.742
S2 ERT 0.411 (0.025) 0.705 (0.012) 0.738 (0.020) 0.672 (0.006) 0.792 (0.009) 0.288 0.765 0.654 0.777 0.782
S3 GB 0.426 (0.014) 0.712 (0.006) 0.752 (0.021) 0.673 (0.009) 0.796 (0.008) 0.237 0.736 0.615 0.749 0.770

SKNS S1 AB 0.547 (0.010) 0.772 (0.005) 0.822 (0.010) 0.723 (0.010) 0.857 (0.004) 0.274 0.712 0.775 0.707 0.825
S2 ERT 0.580 (0.009) 0.789 (0.004) 0.815 (0.004) 0.764 (0.008) 0.873 (0.002) 0.355 0.806 0.749 0.811 0.862
S3 RF 0.583 (0.010) 0.791 (0.005) 0.819 (0.006) 0.763 (0.008) 0.874 (0.003) 0.333 0.798 0.725 0.804 0.853

HESC S1 AB 0.613 (0.016) 0.806 (0.008) 0.821 (0.006) 0.791 (0.012) 0.885 (0.006) 0.452 0.795 0.775 0.799 0.873
S2 ERT 0.626 (0.015) 0.813 (0.008) 0.825 (0.006) 0.801 (0.014) 0.894 (0.005) 0.474 0.808 0.783 0.813 0.881
S3 ERT 0.642 (0.013) 0.821 (0.007) 0.832 (0.004) 0.810 (0.014) 0.898 (0.006) 0.435 0.797 0.737 0.807 0.841

The first column indicates the cell type. Each cell type consists of three different strategies whose performance on training and independent datasets is
described. In the training metrics, two values indicate average values from cross-validation, and a standard error is included in brackets.

feature overlaps between positive and negative samples
still exist, suggesting that adopting novel feature encod-
ing will improve prediction performance and distinguish
positively and negatively skewed samples.

Cross-model validation
It is common for a cell-specific model to perform excep-
tionally well with its own cell type. Specifically, we inves-
tigated whether a cell-specific model could be applied
to other cell types. As shown in Figure 8, some cell-
specific models had excellent transferability to other
cell types, with MCC ≥0.50. The GM12878 model demon-
strated good performance in six other cell types, includ-
ing A549, HELA, HT1080, HUVEC, HEPG and SKMEL. Sim-
ilarly, the HELA model was transferrable to three other
types: HEPG, HT1080 and GM12878. Additionally, A549,
HT1080 and HUVEC models were transferrable to other
two cell types, indicating that cell-specific models per-
form reasonably well on other types as well. However,
the four cell-specific models (NHEK, SKMEL, SKNS and
HESC) were not transferable to other types of cells, sug-
gesting that cell specificity is the dominant character-
istic of these lncRNA sequences. Based on our analysis,
we found that highly accurate predictions required cell-
specific models. Additionally, this provides a clue for
developing a generic model by combining six cell types

(A549, GM12878, HELA, HT108, HEPG and NHEK). Generic
models can also be applied to other cell types by com-
promising a slightly lower performance than cell-specific
models.

Limitations of the current study
Although TACOS can predict cell-specific lncRNA local-
ization, it has the following limitations:

(i) TACOS is an ML-based approach based on multiple
manually derived features derived from sequences. It
is widely recognized that the effectiveness of ML mod-
els is highly dependent on the feature representations
used during training [29–31]. Accordingly, this study only
considered composition and physicochemical properties.
Further improvements in the prediction performance
may be achieved by incorporating features based on
other perspectives, including evolutionary information
and novel features, based on extensive sequence anal-
ysis. Therefore, in future, we plan to explore and incor-
porate this information to improve the performance.

(ii) TACOS predicts subcellular localization based
on the assumption that a given sequence belongs to
a lncRNA. It is necessary to use another prediction
model to identify lncRNAs from given RNA sequences
before TACOS can be used. Currently, a few methods are
available for identifying lncRNAs from RNA sequences
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Figure 4. Comparison of the performance of optimal models derived from various strategies. Three different models [strategy 1 (S1), strategy 2 (S2) and
strategy 3 (S3)] are compared based on cross-validation for each type of cell in (A) and independent assessments are shown in (B).

Figure 5. Performance comparison between baseline and TACOS models. (A) and (B) represent the average performance on 10 cell types over training
and independent datasets, respectively.

[50, 51]. It is recommended to use these methods to
identify lncRNAs before using TACOS. An additional
prediction model will be integrated with TACOS in
the future, able to identify lncRNAs and subcellular
localization based upon the given mRNA sequence.

Conclusion
In this study, we present a method called TACOS that
allows accurate identification of the subcellular local-

ization of human cell-specific lncRNAs using multiple
feature encodings and tree-based algorithms. In order to
identify the most suitable ML algorithm, we conducted a
comprehensive performance evaluation of six different
tree-based algorithms using 10 different feature descrip-
tors. On average, AB-based baseline models performed
well for all cell types in both cross-validation and inde-
pendent assessment.

Subsequently, an optimal tree-based algorithm was
utilized to construct the stacking model, using the
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Figure 6. Performance comparison between TACOS and lncLocator 2.0 for different cell types.

Figure 7. Cluster heatmap of the correlation between the 10 feature types in different cell types. (A–J) represents the correlation heatmap in A549,
GM128, HELA, HT108, HUVEC, HEPG, NHEK, SKMEL, SKNS and HESC, respectively.

predicted probability values from 10 AB-based baseline
models for each cell type to improve the prediction per-
formance. Our approach differs from the previous meth-
ods because we developed TACOS using a balanced train-
ing dataset and evaluated it using a large imbalanced
independent dataset. TACOS performed consistently well
on both datasets (training and independent) compared
with the two other strategies employed in this study.

The improved performance of TACOS is attributed to
three factors: (i) the exploration of extensive feature
descriptors that include different aspects of RNA
sequence information, (ii) the selection of AB-specific
baseline models and (iii) the identification of an appro-
priate classifier for building a stacking model that
incorporates the strength of baseline models. It should
be noted that the tree-based approaches employed
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Figure 8. Cluster heat map showing the cell-specific prediction accuracies in terms of MCC. The cell-specific model was established on its own training
dataset in columns, and it was validated on its own or other cell training datasets in rows.

in this study are applicable to other sequence-based
function prediction problems [52], including enhancer
prediction [53] and replication origin site prediction [54].
In future studies, a systematic approach similar to that
used in this study will be employed if more than two
locations with a reasonable dataset size are publicly
available. Moreover, we developed the TACOS webserver
and made them freely available at https://balalab-skku.
org/TACOS. TACOS is expected to be an invaluable
tool for experimentalists to identify the subcellular
localization of lncRNAs, which will be useful for carrying
out subsequent experiments to better understand its
function.

Key Points

• A new computational framework known as TACOS was
introduced and implemented as a web server for the pre-
diction of cell-specific long noncoding RNA subcellular
locations in the human genome.

• TACOS uses tree-based algorithms along with various
sequence compositional and physicochemical features.

• Benchmarking experiments demonstrate that TACOS
outperforms its constituent baseline models on both

training and independent datasets, thus making it a
powerful generalization tool.

• The webserver of TACOS is publicly available at https:
//balalab-skku.org/TACOS.

Supplementary Data
Supplementary data are available online at https://acade
mic.oup.com/bib
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