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Abstract

Background: The majority of DNA contained within vertebrate genomes is non-coding, with a certain proportion
of this thought to play regulatory roles during development. Conserved Non-coding Elements (CNEs) are an abundant
group of putative regulatory sequences that are highly conserved across divergent groups and thus assumed to be
under strong selective constraint. Many CNEs may contain regulatory factor binding sites, and their frequent spatial
association with key developmental genes — such as those regulating sensory system development — suggests crucial
roles in regulating gene expression and cellular patterning. Yet surprisingly little is known about the molecular
evolution of CNEs across diverse mammalian taxa or their role in specific phenotypic adaptations. We examined
3,110 vertebrate-specific and ~82,000 mammalian-specific CNEs across 19 and 9 mammalian orders respectively,
and tested for changes in the rate of evolution of CNEs located in the proximity of genes underlying the development
or functioning of auditory systems. As we focused on CNEs putatively associated with genes underlying the
development/functioning of auditory systems, we incorporated echolocating taxa in our dataset because of
their highly specialised and derived auditory systems.

Results: Phylogenetic reconstructions of concatenated CNEs broadly recovered accepted mammal relationships
despite high levels of sequence conservation. We found that CNE substitution rates were highest in rodents and
lowest in primates, consistent with previous findings. Comparisons of CNE substitution rates from several genomic
regions containing genes linked to auditory system development and hearing revealed differences between echolocating
and non-echolocating taxa. Wider taxonomic sampling of four CNEs associated with the homeobox genes Hmx2 and
Hmx3 — which are required for inner ear development — revealed family-wise variation across diverse bat species.
Specifically within one family of echolocating bats that utilise frequency-modulated echolocation calls varying
widely in frequency and intensity high levels of sequence divergence were found.

Conclusions: Levels of selective constraint acting on CNEs differed both across genomic locations and taxa, with
observed variation in substitution rates of CNEs among bat species. More work is needed to determine whether
this variation can be linked to echolocation, and wider taxonomic sampling is necessary to fully document levels
of conservation in CNEs across diverse taxa.
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Background

Many Conserved Non-coding Elements (CNEs) are
likely candidates for regulatory regions of gene expres-
sion [1]. Empirical evidence suggests that as little as a
single nucleotide substitution in such a regulatory
element is sufficient to significantly affect an organism’s
morphology [2,3]. Moreover, taxon-specific sequence
variation in CNEs may underpin particular phenotypic
adaptations, such as increased forelimb length in bats
[4] and craniofacial morphology in therian mammals
[5], while in the three-spined stickleback (Gasterosteus
aculeatus) the loss of a single CNE that is thought to be
an enhancer of Pitx1 is associated with pelvic reduction
[6]. Conversely, however, the deletion of over 1,000
CNEs in mutant strains of mice was not seen to cause
any detectable deleterious effects in terms of pheno-
type, gene expression and fitness [7]. A recent study
quantified the presence or absence of 231,653 CNEs
across seven diverse mammals, and found that many
elements showed evidence of independent loss in several
mammal lineages, although the phenotypic significance
of this remains untested [8]. Recent evidence from
Highland cattle (Bos taurus) and ‘fancy’ rats (Rattus
norvegicus), have linked mutations in a conserved genomic
region proximate to Hmx1 to abnormal pinna develop-
ment [9,10]. Interestingly, in rats the mutation involves
a deletion of >5,000 base pairs whereas in cows there
is a duplication of 76 base pairs. Although, the region
affected by these mutations is many kilo-bases away
from Hmx1, its altered expression is the likely cause be-
hind the observed pinna phenotypes [9,10]. It therefore
appears that the selective constraints acting on CNEs
vary across different taxa, and that different genomic
regions may all contribute differentially to the overall
phenotype of an organism.

CNEs have been shown to either display high levels of
conservation over wide evolutionary periods, or otherwise
occur as group-specific elements (e.g. vertebrate, amniote
and eutherian-specific) [11-13]. While some CNEs are
known to act as cis-regulatory modules and are thus
essential for the correct spatial and temporal expression
of early developmental regulators [1], the precise functions
of many CNEs remain unclear (see [14,15]). Numerous
CNEs are located in clusters physically linked to genes
governing development [1]. In cases where one or more
CNE occur together with a single gene in a large genomic
region, then a regulator role may potentially be assumed,
however, where multiple genes exist it is not possible to
unequivocally functionally assign a CNE to its most prox-
imate gene [1]. Additionally, interactive databases have
facilitated the identification of CNEs associated with the
development of particular regions or by proximity to key
developmental genes across evolutionary diverse taxa (e.g.
[16,17]). The mode of action of some CNEs has been
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demonstrated empirically; for example, in vivo Zebrafish,
Danio rerio, embryo assays can identify tissue-specific
enhancer activity (e.g. [18]).

In this study we examined the molecular evolution of
CNEs across mammalian lineages, with an emphasis on
correlating differences in evolutionary rates in specific
CNEs with divergent morphological features. In particular
we examined the substitution rate of 3,110 vertebrate-
specific and ~82,000 mammalian-specific CNEs, which
are hypothesised to regulate the differential expression of
genes at different stages during development and beyond.
To test this hypothesis, we focused on the auditory system,
and, in particular, echolocating bats and toothed whales,
which have undergone structural modifications in their
inner ears as well as neural adaptations to cope with the
demands of processing the high frequency sounds pro-
duced during echolocation [19,20].

The evolutionary history and genetic control behind the
development of the outer, middle and inner ears, which
together form the mammalian auditory system, are well
documented (e.g. [21,22]). The auditory system develops
from the three germ layers and neural crest cells, with
the mammalian cochlea being evident from ~10 days
into embryonic development (for detailed review see [23]).
Several genes implicated in the regulation of vertebrate
ear development belong to the PAX and SOX gene families
of tissue-specific transcription factors (TF), which are
highly conserved across vertebrates (see [23-25]). Experi-
mental evidence, mainly from gene knock-out mouse
models, has shown that many of these genes are involved
in controlling correct cochlear coiling and semicircular
canal development (e.g. [24,26-28]). Many of these regula-
tory genes are under strong purifying selection with highly
conserved amino acid sequences across divergent species
(e.g. [29,30]). This suggests that apart from differences
in coding sequences, other factors such as differences
in expression levels may also explain the morphological
diversity seen across vertebrates. Given that many CNEs
are either known (or hypothesized) to regulate the expres-
sion of genes implicated in auditory system development,
studying these elements may help to explain the observed
morphological variation among mammalian auditory
systems.

We predicted that CNEs located in the same genomic
region as genes involved in auditory system development
would show increased rates of substitution in echolocating
bats and toothed whales compared to non-echolocating
mammals that have less specialised auditory systems. In
particular, we predicted that laryngeal echolocating bat
species would show higher substitution rates in putative
‘ear development’ CNEs than those of non-echolocating
Old World fruit bat species (Pteropodidae), in spite of the
fact that echolocating bat taxa are not a true monophyletic
group [31].
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Results

Identification of CNEs

(A) Vertebrate-specific CNEs

In total 3,110 vertebrate-specific CNEs, defined as puta-
tive regulatory regions present in both mammals and
fish, were downloaded from the COnserved Non-coDing
Orthologous Regions (CONDOR) database [16], the
Homo CNE orthologue sequences were then used to per-
form cross-species blastn searches (see Methods for pa-
rameters) in 45 mammalian species, including six bat
genomes (see Additional file 1: Table S1). We calculated
the percentage of missing data for each taxon, and ex-
cluded sequences from 19 species with >10% missing
data, leaving a final alignment of 594,763 nucleotides
from 26 species (Additional file 1: Table S1).

(B) Mammalian-specific CNEs

Our mammalian-specific CNEs are taken from Kim and
Pritchard [32], and are characterised as being conserved
across human, chimpanzee, dog, mouse and rat, but ab-
sent in chicken or fugu. Results of blastn searches using
82,064 of these mammalian-specific CNE queries across
19 mammalian genomes, gave broadly consistent re-
sults. In 17 of 19 species >70,000 CNEs were recovered
(Additional file 1: Table Slc), while the number of
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significant hits was much lower (~50,000) in the hedgehog
and shrew probably due to the low-coverage genomes.

Phylogenetic analyses

(A) Vertebrate-specific CNEs

A maximum likelihood (ML) tree summarising overall
phylogenetic signal and lineage-specific nucleotide
substitution rates of the concatenated alignment of
3,110 vertebrate CNEs for 26 species (Figure 1) cor-
rectly recovered the divisions between marsupials and
placental mammals, and between the two superorders
(Laurasiatheria and Euarchontoglires) (also see Additional
file 1: Table S1). All nodes, including the bat sub-ordinal
division of Yinpterochiroptera and Yangochiroptera,
received maximum support with two notable excep-
tions that have also been questioned by recent studies
(see Discussion): the node grouping Cetartiodactyla
and Carnivora (66% bootstrap, BS), and the node uniting
the horse with Chiroptera (28% BS). Examination of
branch lengths revealed considerable differences within
the Euarchontoglires; in particular between the Glires
and Primates. The mouse Mus musculus was consist-
ently characterised by the longest branch lengths, and
thus had the greatest substitution rate, while apes and
monkeys had relatively shorter branches and thus slower
substitution rates. Within the superorder Laurasiatheria,
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Figure 1 Maximum likelihood phylogenetic tree based on concatenated CNEs (594,763 base-pairs) for 26 mammalian species with

>90% sequence coverage of the 3,110 CNEs downloaded from CONDOR. All nodes were recovered with 100% bootstrap support, unless
otherwise shown. Bat branches are coloured as follows: Old World fruit bats (black); echolocating Yinpterochiroptera (green); Yangochiroptera
(brown). Major clades are labelled as follows: Primates (A); Chiroptera (B); Cetartiodactyla (C) and Carnivora (D).
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all six bat species examined had similar branch lengths to
the other five representative members.

(B) Mammalian-specific CNEs

Using the annotations provided by Kim and Pritchard
[32], the 75,368 alignments that consisted of >15 taxa
were concatenated into 9,806 alignment groupings each
based on proximity to the same gene. Distances between
each CNE and the nearest gene varied considerably,
from being located in the intron to a distance greater
than 100 kilo-bases, based on a reference human genome
[32]. Of these concatenated sections, 6,109 alignments
contained sequence information for all 20 taxa and were
used to construct ML phylogenies. In order to visualise
phylogenetic signal across wider chromosomal regions the
resultant trees were grouped according to the 22 chromo-
somes of humans, (number of trees varied per chromo-
some considerably; Chromosome 19: 55 — Chromosome 1:
572), and were summarized using majority consensus trees
(Additional file 2: Figure S1). Within Laurasiatheria, the
bat, carnivore and cetartiodactyl clades were each consist-
ently recovered as monophyletic. However, the position of
each of these clades with respect to each other and to that
of the horse, shrew and hedgehog varied considerably
between regions. Within bats, the subdivisions of Yinpte-
rochiroptera and Yangochiroptera were recovered by all
consensus trees, apart from that for Chromosome 19, in
which a polytomy was recovered. Within each subdivision,
the correct familial placements were typically found; for
example, within Yangochiroptera Pteronotus parnellii
(Mormoopidae) was always found outside Vespertilionidae.

Estimating substitution rates

(A) Vertebrate-specific CNEs

Results of Tajima’s Relative Rate Test [33] used to test
for lineage-specific substitution rates (comparing each to
the horse as a reference) revealed significant differences in
the bats, cetartiodactyls and the two carnivores following
corrections for the multiple corrections made (P < 0.05 in
all cases; see Additional file 1: Table S2).

Vertebrate CNEs proximally located to ear development
genes

Tajima’s Relative Rates Test were applied to 46 align-
ments consisting of CNEs located in the same genomic
region as genes with putative roles in ear development,
and summarised with heat maps. Across species and
gene regions there is considerable variation in terms of
significant differences in substitution rate as well as
either an increase or decrease in rates (Figure 2 and
Table 1). All six bat species were found to have signifi-
cantly greater substitution rates in CNEs from the SHH
and TSHZI genomic regions, compared to the horse.
The bottlenose dolphin also had a significantly increased
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substitution rate in CNEs from the TSHZI genomic
region; this was not found in any of the other taxa (see
Table 1). All four Yinpterochiroptera bats had signifi-
cantly higher substitution rates in CNEs from the IRX1/
2/4 genomic region. All four species of laryngeal echolo-
cating bats (i.e. excluding the Old World fruit bats) had
significantly higher substitution rates compared to the
horse for CNEs in the FOXPI and HMX2/3 genomic
region. The latter genomic regions also displayed sig-
nificantly higher substitution rates in the bottlenose
dolphin, but not the cow sequences. Therefore, CNEs
from the HMX2/3 genomic region were found to have
significantly higher substitution rates in all echolocating
taxa but not in any of the non-echolocating taxa. Raw
and P-values corrected for the multiple comparisons
made across loci by applying both FDR and Holm cor-
rection are provided (Additional file 1: Table S3).

Lineage-specific nucleotide substitution rate variation
(summed branch lengths root-to-tip) for all 26 taxa and
83 CNE genomic regions (after excluding datasets with
high proportions of missing data or any missing taxa), was
visualised with a Principal Component Analysis (PCA).
The first three principal components accounted for a total
of 78.13% of the sample variance (PC1 — 48.13%; PC2 —
19.44%; PC3 — 10.56%). A PCA based on all CNEs for the
26 species (Figure 3) showed separation between placental
mammals and marsupials along the first axis, and, within
the placental mammals, some additional separation of
M. musculus and P. parnellii from the other taxa. Loadings
along PC1 were either positive or ~0; therefore, this axis
corresponds to an overall substitution rate across CNEs
(Additional file 3: Figure S2A). Principal component 2
separated the two Yangochiroptera from the remaining
placental mammal species. The lowest loadings along
PC2, and so corresponding to the placement of the
Yangochiroptera, included CNEs from the SHH, NR2F2
and MAB2IL1 genomic regions; whereas the highest
loadings corresponded to the EYAI and AUTS2 genomic
regions (Additional file 3: Figure S2B). The final principal
component examined, PC3, separated all bats with the
African elephant from the other placental mammals.
Moreover, within bats, PC3 separated Yangochiroptera
from Yinpterochiroptera. The low loadings along this
axis include CNEs from the MAB21L1, SHH, EBF3 and
NR2F2 genomic regions; and the highest include CNEs
from the MAF and PAX7 genomic regions (Additional
file 3: Figure S2C).

Branch-specific substitution rates plotted for all tip and
ancestral bat and Cetartiodactyla branches for the 83 CNE
genomic regions (Additional file 4: Figure S3) corroborated
the high degree of variation seen in substitution rates
across species and genomic regions. Within bats, typically
the ancestral branches (i.e. common bat, common Yinpter-
ochiroptera, common echolocating Yinpterochiroptera and
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common Yangochiroptera) had lower substitution rates
than the tips, although the ancestral Old World fruit bat
branch had a higher substitution rate than the two Old
World fruit bat tips. Within Cetartiodactyla, the echo-
locating dolphin and cow generally had consistent
substitution rates which were typically higher than the
ancestral branch.

Analysis of vertebrate CNE conservation or accelerated
evolution

We conducted likelihood ratio tests to identify specific
sites that were subject to either statistically evolutionary
conservation or acceleration in the focal clades, and
found evidence of strong conservation overall. Across
all 26 species considered, at least 40% of sites showed
high levels of conservation (i.e. a positive conservation
score) and ~5% showed evidence of being under significant

accelerated evolution (ie. those identified with a negative
acceleration score and negative P-value <0.05) (Additional
file 5: Figure S4). Furthermore, across the different bat
clades examined levels of conservation and acceleration
were similar across most genomic regions.

(B) Mammalian-specific CNEs

Frequency distributions of relative rates across mamma-
lian CNEs in the focal taxa in the two groups, bats and
cetaceans, show that within each taxonomic group rates
are broadly consistent (Additional file 6: Figure S5). To
summarise, out of 5,726 genomic regions containing
CNEs, Old World fruit bats had 2,320 regions with a rela-
tive rate of <0.90 and 1,549 regions with a relative rate
of >1.10. The same rates were seen in 1,624 and 2,225
CNE regions, respectively in echolocating Yinpterochirop-
tera (out of 5,724) and 948 and 3,144 CNE regions,
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Table 1 Summary of significant changes in relative rate found in a sample of 46 concatenated alignments of

vertebrate-specific CNEs, grouped according to their location
genes

in the proximate genomic region of key developmental

Group Sub-clade Species

CNE alignment defined by genomic region:

All species
Carnivora
A. melanoleuca
C. familiaris

Cetartiodactyla

B. taurus

T. truncatus

Chiroptera
Yinpterochiroptera
Echolocating Yinpterochiroptera

M. lyra

R. ferrumequinum
Old World fruit bats

E. helvum

P. vampyrus

Yangochiroptera

P. parnellii

M. lucifugus

NR2F2 (H), SALL3 (H)
FIGN (H), SHOX (L)
IRX1/2/4 (H)
IRX3/5/6 (L)

BHLHBS5 (H), DACHT (H), FOXPT (H), IRX1/2/4 (H), MAF (H), SOX3
(H), TFAP2A (H)

NR2F1(H), POU3F3 (H), ZIC2 (H)

BARHL2 (H), BCLT1A (H), FIGN (H), HMX2/3 (H), LHXT (H), MEIST
(H), MEIS2 (H), PAX2 (H), SHOX (L), SOX6 (H), SOX21 (H), TSHZ1(H)

SHH (H), TSHZ1 (H)
IRX1/2/4 (H)
FOXP1 (H), HMX2/3 (H), SOX3 (H), SOX6 (H)

BARHL2 (H), BCLT1A (H), BHLHB5 (H), DACHT (H), EMX2 (H), ESRRB
(H), FIGN (H), IRX3/5/6 (H), MAF (H), MEIST(H), MEIS2 (H), NR2F1 (H),
TFAP2A (H), ZFHX1B (H), ZICT (H)

NA

FIGN (H), IRX3/5/6 (H)

NR2F1 (H)

BCLTTA (H), DLXT (H), GLI3 (H), SOX3 (H), SOX6 (H)

BARHL2 (H), BHLHB5 (H), EMX2 (H), FIGN (H), FOXP1 (H), HMX2/3
(H), IRX3/5/6 (H), MEIS2 (H), SOX6 (H)

DACHT (H), NR2FT (H), POU3F3 (H), SOX2 (H), SOX3 (H), SOX21 (H),
ZIc2 (H)

BCLTTA (H), DLXT (H), ZFHX1B (H), ZIC1 (H)

Significant differences in relative rates are defined as P-values less than 0.05 following Holm’s correction method for the multiple comparisons made. Higher rate

in focal taxon - (H); lower rate in focal taxon - (L).

respectively in Yangochiroptera (out of 5,725). The median
rate and standard deviation for Old World fruit bats,
echolocating Yinpterochiroptera and Yangochiroptera
were 0.955 + 0.34 SD; 1.031 +0.31 SD; 1.131 £ 0.38 SD
respectively. Each cetacean dataset consisted of 6,437
genomic regions; the non-echolocating minke whale data-
set contained 4,431 CNE regions with a relative rate >0.90
and 908 CNE regions with a relative rate >1.10. This com-
pares with the dolphin CNE dataset which contained
3,290 and 1,542 CNE regions in the same rate categories.
The minke whale median rate was 0.781 +4.98 SD, and
the dolphin median relative rate was 0.891 + 4.61 SD.

Mammalian CNEs proximally located to hearing and ear
development genes

In total CNE alignments from 113 and 118 genomic re-
gions located proximally to putative hearing/deafness and
auditory system development genes were compared across
bats and cetaceans respectively (see Figures 4 and 5). The
distribution of relative rates for this subset of CNEs broadly
matched that of the whole sample (Additional file 6:
Figure S5). Within bats, several CNEs from Yangochiroptera

appeared to have a faster relative rate of evolution com-
pared to Old World fruit bats and echolocating Yinpter-
ochiroptera (see Figure 5). However, the median rate
and standard deviation across this sample of CNEs from
Old World fruit bats, echolocating Yinpterochiroptera
and Yangochiroptera are 0.950 £ 0.26 SD; 1.008 + 0.26
SD; 1.120 £ 0.36 SD respectively, and thus are similar.
For cetaceans, the median rate and standard deviation
were 0.775+023 SD for the non-echolocating minke
whale, and 0.846 + 0.28 SD for the echolocating dolphin.

Study of CNEs in the Hmx2/3 gene region of echolocating
taxa

Given the observed variation in the substitution rate of
the Hmx2/3 gene region across echolocating bats and
the bottlenose dolphin, we looked more closely at se-
quence variation in CNEs located in this genomic region
in a wider range of bat and cetacean species for which
published genomes are available with a variety of echo-
location call types. Sequences for 24 CNEs from this
genomic region were aligned for a maximum of 10 echo-
locating species and 25 non-echolocating species and
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branch lengths estimated (see Additional file 7: Figure S6).
Across these elements a pattern emerged with bat species
from the Vespertilionidae family (suborder Yangochirop-
tera) typically displaying the longest branch lengths.
Within the Yinpterochiroptera, in the majority of the
elements the non-echolocating Old World fruit bats
had shorter branch lengths compared to the remaining
echolocating species. In many of these elements branch
lengths were also higher in the echolocating cetaceans
compared to the non-echolocating baleen whale; how-
ever, this was not consistent across all elements. The
number of significantly accelerated sites, as identified
by phyloP, across the 24 regions in three focal clades of
bats, echolocating Yinpterochiroptera, Old World fruit
bats and Yangochiroptera, revealed a similar pattern to
above (see Additional file 8: Figure S7A). With the echolo-
cating clades typically having a higher number of acce-
lerated sites compared to the Old World fruit bats. In
the case of Yangochiroptera this is particularly evident
in elements CRCNE00009713, CRCNE00009716 and
CRCNE00009717 which have 3.35, 2.29 and 1.68% of sites
identified as significantly accelerated, these elements are
some of the most proximally located to HMX2 and HMX3
based on the human annotation (see Additional file 8:
Figure S7C). In the clade of toothed whales, again element
CRCNE00009713 has the highest number of significantly
accelerated sites, which corresponds to 2.87% of the total
element (see Additional file 8: Figure S7B).

Four of the above Hmx2/3 CNEs were further sequenced
in nine bat families: Rhinolophidae, Hipposideridae,

Megadermatidae, Rhinopomatidae, Pteropodidae, Phyl-
lostomidae, Mormoopidae, Vespertilionidae and Nycteri-
dae; and three cetacean families: Balaenopteridae,
Ziphiidae and Delphinidae. Estimated branch lengths
for trees based on all four CNEs showed broadly similar
patterns (Figure 6). For these four CNEs, particular
members of the bat family Vespertilionidae were seen
to have the longest branch lengths of all mammals
included, and thus were even longer than those of ro-
dents. Interestingly, however, these high substitution
rates were not seen among all bat species; particularly
Myotis lucifugus, Kerivoula spp. and Murina spp. dis-
played long branches, whereas Plecotus auritus did
not for the CRCNE00009716 element (Figure 6C). For
all four CNE datasets, all Yinpterochiroptera species
showed similarly low substitution rates. Genomic align-
ments of human, mouse, rat and fugu suggested that, of
the four CNEs amplified, CRCNE00009716 is the most
proximally located to Hmx2 and Hmx3. This was con-
firmed by examination of the recently completed Ptero-
pus alecto genome [34]; this suggests ~4 kb separates
the 3" end of CRCNE00009716 and the start codon of
Hmx2. In CRCNE00009741, which is most distally
located to either Hmx2 or Hmx3, the Old World fruit
bats Cynopterus brachyotis and C. sphinx had considerably
longer branch lengths than the remaining Yinpterochir-
optera species. Within this sample, again there was no
consistent difference in branch lengths between the non-
echolocating humpback whale, Megaptera novaeangliae,
and the remaining echolocating toothed whales.
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Discussion

Previous studies attempting to link genetic variation
and phenotypic adaptations in echolocating mammals
have tended to focus on selection pressures acting on
protein coding genes (e.g. [35,36]), thus often placing
less emphasis on the molecular evolution of putative
regulatory regions or transcription factors. However,
given their role in the regulation of gene expression
these two genomic components will undoubtedly play a
role in determining species-specific adaptations. Here we
attempted to relate auditory adaptations of echolocating
taxa to changes in the molecular evolution of putative
regulatory regions located proximally to mammalian genes
associated with the auditory system. The development
and maintenance of the mammalian auditory system is
a highly complex process requiring the controlled expres-
sion of a high number of genes along both a temporal and
spatial manner (for review [23]). Whereas genes respon-
sible for the basic mammalian auditory plan have been
well characterised (for example, see [37]), those respon-
sible for species-specific adaptations are less known. CNEs
conserved across all vertebrates are likely to be responsible
for the early stages of embryonic development; we there-
fore also screened echolocating taxa for CNEs conserved
only across mammals.

Phylogenetic analysis of CNEs

Despite their high levels of conservation, ML phyloge-
nies constructed from concatenated CNEs recovered
the major sub-divisions within mammals, and, in many
cases, the correct familial placements. Thus lineage-
specific substitutions have accumulated in sufficient
numbers to provide phylogenetic signal. In all cases
bats were recovered as monophyletic, and support was
found for the subordinal division of Yinpterochiroptera
and Yangochiroptera. Although the horse (Equus caballus)
was recovered as the sister taxon of bats by a concatenated
analysis of vertebrate specific CNEs, this grouping corre-
sponding to Pegasoferae [38] received low support. The
Pegasoferae topology remains controversial and conflicts
with the species tree topology typically recovered by
phylogenetic analysis of coding sequences (e.g. [39]).
Furthermore this grouping was not supported by ana-
lyses of mammalian specific CNEs.
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Figure 5 RADAR plots of the estimated relative rates of CNEs located in the same genomic regions as putative ‘hearing/deafness’
genes for (A) bats and (B) cetaceans. Numbers refer to each of the putatively associated genes (see Additional file 1: Table S5). Colours correspond
to the following groups and species: Old world fruit bats (dark grey); echolocating Yinpterchiroptera (green); Yangochiroptera (brown); Common minke

whale (blue) and Bottlenose dolphin (light grey).

CNEs proximally located to auditory system genes
Lineage specific substitution rates calculated for focal
genomic regions revealed several trends within bats and
between bats and other mammals. We found evidence
for significantly greater substitution rates in all six bat spe-
cies compared to the horse in vertebrate specific CNEs
from two genomic regions (SHH and TSHZI). The SHH
gene has a known association with inner ear development
(e.g. [40]), but is also associated with the development
of limbs and lungs (e.g. [41,42]) that are noteworthy for
showing modifications in bats. In the case of TSHZI,
the bottlenose dolphin was seen to share an increased
substitution rate, which could relate to this gene’s bio-
logical association with middle ear morphogenesis [43].
Anatomically, mammalian middle ear ossicles are fre-
quently cited as one of the important auditory system
components for high-frequency hearing [44] and it is
thus noteworthy that cetaceans possess specialised mid-
dle ears (e.g. [45]).

Despite these patterns, overall we found limited sup-
port for the prediction that vertebrate specific CNEs
located in the same genomic region as genes involved in
auditory system development show increased rates of
substitution in echolocating taxa. In particular, a PCA
summarizing substitution rates did not clearly separate
echolocating taxa from other taxa. However, within bats,
a distinction between the bat suborders was apparent,
mainly driven by rate changes in genomic regions such
as SHH, NR2F2 and MAB2ILI. In addition, along PC1
and PC3, Pteronotus parnellii was found to be more
distantly located compared to the other bat species. This
is interesting given that P. parnellii is unique among
Yangochiroptera bats as having evolved high-duty constant-
frequency echolocation [46]. Levels of conservation and
accelerated evolution of genomic regions were approxi-
mately equal when clades of echolocating Yinptero-
chiroptera, non-echolocating Yinpterochiroptera and
Yangochiroptera are considered. Overall, therefore, while
differences in some ear development CNEs substitution
rates were seen between Old World fruit bats and laryn-
geal echolocating bats, many differences were also
found between echolocating bat species from the same
sub-clades, and even some between the two non-
echolocating bat species. Such variation precludes any
firm conclusions but could reflect the involvement of
different genes in bats that have evolved divergent modes
of echolocation.

Among the bats, substitution rates were found to be
lowest along both ancestral branches of all extant bats
and all Yinpterochiroptera. On the other hand among
tips, rate comparisons across species revealed several dif-
ferences; for example, the two Yangochiroptera tended
to have higher substitution rates compared to Yinptero-
chiroptera. Several previous studies have related the mo-
lecular evolution of protein-coding ‘hearing’ genes to the
acquisition of echolocation in bats and cetaceans (e.g.
[47-49]). Of these, documented cases of sequence con-
vergence between divergent echolocating taxa have been
suggested to support multiple origins of echolocation
within bats (e.g. [47]). Our own findings that putative
ear development CNEs shows no increased substitution
rates in the common bat ancestral branch yet do show
divergent rates within laryngeal echolocating bat branches
would also appear to be consistent with the later acquisi-
tion of echolocation in extant bat lineages.

Numerous genes have been implicated in mammalian
hearing, and also through the series of recent studies,
mentioned above, several candidate ‘echolocation’ genes
have been proposed (for examples see [47,48]). Recently
transcriptomes have been used to quantify expression
differences in the cochleae of echolocating and non-
echolocating bat species [50]. Interestingly TMCI was
identified as the gene showing the highest significant
up-regulation in the echolocating Myotis ricketti com-
pared to the non-echolocating Old world fruit bat, and
this gene was also previously shown to have several par-
allel amino acids between echolocating taxa [47]. Several
mammalian specific CNEs putatively located either within
the introns or within 100 kb of this gene were included in
our study, and relative rates tests conducted with PAML
found that both echolocating sub-clades of bats had rela-
tive rates >1.00 compared to the Old World fruit bat in
which the relative rate was <1.00 (see Figure 5). However,
a similar pattern was not seen in the mammalian-specific
CNEs putatively located close to SIX1 and MYO3A, which
were also previously shown to be up-regulated in echolo-
cating bats [50], but which showed approximately equal
relative rates in all three bat clades, or lower in echolocat-
ing clades.

Focusing on echolocating taxa specifically, the four
laryngeal echolocating bat species and the bottlenose
dolphin initially studied had significantly greater sub-
stitution rates, compared to the horse, in CNEs from the
HMX2 and HMX3 genomic regions. This was confirmed
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and BUB3) based on the human genome.

Figure 6 Estimated lineage-specific nucleotide substitution rates across four CNE sequence alignments from the Hmx2/3 gene region.
Rates were calculated in BASEML using the Felsenstein-84 model of substitution, no clock and alpha and kappa estimated from the data (A)

CRCNE00009707; (B) CRCNE00009711; (C) CRCNE00009716; (D) CRCNE00009741. Non-bat branches (grey) and bat branches are coloured as follows:
Old World fruit bats (black); echolocating Yinpterochiroptera (green); Yangochiroptera (brown). See Additional file 7: Figure S6 for more information
regarding the approximate genomic location (in kilo-bases) of each of the four CNEs under study and the three proximate genes (HMX3, HMX2

by the addition of additional echolocating taxa. Wider
family level bat comparisons revealed that four conserved
elements located in the HMX2/3 genomic region typically
had the greatest substitution rates in the Vespertilionidae.
Substitution rates were particularly high in species with
the highest frequency echolocation calls that also have a
high repetition rate (e.g. Kerivoula spp. and Murina spp.
[51]); whereas, no increase was seen in P. auritus known
as a ‘whispering’ bat due to its low-intensity calls [52]. The
substitutions evident in the Vespertilionidae CNEs were
typically clustered at one end — raising the possibility that
CNE may be truncated in these species.

The CNEs examined in this region span across ~500
kilo-bases in the human genome, within this region
based on Ensembl annotation there are three genes —
BUB3, HMX2 and HMX3. The Bub3 protein is encoded
by BUB3 which is an essential component of the mitotic
spindle assembly complex during early development, dis-
ruptions to this gene prove lethal [53]. The two homeobox
genes, Hmx2 and Hmx3, are associated with nervous
system development and inner ear morphogenesis, par-
ticularly the vestibular portion ([54] and for review see
[37,55]). Expression of Hmx3 begins eight hours earlier
than Hmx2 in the otic epithelium of developing mamma-
lian ears, otherwise both are co-expressed [56]. Mutational
studies of mice suggest each gene plays distinct roles in
terms of morphogenesis and cell specification during
development. Null Hmx2 mutants develop abnormal
vestibular apparatus; with inner ears entirely lacking
semicircular canals, with fused utricles and saccules and
a significant loss of vestibular sensory epithelium [54].
Furthermore, null Hmx2 mice display abnormal behav-
iours such as circling and hyperactivity. However, effects
of Hmx3 null mice mutants appear to be strain specific. In
some strains the gross morphology of the inner ear is not
affected (though a significant loss of sensory cells in the
vestibular portion and behavioural abnormalities were
reported) [56]. Whereas, in a different strain, null Hmx3
mutation resulted in hyperactivity and circling behav-
iour as well as failure of semicircular canal development
[24]. Double null mutant (Hmx2/3) mice have severe
anatomical and neurosensory defects and entirely lack
vestibular systems [55].

In Hmx2, Hmx3 and Hmx2/3 null mice mutants cochlea
gross structure appears unaffected, hearing capabilities in
Hmx3 mutants appear normal but have not been directly

tested in double mutants [24,55]. However, a recent study
proposed that hemizygous loss of the HMX2/3 genome
region may have led to congenital sensorineural hearing
loss in two un-related humans [57]. There have been no
reported defects in the central nervous system in single
Hmx2 or Hmx3 mutants, suggesting a redundant role
[55]. If the detected differences in substitution rate in
the bat CNEs from the HMX2/3 genomic region alter
the expression of these genes during auditory system
development then it is possible the gross morphology
of the inner ear may be affected, though this remains
untested. This is particularly interesting given the highly
variable nature of bat inner ears, which include modifi-
cations to their semicircular canals (e.g. [20,58]).

On average the Yangochiroptera — the suborder contain-
ing Vespertilionidae — appeared to have higher substitu-
tion rates compared to the Yinpterochiroptera across
many CNEs. Within Yangochiroptera, Vespertilionidae
have previously been shown to have a significantly faster
substitution rate in a sample of mitochondrial genes and
the nuclear gene RAG2 compared to Phyllostomidae [59].
The previous evidence for differences in substitution rates
coupled with their rapid diversification suggests that
unique selective constraints may be acting on the ge-
nomes of Vespertilionidae.

Previously documented causes for differences in lineage-
specific nucleotide substitution rates are well recognised
(as reviewed in [60,61]) and include effective population
size (N.) and generation time, as well as the extent to
which changes are adaptive [62,63]. Thus these parameters
may have contributed to the results of the relative rates
tests performed in this study. Accurate generation times
for many bat species are unknown, published values range
from 2—8.34 years [64,65], thus longer than those of most
rodents and more comparable to larger bodied laura-
siatherians (e.g. horse — ~8 years [66]; cow — ~5 years
[67]; dolphin — ~20 years [68]). The quality of comparative
genome data is also an important factor; only two (horse
and dog) out of the Laurasiatheria species have high
coverage (excluding the two bats and bottlenose dolphin),
both of which are arguably not optimal due to domestica-
tion. Unfortunately genomes for species with body sizes
and population sizes more similar to those of bats, such as
the common shrew or hedgehog, were only available at
low-coverage. As reference points, the non-focal taxa
studied, such as carnivores and artiodactyls, were also
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shown to have variable substitution rates in several
genomic regions. Therefore, it seems that lineage-specific
rates of substitution in CNEs in vertebrates occur rela-
tively frequently. Indeed fishes have also been previously
shown to display lineage-specific differences in CNE rates
of substitution [69,70].

The CNEs that we identify as showing elevated substi-
tution rates in echolocating mammals represent valuable
candidates for future study. Ultimately, attempts to link
patterns of our focal CNE substitution rates to genes
underpinning ear development will require functional
assays to better characterize their roles in gene regulation.

Conclusions

In this first attempt to relate levels of selective con-
straint acting on CNEs, located in the same genomic
regions as genes associated with the auditory system, of
echolocating mammals we found variation in substitu-
tion rate in each of the two bat suborders. Although,
the functional significance of variation in substitution
rates and CNE sequences found in the bat sequences
currently remains unknown, this could suggest that
different selective constraints have acted on the devel-
opmental pathways of the auditory systems in each of the
two bat suborders. The 3,110 vertebrate and ~82,000
mammalian CNEs examined here represent a fraction
of the total number of CNEs contained within a typical
mammalian genome [32,71]. Therefore, although this
study may have detected some of the large scale evolu-
tionary signals contained within the non-coding compo-
nent of bat genomes many more fine-scale patterns may
remain.

Methods

Identification of CNEs

(A) Vertebrate-specific CNEs

We downloaded 3,110 target vertebrate-specific CNEs,
defined as putative regulatory regions present in both
mammals and fish, for human (Homo sapiens), mouse
(Mus musculus), rat (Rattus norvegicus), dog (Canis
familiaris) and fugu (Takifugu rubripes) from the CON-
DOR database [16] that met the criteria of being con-
served with >60% identity, and minimum sequence length
of 100 nucleotides (final species coverage: human: 3,110,
fugu: 3,086, mouse: 3,047, rat: 2,599, dog: 439). The 3,110
Homo sequences were used to perform cross-species
blastn searches in 45 mammalian species, including six
publically available bat genomes [39,72] (see Additional
file 1: Table S1). From the bat suborder Yinpterochiroptera
we obtained CNE data from the non-echolocating Old
World fruit bats Eidolon helvum and Pteropus vampyrus
(Pteropodidae), the echolocating greater horseshoe bat
Rhinolophus ferrumequinum (Rhinolophidae) and the
echolocating greater false vampire bat Megaderma lyra
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(Megadermatidae). From the suborder Yangochiroptera
we obtained data from the echolocating taxon Parnell's
moustached bat Pteronotus parnellii (Mormoopidae) and
the little brown bat Myotis lucifugus (Vespertilionidae). In
each blastn search the top hit was retained, with minimum
expected (e) value thresholds of 107° and a minimum of
60% sequence identity, and, in cases when the top hit
sequences were not continuous along the subject sequence,
only the longest portion was retained. We calculated
the percentage of missing data for each taxon, and
excluded sequences with >10% missing data.

(B) Mammalian-specific CNEs

To investigate the evolution of mammalian-specific
CNE:s in echolocating taxa we used the dataset originally
identified by Kim and Pritchard [32] as a starting point.
We downloaded human sequences for 82,335 CNEs
(hgl7) from the UCSC Genome Browser [http://genome.
ucsc.edu/]; these sequences represent CNEs that were
found to be conserved across human, chimpanzee, dog,
mouse and rat, but absent in chicken or fugu [32]. We
confirmed that these represented non-coding regions of
the genome by blastx using the human peptide database
downloaded from Ensembl (release 73). Sequences with
significant hits (e <107%) were excluded from further
study; this resulted in 271 CNEs being discarded. The
remaining 82,064 sequences were used as queries in
cross-species blastn searches of 19 mammalian genomes
(Additional file 1: Table S1). Echolocating species were
represented by the following bats: R. ferrumequinum, M.
lyra, P. parnellii, M. lucifugus, Myotis davidii [34] and Epte-
sicus fuscus and the bottlenose dolphin Tursiops truncatus.
For comparison we included the non-echolocating Old
World fruit bats P. vampyrus, Pteropus alecto [34] and
E. helvum; and the baleen whale Balaenoptera acutoros-
trata [73]. The same parameters were used as before,
sequence identity >60% and the longest sequence kept.
Alignments were constructed using default settings in
MAFFT.

Phylogenetic analyses of CNEs

(A) Vertebrate-specific CNEs

To investigate overall phylogenetic signal and lineage
specific nucleotide substitution rates a phylogenetic tree
was constructed based on a concatenated alignment of all
CNEs for 26 species. A maximum likelihood (ML) phyl-
ogeny was constructed with RAXML v.7.2.8 [74] under the
GTR + T + I substitution model with 1,000 bootstraps. Prior
to analysis sites consisting of entirely missing data were
removed leaving a final alignment of length 594,442 bp.

(B) Mammalian-specific CNEs
From the initial alignments, the 6,661 sequence align-
ments consisting of fewer than 15 taxa were discarded;
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leaving 75,368 alignments. Individual CNEs were then
concatenated according to the nearest gene, in either
direction, based on the annotation of a reference human
genome provided by Kim and Pritchard [32], distances
between CNEs and the nearest gene varied considerably,
from being located in the intron to a distance greater
than 100 kilo-bases. This resulted in concatenated align-
ments corresponding to 9,806 genomic regions (6,109
alignments — 20 taxa; 1,777 — 19 taxa; 950 — 18 taxa;
453 — 17 taxa; 304 — 16 taxa and 213 — 15 taxa). Max-
imum likelihood (ML) phylogenies were constructed with
RAXxML v.7.2.8 [74] under the GTR + I substitution model
for the 6,109 concatenated alignments with all 20 species,
with human, mouse and guinea pig set as out-groups.
Trees were grouped according to the 22 chromosomes
of humans, and majority consensus trees constructed in
Dendroscope [75].

Substitution rate in CNEs

(A) Vertebrate-specific CNEs

To further explore lineage-specific variation in substi-
tution rates we performed Tajima’s Relative Rates Test
[33], in MEGAS5 [76], on the concatenated 3,110 CNE
alignment. In each comparison, one of the six bat spe-
cies, the bottlenose dolphin, cow, dog and panda was
compared in turn to the horse. The horse was chosen
as the reference sequence due to the good quality gen-
ome and the comparable generation time with bats.
Published simulations suggest choice of outgroup
should not effect the results of relative rates tests
significantly providing it is valid and minimizes the
evolutionary distance to the ingroup [77]. Within
Euarchontoglires, we discounted rodents due to their
documented high substitution rates [32], and instead
chose the human due to the high coverage genome. To
correct for the ten tests we adjusted the calculated
P-values using both the false discovery rate (FDR) [78]
and Holm’s method [79].

Vertebrate CNEs proximally located to ear development
genes

The CONDOR database holds information on CNEs
initially identified with sensitive multiple alignments of
orthologous genomic regions using Fugu, as a baseline,
with mammalian genomes. Furthermore, these CNE
clusters and their associated transcriptional-regulation
and/or development genes have been shown to be con-
served in synteny across these species [1,16]. Each of
our subset of CNEs downloaded from CONDOR has
therefore been assigned to one of 89 reference genomic
regions, with each region having been named arbitrar-
ily after the trans-dev genes from that region [16]. It is
acknowledged that these genomic regions can span
several mega-bases, thus CNEs may be located a
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considerable distance from the trans-dev gene in ques-
tion. However, the fact that the CNEs have remained in
a conserved syntenic order with the trans-dev gene
across mammal and fish genomes suggests a possible
functional association. In many genomic regions, e.g.
DACH]I, there is one annotated gene. Alternatively, sev-
eral genes may be present in a region, e.g. HOXD — in
which CNEs have been shown to control the expression
of multiple genes simultaneously [80]. Although this an-
notation does not always imply a direct functional asso-
ciation between CNEs and gene, for our study we took
the conserved spatial association as potential evidence
of this. Cross-referencing these nominal genes with
published empirical studies of gene expression and gene
knock-out mutants suggested 49 genes (corresponding
to 46 of the possible 89 genomic regions) were likely to
have roles in auditory system development (Additional
file 1: Table S4). The CONDOR database suggested the
following genes are located in the same genomic region:
Nkx-5.1 (HMX?2) with Nkx-5.2 (HMX3), IRX1 with IRX2
and DLXI1 with DLX2. Henceforth CNEs located in the
same genomic region as these genes will be referred to
as ‘putative ear development CNEs’ for the purpose of
this study (N.B. this does not imply a proven function).
For each of the 89 genomic regions concatenated align-
ments of their respective CNEs were constructed based on
the 26 mammalian genomes and each alignment is named
after the reference gene. These alignments have been
deposited in the Dryad Repository: http://dx.doi.org/
10.5061/dryad.50kd5.

We used two approaches to quantify substitution rates
of putative ear development CNEs. First, for the 46 gen-
omic concatenated regions (containing the 49 ear devel-
opment genes) Tajima’s Relative Rates Test was used
to explore the substitution rates using the methods
described above. Corrections for multiple comparisons
were made using the FDR and Holm’s method. Second,
lineage-specific nucleotide substitution rates were esti-
mated for all gene region CNEs for the 26 species using
BASEML in the PAMLA4.4 package [81]. For these ana-
lyses we set the tree topology to the currently accepted
phylogeny [82,83] and used the Felsenstein-84 model of
substitution with no clock, and with alpha and kappa
parameters estimated from the data. For each taxon
branch lengths were summed from root to tip for each
CNE genomic region. To determine which genomic
regions account for most of the variation within the
sample of summed branch lengths we undertook a Prin-
cipal Component Analysis (PCA) in PASTv2.16 [84]
using the co-variation matrix, in order to visualise the
variance of the sample. Multispecies alignments corre-
sponding to six genomic regions were excluded based
on either >10% missing data (UNC4, PRDMI6 and
SHOX) or a missing taxon (SOX5, FOXBI and SOX11I).
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To assess which bat branches were associated with
changes in CNEs substitution rates, bar-plots were pro-
duced displaying estimated substitution rates along each
ancestral and tip bat branch.

Analysis of vertebrate CNEs conservation or accelerated
evolution

To identify specific sites that had undergone statistically
significant levels of either conservation or acceleration
in focal clades we conducted a statistical test utilising
phylogenetic information. We first fitted a neutral sub-
stitution model to each concatenated alignment of CNEs
representing each genomic region using the software
phyloFit [85]. Likelihood ratio tests (LRT) were then per-
formed in phyloP [86], comparing the fit of the neutral
model to one that allows either accelerated evolution or
conservation (“CON-ACC”) at each site. By this method
sites having undergone significant levels of either conser-
vation or accelerated evolution across either all mammals
or within particular predefined sub-clades were identified.
These analyses were performed within RPHAST [87]. To
visualise the distribution of these sites, the proportion of
sites falling into either significant acceleration or conser-
vation were calculated based on P-values and CON-ACC
scores.

(B) Mammalian-specific CNEs

BASEML relative rates We used BASEML in the
PAML4.4 package to estimate the relative rates of CNE
sequences in focal echolocating and non-echolocating
taxa compared to the background rate which is set at
1.00. Separate datasets were constructed for bats and
cetaceans by pruning either bat or cetacean sequences
from the 82,064 initial single CNE alignments. Bat
alignments were kept if they contained sequences for all
nine bat species. Duplicate alignment datasets were
constructed containing either the two echolocating
Yinpterochiroperan (R. ferrumequinum and M. lyra);
the three non-echolocating Old World fruit bats
(P. vampyrus, P. alecto and E. helvum) or the four echo-
locating Yangochiroptera (P. parnellii, M. lucifugus,
Myotis davidii and Eptesicus fuscus). Individual CNE
alignments meeting these criteria were concatenated
based on the nearest gene; to give a final dataset of a
maximum of 5,726 genomic regions that also con-
tained sequences for cow, horse, dog, panda, hedge-
hog, shrew, human, guinea pig and mouse which were
set as outgroup taxa. Due to a large proportion of
missing data, three alignments were excluded to
give final datasets of 5,726, 5,725 and 5,724 for Old
World fruit bats, Yangochiroptera and echolocating
Yinpterochiroptera respectively. Cetacean alignments
were kept if they contained 7. truncatus and B.
acutorostrata sequences. Duplicate alignment datasets
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were constructed containing either the toothed or ba-
leen whale and the out-group taxa. Individual CNE
alignments meeting these criteria were concatenated
based on the nearest gene, to give a final dataset of
6,437 genomic regions that also contained sequences
for all nine outgroup species.

Mammalian CNEs proximally located to hearing and ear
development genes

Auditory system development and hearing/deafness can-
didate genes were collated from published sources and
online databases [88] (see Additional file 1: Table S5).
We then searched our alignments for the corresponding
CNEs located near to these genes based on the annota-
tions provided by Kim and Pritchard [32] which uses the
human genome as a reference point. These alignments
were checked by eye for alignment errors, poorly aligned
regions were discarded. The previously calculated
relative rates of these regions were then visualised with
histograms and radar plots.

Study of CNEs in the Hmx2/3 gene region of echolocating
taxa
For a more in-depth examination of sequence variance in
putative ear development CNEs in echolocating species,
the human sequences for the 24 CNEs in this genomic
region (conserved with 260% identity and =100 base
pairs), were used as blastn queries in four additional
cetacean (B. acutorostrata, Orcinus orca, Lipotes vexilli-
fer [89] and Physeter catodon) and three bat (M. davidii
and E. fuscus and P. alecto) genomes using the same cri-
teria as previously. Lineage-specific rates of substitution
were then calculated with BASEML, with the same
model settings as previously described, and a set species
tree topology [90-92]. In addition, to identify specific
sites that had undergone statistically significant levels of
acceleration in our focal clades of echolocating taxa we
repeated the “CON-ACC” analyses, as described previ-
ously, with phyloP [86]. We visualised the number of
the significantly accelerated sites based on a negative
CON-ACC score and negative P-values > -0.05.
Additionally we sequenced four CNEs, for which it was
possible to design degenerate primers, from the Hmx2/3
gene region in a wider range of species. The flanking
genomic regions of the four CNEs were downloaded
for M. lucifugus, E. caballus, Felis catus, C. familiaris,
B. taurus, H. sapiens, Oryctolagus cuniculus and M.
musculus from GenBank. These data were used to build
multispecies alignments from which we designed de-
generate primers using ‘Primer3’ [93] (Additional file 1:
Table S5a). DNA was extracted using Qiagen DNeasy kits
and target fragments were amplified using touch-down
polymerase chain reaction (PCR) with the following steps:
95°C for 5 minutes; 95°C for 30 seconds; 60-50°C for
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30 seconds and 72°C for 1 minute, for 45 cycles run on a
M]J Research PTC225 Peltier thermocycler. The total vol-
ume of each reaction mix was 15 pL, containing ~25 ng of
gDNA, 1.5 pL 10x PCR buffer, 1.2-1.5 pL (25 mM) MgCl,,
0.5 pL (10 uM) dNTPs, 1 pL (10 pM) each of forward and
reverse primers, 0.1 pL (FastStart Taqg DNA polymerase
(Roche) and 4.4-4.7 ddH,0. Successfully amplified prod-
ucts were purified using ExoSap and sequenced using
BigDye v3.1 and visualized on an ABI 3700 automated
DNA sequencer. Directly sequenced samples were added
to the multiple alignments of published sequences for all
available placental mammal species (see Additional file 1:
Table S5b for species). Lineage-specific rates of substi-
tution were then calculated for each of the four alignments
with BASEML, with the same model settings as previously
described, and a set species tree topology [90-92].

Availability of supporting data

The data sets supporting the results of this article are
available in the Dryad repository http://dx.doi.org/10.5061/
dryad.50kd5 [94]. New CNE sequences (>200 bp) are
available from GenBank (accession numbers: KM981771—
KM981864 and KP017254). Additional statistical values,
genetic information and primer sequences are available
in Additional file 1.

Additional files

Additional file 1: Additional statistical results, supporting references
and sample information for the analyses included in the study.

Additional file 2: Figure S1. Majority consensus trees calculated for
sets of ML trees grouped according to their position on human
chromosomes. Echolocating species were represented by the following
bats: R. ferrumequinum, M. lyra, P. parnellii, M. lucifugus, M. davidii and
E. fuscus and the echolocating dolphin (T. truncatus). For comparison
we included the non-echolocating Old World fruit bats P. vampyrus,
P. alecto and E. helvum; and the baleen minke whale (B. acutorostrata).
Bats groups are designated by the following colours: echolocating
Yinpterochiroptera — green; non-echolocating Yinpterochiroptera — black;
Yangochiroptera — brown. A total of 6,109 alignments contained sequence
information for all 20 taxa and were used to construct the ML phylogenies.
Number of trees used per chromosome: Chr1: 572; Chr2: 561; Chr3: 443;
Chr4: 320; Chr5: 424; Chré: 375; Chr7: 357; Chr8: 293; Chr9: 267; Chr10: 314;
Chr11:341; Chr12: 348; Chr13: 89; Chr14: 282; Chr15: 171; Chr16: 169; Chr17:
302; Chr18: 148; Chr19: 55; Chr20: 157; Chr21: 57; Chr22: 63).

Additional file 3: Figure S2. PCA loadings along (A) PC-1 (B) PC-2 and
(C) PC-3 for summed root to tip branch lengths of 83 concatenated CNE
alignments across 26 mammalian species.

Additional file 4: Figure S3. Branch-specific substitution rates across
CNEs from 83 genomic regions. (A) Bat branches: (i) ancestral echolocating
Yinpterochiroptera branch; (ii) R. ferrumequinumy; (i) M. lyra; (iv) ancestral
Old World fruit bat branch; (v) E. helvum; (vi) P. vampyrus; (vii) ancestral
Yangochiroptera branch; (viii) M. lucifugus; (ix) P. parnellii; (x) ancestral
common bat branch; (xi) ancestral Yinpterochiroptera branch; (xii) graphical
representation of the branches under study. (B) Cetartiodactyla branches: (i)
ancestral Cetartiodactyla branch (i) B. taurus; (i) T. truncatus.

Additional file 5: Figure S4. Levels of acceleration and conservation
across genomic regions as estimated by phyloP scores. (A) across all
mammals included in the study; (B) all bats included in the study; (C) Old
World fruit bat sub-clade; (D) echolocating Yinpterochiroptera sub-clade;
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(E) Yangochiroptera sub-clade. Colours indicate the percentage of sites
calculated to show accelerated evolution (light blue); accelerated evolution
with negative P > —0.05 (dark blue); ‘neutral score = 0 (white); conservation
(orange); conservation with P < 0.05 (red). Genomic regions containing
genes associated with auditory system development are indicated with *.

Additional file 6: Figure S5. Frequency histograms of estimated relative
rates across mammalian specific CNEs grouped by nearest gene — in each
analysis the rate for the foreground clade of interest in given relative to the
background rate, which is equal to 1. Rates were calculated in BASEML
using the Felsenstein-84 model of substitution, local clock and alpha
and kappa estimated from the data (A) Old World fruit bats; (B)
echolocating Yinpterochiroptera; (C) Yangochiroptera; (D) Common
minke whale and (E) Bottlenose dolphin.

Additional file 7: Figure S6. Estimated lineage-specific nucleotide
substitution rates across 24 CNE sequence alignments from the Hmx2/3
gene region. Rates were calculated in BASEML using the Felsenstein-84
model of substitution, no clock and alpha and kappa estimated from the
data. (A) The approximate genomic location (in kilo-bases) of the 24
CNEs (white blocks) under study and the three proximate genes (yellow
blocks; HMX3, HMX2 and BUB3 - left to right), also present in this region
is RP11-162A23.5 (grey block) which is a pseudogene, based on the H.
sapiens genome (Ensembl release 75). (B) Estimated branch lengths
with fixed species topology calculated from alignments of CNEs from
the Hmx2/3 genomic region, the order of trees (left to right, top to
bottom) match the numbered CNEs from above (9703 - 9757). Non-
focal branches (dark grey), bat branches are coloured as follows: Old
World fruit bats (black); echolocating Yinpterochiroptera (green);
Yangochiroptera (brown) and cetacean branches are coloured as
follows: non-echolocating minke whale (light grey) and echolocating
toothed whales (blue).

Additional file 8: Figure S7. Number of significantly accelerated sites
for 24 CNE sequence alignments from the Hmx2/3 gene region for (A)
bats and (B) cetaceans as calculated by phyloP. (A) Coloured bars represent
echolocating Yinpterochiroptera (green); Old World fruit bats (black) and
Yangochiroptera (brown). (B) Coloured bars represent all cetaceans (white);
echolocating toothed whales (blue) and minke whale (light grey). (C)
Approximate genomic location (in kilo-bases) of the 24 CNEs (white
blocks) under study and the three proximate genes (yellow blocks;
HMX3, HMX2 and BUB3 — left to right) — see legend of Additional file 7:
Figure S6 for full details.
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