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Macrophages are critical components of atherosclerotic lesions and their pro- and anti-

inflammatory responses influence atherogenesis. Type-I interferons (IFNs) are cytokines

that play an essential role in antiviral responses and inflammatory activation and

have been shown to promote atherosclerosis. Although the impact of type-I IFNs on

macrophage foam cell formation is well-documented, the effect of lipid accumulation

in monocytes and macrophages on type-I IFN responses remains unknown. Here we

examined IFN stimulated (ISG) and non-ISG inflammatory gene expression in mouse

and human macrophages that were loaded with acetylated LDL (acLDL), as a model for

foam cell formation. We found that acLDL loading in mouse and human macrophages

specifically suppressed expression of ISGs and IFN-β secretion, but not other pro-

inflammatory genes. The down regulation of ISGs could be rescued by exogenous

IFN-β supplementation. Activation of the cholesterol-sensing nuclear liver X receptor

(LXR) recapitulated the cholesterol-initiated type-I IFN suppression. Additional analyses

of murine in vitro and in vivo generated foam cells confirmed the suppressed IFN signaling

pathways and suggest that this phenotype is mediated via down regulation of interferon

regulatory factor binding at gene promoters. Finally, RNA-seq analysis of monocytes of

familial hypercholesterolemia (FH) patients also showed type-I IFN suppression which

was restored by lipid-lowering therapy and not present in monocytes of healthy donors.

Taken together, we define type-I IFN suppression as an athero-protective characteristic of

foamy macrophages. These data provide new insights into the mechanisms that control

inflammatory responses in hyperlipidaemic settings and can support future therapeutic

approaches focusing on reprogramming of macrophages to reduce atherosclerotic

plaque progression and improve stability.
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INTRODUCTION

Cardiovascular disease remains the leading cause of death
globally with atherosclerosis as the major underlying cause (1, 2).
Atherosclerosis is initiated by endothelial dysfunction caused
by conventional risk factors such as hypercholesterolemia, high
blood pressure, smoking, a lack of exercise, and an unhealthy diet
(3–7). Familial hypercholesterolemia (FH) patients have elevated
levels of serum low density lipoprotein (LDL) that have been
associated with premature atherosclerosis (1, 3–5). Lifelong LDL
cholesterol-lowering treatment effectively reduces cardiovascular
events in FH patients.

In atherogenesis, LDL is modified within the arterial
wall triggering endothelial and immune cell activation and
subsequent recruitment of immune cells like monocytes
(8). When monocytes enter the arterial intima, they
differentiate into macrophages (9). The complex atherosclerotic
microenvironment drives the formation of multiple macrophage
subsets, including inflammatory and foamy macrophages (10–
14). The various functions that macrophages can acquire are
essential for atherosclerotic plaque development, stability and
clinical outcome (9, 15, 16).

Macrophages can take up excessive amounts of modified
LDL [e.g., oxidized (oxLDL) and acetylated LDL (acLDL)] using
scavenging receptors causing macrophage foam cell formation
(17). Lipid accumulation in foamy macrophages activate nuclear
receptors, including the liver X receptor (LXR) (18). LXRs
stimulate lipid efflux via upregulation of the lipid ATP-
binding cassette transporters ABCA1 and ABCG1, but are
also important for macrophage survival and immune responses
(19, 20). LXR activation antagonizes NF-κB signaling and its
deficiency decreases control of intracellular bacterial growth in
macrophages (21).

Under homeostatic conditions, immune cells maintain low-
levels of IFN-β in an autocrine fashion that is required for
a rapid response to environmental cues, e.g., the production
of other type-I IFNs (IFN-α/β) and its downstream signaling
pathways (22). Therefore, in response to intra-and extracellular
stimulation of pattern recognition receptors (PRR) with foreign
substances, immune cells are capable of producing large amounts
of type-I IFNs. Once secreted, type-I IFNs bind to their
receptors (IFNAR1/2) on nearby cells and thereby leading to
the phosphorylation and nuclear translocation of transcription
factors such as Signal Transducer and Activator of Transcription
(STATs) and IFN regulatory factors (IRFs) (23, 24). IRFs
and STATs can form complexes and bind to DNA sequences
containing IFN-sensitive response element (ISRE) triggering
a diverse group of IFN-stimulated genes (ISGs) with various
functions (25). Of note, IRF7 is itself an ISG, but also can bind
to the promoter region of IFNB1 and IFNA and thereby serves
as one of the key regulators of type-I IFN autocrine feedback
loop (26–28).

Studies have investigated the effect of IFN-α/β and its
downstream signaling on lipid metabolism in monocytes and
macrophages. While evidence suggested that IFN stimulation
reduced cholesterol synthesis in macrophages (29), many studies
showed type-I IFN exposure triggered cholesterol uptake (30,

31), lipid accumulation (32) and foam cell formation (30, 33).
Furthermore, in a mouse model for atherosclerosis, IFN-β
treatment accelerated lesion formation whereas myeloid-specific
IFNAR1 deletion resulted in a more favorable atherosclerotic
phenotype (34), suggesting a pro-atherogenic feature of type-
I IFNs. However, the role of lipid exposure and metabolism
on the type-I IFN response is still unknown. By defining this
mechanistic link, macrophage subsets may be amended toward
desired phenotypes using clinical therapeutic agents. In this
way, reprogramming of macrophages can be applied to reduce
atherosclerotic plaque progression and improve stability.

In this study, we demonstrate that lipid-loaded foamy
macrophages of mice and men show perturbated type-I IFN
responses caused by defective IFN-β production. This suppressed
IFN response can be rescued by exogenous IFN-β treatment.
Furthermore, we demonstrate that monocytes of untreated
FH patients also show a deactivated IFN signature. In these
FH patients, lipid-lowering treatment restored the type-I IFN
response. These findings are of considerable interest for the
understanding of regulation of macrophages in the context
of lipid-related diseases, like atherosclerosis and FH, and
viral infections.

MATERIALS AND METHODS

Mice
Ldlr−/− mice (on a C57Bl/6 background) were housed at the
Animal Research Institute Amsterdam UMC (ARIA). All mice
experiments were conducted after approval of the Committee for
Animal Welfare (University of Amsterdam).

Bone Marrow-Derived Macrophages
Bone marrow cells were isolated from the hind limbs of
C57Bl/6 mice and cultured in RPMI-1640 medium, with
10% heat inactivated fetal bovine serum (FBS), penicillin
(100 U/ml), streptomycin (100µg/ml), 2 mML-glutamine (all
purchased from ThermoFisher), and 15% L929-conditioned
medium containing M-CSF. Bone marrow-derived macrophages
(BMDMs) were generated by culturing the cells for 7 days.
Next, BMDMs were loaded overnight with 50µg/mL human
acetylated LDL (KyvoBio) to induce macrophage foam cell
formation, and were the next day stimulated with 10 ng/mL
lipopolysaccharide (LPS from Escherichia coli; O111:B4; Sigma)
or 50 ng/mL rmIFN-β (R&D Systems 8234-MB) as indicated
(for 6 or 24 h). For serial dilution experiment, rmIFN-β was
applied with the concentration as indicated in the figure. When
indicated, BMDMs were stimulated with 2µM LXR-agonist
GW3965 (Sigma) for 17 h.

IFN-β ELISA
Non-foamy and acLDL-loaded BMDMs prepared as described
above, followed by LPS stimulation for 6 h. Supernatant were
collected and the IFN-β concentration was measured using the
mouse IFN-beta DuoSet enzyme-linked immunosorbent assay
(ELISA) kit (R&D Systems) according to manufacturer’s protocol
with no additional dilution.
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Human Monocyte-Derived Macrophages
Buffy coats of healthy anonymous blood donors were obtained
from Sanquin blood bank in Amsterdam, the Netherlands.
All the subjects provided written informed consent. Human
monocyte-derived macrophages (hMDMs) were prepared as
previously described (35). In short, CD14+ monocytes were
isolated with LymphoprepTM (Axis-Shield) followed by MACS
CD14 magnetic beads (Miltenyi) purification. The resulting
monocytes were seeded at a density of 0.8 million cells/well
on 24-well tissue culture plates (Greiner) and differentiated to
macrophages with 50 ng/mL human M-CSF (Miltenyi) for 6
days in Iscove’s Modified Dulbecco’s Medium (life technology)
containing 10% heat-inactivated fetal bovine serum (Gibco), 1%
penicillin/streptomycin solution (Gibco) and 1% L-glutamine
solution (Gibco). After differentiation, hMDMs were loaded 18 h
with 50µg/mL human acetylated LDL (Invitrogen) followed by
50 ng/mL IFN-β (R&D) stimulation or remained untreated.

Gene Expression Analysis by qPCR
Total RNA was isolated using the GeneJET RNA Purification kit
(Thermo). cDNA synthesis was then performed using the iScript
cDNA synthesis kit (Biorad), followed by quantitative real-time
PCR with Sybr Green Fast Mix. qPCR was performed on a Viia7
Real-time PCR system (Applied Biosystems). The delta-delta Ct
(2−11Ct) method was used to calculate the relative fold change
of qPCR data using the housekeeping genes: HPRT1 and RACK1
for human, and Actb, Gapdh, and Ptgs1 for mouse data. Primer
sequences are shown in Supplementary Table 3.

RNA Sequencing and Bioinformatics for
BMDMs
RNA was isolated from BMDMs using the RNeasy Mini Kit
(QIAGEN) with DNase treatment. 700 ng RNA was used
for Illumina library construction. RNA amplification, cDNA
generation, and adaptor ligation were performed using the KAPA
mRNA HyperPrep Kit (Roche) following the manufacturer’s
instructions. Samples were pooled, diluted to 10 nM, and
sequenced single-end on an Illumina HiSeq 4,000 system
(Illumina) to a depth of ± 20 million reads with a length
of 50 base pairs. Reads were aligned to the mouse genome
mm10 by STAR 2.5.2b with default settings (36). BAM files were
indexed and filtered on MAPQ >15 with v1.3.1 SAMtools (37).
Raw tag counts and reads per kilobase million (RPKM) per
gene were summed using HOMER2’s analyzeRepeats.pl script
with default settings and the -noadj or -rpkm options for raw
counts and RPKM reporting (38). Differential expression was
assessed using the DESeq2 Bioconductor package in an R 3.6.3
environment (39).

Familial Hypercholesterolemic Patients
and Healthy Subjects
The study population, design, and further processing of these
human study subjects and their samples have been extensively
described (40). Briefly, untreated FH patients who indicated
to start lipid-lowering therapy (statin, PCSK9 antibody, and/or
ezetimibe) according to their treating physician were included.
The healthy controls were age, sex, and body mass index (BMI)

matched with the FH patients. After inclusion, FH patients
fasted for at least 9 h before blood samples were drawn for
lipid measurements and monocyte isolation. This was repeated
after 12 weeks of lipid-lowering therapy. The healthy controls
underwent these procedures once. All participants provided
written informed consent. The study protocol was approved by
the ethics committee of the AmsterdamUMC and was conducted
according to the principles of the Declaration of Helsinki.

RNA Sequencing and Bioinformatics for
Human Monocytes
Monocytes were isolated as described above. Monocytes were
lysed using TriPure (Sigma Aldrich) and stored at −80◦C
until further processing. For RNA isolation, 0.2mL chloroform
was added per mL of TriPure. Next, samples were spinned
at 12,000 g for 15’ at 4◦C. Subsequently, the aqueous phase
was added to 450 µl isopropanol containing GlycoBlue. Next,
tubes were shaken vigorously, chilled for 30min at −20◦C
and centrifuged at 12,000 g for 10’ at 4◦C. RNA pellets were
washed twice with 75% ethanol and pellets were air-dried at
RT and resuspended in nuclease-free H2O. RNA-seq libraries
were prepared, including rRNA depletion, by using the NEBNext
Ultra II Directional RNA Library Prep Kit for Illumina according
to manufacturer’s instructions. Poly-A containing transcripts
were sequenced on an Illumina Novaseq 6,000 instrument to
a depth of ± 20 million reads by GenomeScan. Reads were
aligned to the human reference genome (hg38) using a short-
read aligner based on Burrows-Wheeler Transform with default
settings (41). Binary alignment map (BAM) files were sorted
on coordinates and indexed with the samtools v1.3 package
(37). Normalized read count values were calculated. Differential
expression was assessed using the DESeq2 Bioconductor package
in an R V.3.6.3 programming environment with gene expression
called differential with a false discovery rate (FDR) <0.05 and
a median read count >1 in at least one group (39). Presented
normalized counts were tested using one-way analysis of variance
(ANOVA) followed by Bonferroni’s comparisons test.

Genome-Wide Transcriptomic Data
Analysis
Upstream regulator analysis and regulatory network analysis
were performed on Ingenuity Pathway Analysis (Ingenuity
System Inc., USA). Pathway overrepresentation analysis was
conducted on Meta scape platform [http://metascape.org; (42)].
Known transcription factor motif analysis on gene subsets was
performed by using HOMER (v4.11) with the following setting:
findMotis.pl “genelist” -start−200 -end 100 -len 8, 10, 12 (38).

Data Availability
Public transcriptomic data sets used in the current study
are available in the Gene Expression Omnibus (GEO): (1)
GSE118656: acLDL-loaded BMDMs (43) (2) GSE42061:
peritoneal macrophages derived from wildtype or Apoe−/−

mouse (44), and (3) GSE6054: Monocytes from familial
hypercholesterolemia patients (45). RNA-seq data of the
BMDMs treated with the LXR-agonist GW3965 or DMSO are
deposited in the Gene Expression Omnibus (GEO) under the
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accession number: GSE193118. RNA-seq data of the monocytes
from familial hypercholesterolemia patients and healthy subjects
are deposited in GEO under the accession number: GSE192709
(processed data) and EGA (raw data).

Statistical Analysis
Except genome-wide transcriptomic data, statistical analyses
were performed using GraphPad Prism 9.1.0 (GraphPad
Software). For single comparison tests, paired or unpaired
t-tests were applied based on the experiment design. For
multiple comparison tests, one-way, two-way analysis of variance
(ANOVA) or multiple t-tests were conducted on the basis of the
addressed question.

RESULTS

Macrophage Foam Cell Formation Leads
to Decreased Expression of IFN-β and Its
Targets
To determine the effect of macrophage foam cell formation
on type-I IFN responses, murine bone marrow cells were
differentiated to macrophages (BMDMs) and subsequently
treated with acLDL or left untreated as control. Foamy and
non-foamy macrophages were subsequently stimulated with
IFN-β or kept untreated for 6 h (Figure 1A). Macrophage
foam cell formation resulted in a significant upregulation
of the cholesterol efflux transporter genes Abca1 and Abcg1,
compared to non-foamy macrophages, indicating proper
foam cell formation (46); (Figure 1B). Interestingly, we found
that macrophage lipid loading significantly suppressed the
transcription of Ifnb1 (Figure 1C), as well as several members
of its downstream ISGs, including IFN-induced protein with
tetratricopeptide repeats 1 (Ifit1), Ifit3, Isg15, MX dynamin like
GTPase 1 (Mx1), C-X-C motif chemokine ligand 10 (Cxcl10),
Ccl5 and Cxcl9 (Figure 1D; Supplementary Figure 1A).
Remarkably, most of these differences disappeared after
subsequent stimulation with exogenous IFN-β suggesting that
foam cells remained responsive to IFN-β, while some differences
persisted (Supplementary Figure 1A). This cholesterol loading-
induced immunomodulation seemed to be IFN-specific since
other pro-inflammatory genes, such as Tnf, Cd86, and Il6
were not affected (Figure 1E). Furthermore, IFN-responsive
transcription factors, Stat1, Stat2, and Irf7 show the same
regulation pattern as the ISGs (Supplementary Figure 1B). To
test whether IFN-β secretion was down regulated by foam cell
formation, we stimulated macrophages with LPS and found
IFN-β secretion to be significantly decreased after acLDL-
loading compared to controls (Figure 1F). This indicates that
macrophage foam cell formation hampers the endogenous
IFN pathways.

Exogenous IFN-β Treatment Rescues the
Cholesterol-Initiated Type-I IFN
Suppression
To determine whether the suppression of ISGs was solely
caused by the reduced IFN-β production in the context of

lipid loading, we tested whether the expression of the ISGs
changed when different doses of exogenous IFN-β were applied
on foam cells and control macrophages. A concentration range
(from 1.5 pg/mL to 50 ng/mL) of IFN-β was administered to
acLDL-loaded and untreated mouse BMDMs. In line with our
previous observations, acLDL loading increased the expression
of Abca1 and Abcg1 (Supplementary Figure 2A), and many
ISGs including Ifit1, Ifit3, Isg15, Mx1, Cxcl10, Stat1, Stat2, and
Irf7 were suppressed by acLDL loading which suppression was
rescued by exogenous IFN-β treatment (Figure 2A). Moreover, a
strong dose-dependent effect of IFN-β on the ISGs was observed,
although a few ISGs (Cxcl9 and Ccl5) were not rescued by IFN-
β administration (Supplementary Figure 2B) whereas the non-
ISG pro-inflammatory cytokine Il6 again showed no differences
with or without acLDL loading (Supplementary Figure 2C).
Previous studies have shown that macrophages maintain
constitutive production of low levels of type-I IFNs for
rapid response to pathogen activation (22). Our data suggest
that lipid-loading disrupts this basal macrophage type-I IFN
autocrine/paracrine loop through suppressing the homeostatic
production of IFNs.

Stimulation of the Cholesterol-Sensing
Nuclear Receptor LXR Recapitulates the
Cholesterol-Initiated Type-I IFN
Suppression
Liver X receptors (LXRs) are cholesterol-sensing transcription
factors regulating lipid metabolism and transport, also impacting
on inflammatory signaling in macrophages (19). LXR activation
is a classical transcriptional response upon lipid loading (18).
To determine whether the cholesterol-initiated type-I IFN
suppression might be mediated via LXR, a synthetic LXR agonist
(GW3965) was administered to BMDMs. Interestingly, LXR
activation led to a clear suppression of ISGs, a signature that
resembles that of lipid-laden macrophages (Figure 2B). This
indicates that the lipid-driven type-I IFN suppression may be
mediated through LXR activation.

Lipid-Loading Affects the Expression of
ISGs Associated With IRF Promoter Motifs
To further explore the underlying mechanism of the lipid-
induced IFN suppression, we analyzed the transcriptome of
acLDL-treated and untreated BMDMs using a publicly available
dataset (GSE118656) (43). In line with our data, we found
decreased ISG expression (Ifit2, Isg15, Cxcl10, Oas1a, Irf7, and
Stat1) in acLDL-loaded macrophages (Figure 3A). Pathway
analysis of significantly down regulated genes showed that the
responses to IFNs and viral infections were the most affected
biological processes (Figure 3B), while lipid metabolism was a
top hit in the upregulated genes (Supplementary Figure 3A).
Furthermore, upstream regulator analysis identified IFNs (IFN-α
and IFN-γ), type-I IFN receptor (Ifnar), and the transcription
factors STAT1, IRF3, and IRF7 as the most inhibited upstream
regulators in acLDL-loaded macrophages (Figure 3C, green
bars). IRF3 and IRF7 are the key transcription factors that
mediate the transcription of type-I IFNs (15, 47, 48). The
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FIGURE 1 | acLDL exposure suppresses type-I IFN gene programs in BMDMs. (A) Schematic plot showing the protocol of generating foamy BMDMs with 16-h

(50µg/mL) acLDL exposure. Subsequently, these foamy macrophages were treated with (50 ng/mL) or without IFN-β for 6 h and mRNA expression of type-I interferon

genes was determined. (B) mRNA expression of the cholesterol efflux transporters Abca1 and Abcg1 was measured as a control for lipid loading using qPCR. (C)

Ifnb1 mRNA expression of unstimulated, acLDL, and/or IFN-β stimulated BMDMs measured by qPCR. (D) Ifit1, Ifit3, Isg15, Mx1, and Cxcl10 mRNA expression of

unstimulated, acLDL and/or IFN-β stimulated BMDMs measured by qPCR. (E) Tnf, Cd86, and Il6 mRNA expression of unstimulated, acLDL and/or IFN-β stimulated

BMDMs. (F) IFN-β production in supernatant of foamy and non-foamy BMDMs that were stimulated with LPS for 6 h. ns, not significant, *P < 0.05, **P < 0.01, ***P <

0.001. (B–E) n = 3 and (F) n = 6 biological replicates per group.

importance of IRFs in the lipid-driven type-I IFN suppression
was confirmed by a constructed regulatory network of the
foamy BMDMs transcriptome (Supplementary Figure 3C).
Moreover, the anti-inflammatory macrophage-associated
upstream regulators SIRT1 (49, 50), SOCS1 (51), and IL-10
receptor (IL10R) (52–54) were activated in the foamy BMDMs
(Figure 3C, orange bars). Furthermore, studies have shown that
these regulatory factors suppress IFN responses (49, 51, 52, 54),
confirming the suppressive role of cholesterol accumulation to
type-I IFN suppression. Further focusing on the transcriptional
control, motif enrichment analysis of down regulated genes in
acLDL-loaded BMDMs showed a clear enrichment of genes

harboring IRFs and IFN-sensitive response element (ISRE)
motifs in the promoter regions (Figure 3D). These data suggest
that the type-I IFN suppression induced by lipid loading, is likely
mediated via suppression of the upstream IRFs.

Foamy Peritoneal Macrophages Show a
Similar Reduction in ISG Expression
Next, to investigate whether lipid loading affects the macrophage
IFN response in vivo as well, we analyzed microarray data of
foamymacrophages frommice in published datasets (GSE42061)
(44). Macrophage foam cell formation increased the expression
of Abca1 and Abcg1 in peritoneal macrophages from Apoe−/−
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FIGURE 2 | IFN-β exposure reverses acLDL-suppressed type-I interferon response in BMDMs. (A) mRNA expression of type-I interferon stimulated genes in BMDMs

after a total of 24 h of acLDL exposure combined with different concentrations (1.5 pg/mL to 50 ng/mL) of IFN-β for 6 h of stimulation. The transcriptional suppression

of Cxcl10, Isg15, Ifit1, Ifit3, Stat1, Stat2, and Mx1 that was induced by acLDL loading was reversed after IFN-β exposure. (B) Heatmap indicating the row z score of

the cholesterol loading-responsive genes Abca1 and Abcg1, and genes the type-I interferon response of BMDMs treated with LXR agonist (GW3965) or DMSO for

17 h. (A,B) n = 3 biological replicates per group. ns, not significant, *P < 0.05, **P < 0.01.

compared to WTmice (Figure 3E). In line with our in vitro data,
we observed suppression of ISGs in foam cells from Apoe−/−

mice (Figure 3E). Pathway analysis of the down-regulated
genes showed suppressed IFN response in the peritoneal
macrophages (PMs) derived from hypercholesterolemic mice
(Figure 3F). Upstream regulator analysis (Figure 3G) and
motif (Figure 3H) analysis indicated lipid-suppressed IFN-
signaling via IRFs in macrophages. Furthermore, the regulatory

network of PMs derived from hypercholesterolemia mice
(Supplementary Figure 3C) enclosed IRFs, including IRF3 and
IRF7, that were highly connected to IFN-β and the affected
biological processes. Taken together, our analyses revealed
that cholesterol accumulation in macrophages dampens the
IFN response, both in vitro and in vivo, which is likely
through suppressing IRF expression and the subsequent type-I
IFN production.
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FIGURE 3 | Transcriptomic analysis shows suppressed IFN signaling in foamy macrophages in different mouse models. (A) Volcano plot of RNA-seq data showing

the log2FC and -log10(FDR) of acLDL-treated macrophages with downregulated genes in green and upregulated genes in orange. (B) Pathway enrichment analysis of

significantly downregulated genes (FDR<0.05) in acLDL-loaded macrophages. (C) Upstream regulators predicted by the Ingenuity Pathway Analysis (IPA) software of

acLDL-loaded vs. untreated macrophages. (D) Motif enrichment analysis showed an enrichment of interferon-related motifs among the down-regulated genes in

acLDL-loaded macrophages. (E) Volcano plot of RNA-seq data showing the log2FC and -log10 (FDR) of peritoneal macrophages (PMs) derived from Apoe−/−

compared to WT, with downregulated genes in green and upregulated genes in orange. (F) Pathway enrichment analysis of significantly downregulated genes (FDR

<0.05) in Apoe−/− PMs. (G) Upstream regulators predicted by the IPA software of Apoe−/− vs. WT PMs. (H) Motif enrichment analysis showed an enrichment of

interferon-related motifs among the down-regulated genes in Apoe−/− PMs. (A–D) raw data obtained from GSE118656 and (E–H) GSE42061.
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Cholesterol-Loading in Human
Macrophages Suppresses Type-I IFN
Response
To translate our findings to human, we applied the same lipid
loading strategy using acLDL in hMDMs followed by IFN-β
treatment (Figure 4A). Cholesterol loading was associated
with an expected increased expression of the cholesterol efflux
transporters ABCA1 and ABCG1 (Figure 4B). As we observed
in mouse macrophages, cholesterol loading in hMDMs caused
a reduced expression of ISGs, including IFIT1, MX1, CXCL9,
and CXCL10 (Figure 4C). Genes upstream of ISGs, including
IFNB1 (Supplementary Figure 4A) and IFN regulatory
factors IRF3, IRF7, and IRF8 (Supplementary Figure 4B)
were also suppressed, supporting the concept of perturbated
IFN-autocrine loop by cholesterol accumulation in human
macrophages. In line with the mouse data, we did not
observe this effect in non-ISG inflammatory genes such as
IL1B, IL6, CXCL8, and TNF, confirming an IFN signaling-
specific effect (Supplementary Figure 4C). This indicates that
cholesterol loading also hampers the type-I IFN responses in
human macrophages.

Lipid Accumulation in Monocytes of
Hypercholesterolemia Patients Results in
Type-I IFN Suppression Which Is Reversed
After Lipid-Lowering Treatment
We have previously shown that peripheral monocytes from
FH patients accumulate lipids (55). To determine whether the
suppressed IFN signature is also observed in monocytes
of FH patients, we performed RNA-seq of peripheral
monocytes derived from FH patients before and after lipid-
lowering treatment by ezetimibe, statins, and/or PCSK9
antibodies, as well as age and gender-matched healthy donors
(Supplementary Tables 1, 2). Indeed, serum LDL-C levels in
untreated FH patients were significantly higher than samples
obtained after treatment and from healthy donors (Figure 4D).
RNA-seq analysis confirmed an elevated expression of ABCA1
and ABCG1, whereas ISGs including IFIT1, IFIT3, OASL,
and CXCL10 were suppressed in untreated FH monocytes
compared to monocytes from healthy donors (FDR <0.05,
Figure 4E). Interestingly, the suppressed gene expression of
ISGs was restored after lipid-lowering treatment. To confirm
these findings in monocytes from another FH patient cohort, we
analyzed a publicly available dataset containing expression data
of monocytes from FH patients and healthy donors (GSE60514)
(45). Differential gene expression analysis showed thatmany ISGs
were down regulated in monocytes derived from FH patients
compared to healthy donors (Supplementary Figure 4D).
Upstream regulator analysis on the differentially regulated
genes confirmed inhibition of type-I IFNs, IRFs, and STAT1
(Figure 4F). In line with this, motif enrichment analysis
identified ISRE as the most enriched promoter motif among the
down regulated genes in FH patients (Figure 4G). Regulatory
network analysis of the differentially expressed genes in
monocytes from FH patients revealed STAT1 and IRF7 to be
the central modulators of this network (Figure 4H). Thus, as

observed in macrophages (mouse BMDMs, PMs and hMDMs),
lipid accumulation in monocytes of FH patients also results
in a deactivated type-I IFN response which can be restored by
lipid-lowering therapy.

DISCUSSION

In the current study, we demonstrate that the expression of
IFN-β and ISGs are affected by lipid-loading. We show that
cholesterol accumulation in vitro and in vivo suppresses the
type-I IFN response in both monocytes and macrophages. This
cholesterol loading-induced immunomodulation is also observed
by LXR activation and specifically affecting ISGs, but not
other pro-inflammatory genes. By applying exogenous IFN-β to
macrophages, we showed that the cholesterol-induced decreased
ISG expression can be largely restored. Analysis of transcriptional
profiles of FH monocytes confirmed this phenotype which was
restored by lipid-lowering treatment in FH patients. Moreover,
these analyses implicated a profound role of IRFs in the down
regulation of type-I IFNs and the subsequent responses.

It has become increasingly clear that foam cell formation
suppressesmacrophage proinflammatory activation. Studies have
shown that foamy peritoneal macrophages are less activated by
TLR-ligand stimulation as a result of the accumulation of the
LXR ligand desmosterol and suppressed activation of the pentose
phosphate pathway (56, 57). Moreover, experiments comparing
foamy vs. non-foamy plaque macrophages show that foamy
macrophages in atherosclerotic lesions lack clear inflammatory
characteristics (11, 13) and have identified LXR as a key
transcriptional regulator in these cells (11). Here we show that
foam cell formation specifically suppresses ISGs in macrophages,
resembling an LXR-activated phenotype. In line with our results,
desmosterol depletion in macrophages of atherosclerotic lesions
increased the expression of ISGs and promoted the progression
of atherosclerosis (58). Type-I IFNs have been shown to have
a role in the resolution of inflammation by stimulation of IL-
10 production as well as optimal macrophage activation and
pro-inflammatory responses (23, 48). Moreover, type-I IFNs are
mediators of many different human inflammatory and immune
disorders and have also been implicated in atherosclerosis (15,
59). Blockade of type-I IFN signaling in macrophages suppressed
atherogenesis, while IFN-β treatment accelerated atherosclerosis
through the induction of the chemokine CCL5 which leads
to increased monocyte recruitment to plaques (34). Altogether,
this suggests that the cholesterol-induced down regulation of
type-I IFN pathways is an anti-inflammatory, athero-protective
characteristic of foamy macrophages.

Our main finding is that foam cells have reduced Ifnb1
expression and IFN-β secretion resulting in a suppression of IFN-
β-dependent ISG expression. The latter could be overcome by
supplying exogenous IFN-β and suggests that at basal conditions
there is type I IFN production by in vitromacrophages. Although
we could not measure the low concentrations of IFN-β secreted
by unstimulated macrophages, the rescue of ISG expression by
low concentrations of IFN-beta (lower than measurable in our
ELISA) does suggest autocrine/paracrine effects of type I IFN.
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FIGURE 4 | The IFN response is perturbated by lipid accumulation in human macrophages and monocytes from hypercholesterolemia patients. (A) Protocol of

generating human monocyte-derived (foamy) macrophages (hMDM). Monocytes were differentiated with M-CSF for 6 days followed by 16-h (50µg/mL) acLDL

exposure. Next, the generated foamy hMDM were treated with (50 ng/mL) or without IFN-β for 6 h. (B) Cholesterol efflux transporter ABCA1 and ABCG1 were

transcriptionally up-regulated by acLDL loading in foamy hMDM. (C) Interferon stimulated genes (IFIT1, MX1, CXCL9, and CXCL10) were transcriptionally

downregulated in acLDL-loaded foamy hMDM (B,C) n = 5 biological replicates, data are represented as mean ± SEM, *FDR <0.05, **FDR <0.01, ***FDR <0.001).

(D) serum LDL-cholesterol (LDL-C) levels of treated/untreated familial hypercholesterolemia (FH) patients (n = 10) and healthy donors (HD, n = 9). (E) Gene expression

of interferon stimulated genes (IFIT1, IFIT3, OASL, and CXCL10) from monocytes derived from treated/untreated FH patients and healthy donors. (F) Ingenuity

Pathway Analysis revealed inhibition of interferon-related upstream regulators, such as IFNs, IRFs, and STAT1, in monocytes derived from FH patients. (G) Motif

analysis showed an enrichment of the interferon-sensitive response element (ISRE) motif in the promoter region among the downregulated genes in FH monocytes.

(H) Regulatory network analysis of differentially regulated genes showed an inhibition of highly interconnected IFN signatures. (F–H) raw data obtained from GSE6054.
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Some ISGs, like Ccl5 and Cxcl9, however, could not be rescued
by IFN-β supplementation, which suggests that some IFN targets
are regulated in a different manner and may for example
utilize different IRFs to regulate gene expression. Future research
should investigate whether blocking basal IFN-β production
prevents autocrine/paracrine signaling of IFN-β and also leads to
suppression of IFN-β-dependent ISG expression.

It has been described that type-I IFNs, including IFN-
β, trigger both pro- and anti-inflammatory gene programs
(60, 61). We observed this dual characteristic also after
acLDL and IFN-β exposure. More specifically, IFN-β treatment
suppressed the expression of certain proinflammatory genes
(IL1B and CXCL8), while simultaneously the expression of other
proinflammatory genes (IL6 and TNF) was induced. acLDL
treatment inhibited the transcription of ISGs, but induced
the transcription of IL1B and CXCL8. This nicely confirms
that inflammatory signaling pathways in macrophages can
be differentially regulated through numerous interconnected
modulatory processes. The cholesterol-mediated type-I IFN
suppressive actions may contribute to the cholesterol-induced
proinflammatory genes, which are suppressed by IFN, or
vice versa.

IRFs are important immune orchestrators and not only trigger
the transcription of ISGs upon IFN stimulation (23, 48, 62),
but are also required for the production of type-I IFNs (63,
64) by recognizing the ISRE at these genes’ promoter region
(62, 65). IRF3 and IRF7 are highly homologous and are the
key transcription factors for type-I IFN expression (63, 64, 66)
directly binding to promoter regions (67) of genes encoding both
IFN-α and IFN-β (63). In both mouse and human macrophages,
cholesterol loading decreased the expression of IRF3 and IRF7
suggesting a central role in the suppressed IFN-β production.
Interestingly, Chen et al. showed a negative feedback loop
between LXR and IRF3 that is activated through LXR stimulation
by oxLDL loading or GW3965 treatment of macrophages (68).
Furthermore, it has been described that LXR can interact with
STAT1 preventing STAT1 to bind to ISGs (69). Taken together,
our results suggest a crosstalk between IFNs and cholesterol
metabolism forming a feedback loop which might be mediated
via IRF3 and/or IRF7.

The crosstalk between lipid metabolism and the IFN response
could also contribute to the pathogenesis of infections. In
the recent pandemic of coronavirus disease 2019 (COVID-
19) caused by severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2), disease morbidity and mortality are linked
to reduced type-I IFN activities (70–72). Interestingly, ex vivo
SARS-CoV-2 exposure of peripheral monocytes derived from
healthy donors resulted in lipid droplet accumulation (73).
Although data is lacking whether FH patients have an increased
risk for severe COVID19, a meta-analysis suggested the potential
favorable effect of lipid-lowering therapy (e.g., statins) on disease
outcome (74). Other studies have indicated that PCSK9 inhibits
IFNB1 expression, and contributes to dampened antiviral cellular
responses in Dengue fever patients, which could be abrogated by
a PCSK9 inhibitor (75, 76). Because of the IFN enhancing effects
of the PCSK9 inhibitor, the PCSK9 inhibitor was proposed as
potential therapeutic for the treatment of COVID-19 (77, 78).

Our results are in line with this hypothesis and show that lipid-
lowering treatment in FH patients rescues the dampened IFN-
responses in circulating monocytes. Targeting lipid-metabolism
in monocytes using lipid-lowering treatment might thus be
beneficial to promote anti-viral defense.

Future studies should investigate themechanistic link between
cholesterol exposure and the subsequent immune response
modulations, including the type-I IFN response, in order to
integrate these findings in the development of new therapeutic
approaches for the treatment of e.g., cardiovascular and
infectious disease.
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Supplementary Figure 1 | acLDL exposure suppresses interferon-responsive

genes and transcription factors in BMDMs. mRNA expression of (A) Cxcl9 and

Ccl5 and (B) Stat1, Stat2, and Irf7 in unstimulated, acLDL and/or IFN-β

(50 ng/mL) stimulated BMDMs measured by qPCR. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P

< 0.001. (A,B) n = 3 biological replicates per group.

Supplementary Figure 2 | Transcriptional analysis on BMDMs stimulated with

different concentration of IFN-β (A) mRNA expression of the cholesterol efflux

transporters Abca1 and Abcg1 in BMDMs after a total of 24 h of acLDL exposure

combined with different concentrations (1.5 pg/mL to 50 ng/mL) of IFN-β for 6 h of

stimulation. (B) the transcriptional inhibition of Cxcl9 and Ccl5 that was induced

by acLDL loading was unaffected after IFN-β exposure. (C) mRNA expression of

pro-inflammatory cytokine Il6 was unaffected by acLDL but induced by IFN-β in a

dose-dependent manner. (A–C) n = 3 biological replicates per group.

Supplementary Figure 3 | Transcriptomic analysis identifies IRFs as important

regulators of the suppressed IFN response in foamy macrophages in vitro and in

vivo. (A) Pathway enrichment analysis of significantly upregulated genes (FDR

<0.05) and (B) IPA regulatory network analysis of transcriptional profile in

acLDL-loaded macrophages. (C) IPA regulatory network analysis of the

transcriptional profile of foamy PMs. (A,B) GSE118656. (C) GSE42061.

Supplementary Figure 4 | The transcription of IFN-independent

pro-inflammatory cytokines and chemokines was induced or unaffected by

lipid-loading in human macrophages. (A) Type-I Interferon (IFNB1) and (B)

interferon regulatory factors (IRF3, IRF7, and IRF8) were transcriptionally

downregulated in acLDL-loaded foamy hMDM. (C) Gene expression of the

non-interferon stimulated genes, IL1B and CXCL8, was induced in human

monocyte-derived macrophages upon lipid loading, but suppressed by IFN-β

treatment. Gene expression of IL6 and TNF remained unaltered after acLDL

loading (n = 5 biological replicates, data are represented as mean ± SEM.
∗∗FDR0.01, ∗∗∗FDR <0.001). (D) Volcano plot depicting up- (orange) and down-

(green) regulated genes of monocytes derived from familial hypercholesterolemia

patients compared to these of healthy donors.

Supplementary Table 1 | Baseline characteristics FH patients and healthy

controls.

Supplementary Table 2 | LDL-C lowering effect per individual FH patient.
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