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Abstract

During the COVID-19 pandemic, several countries have resorted to self-adaptive mecha-

nisms that tailor non-pharmaceutical interventions to local epidemiological and health care

indicators. These mechanisms reinforce the mutual influence between containment mea-

sures and the evolution of the epidemic. To account for such interplay, we develop an epide-

miological model that embeds an algorithm mimicking the self-adaptive policy mechanism

effective in Italy between November 2020 and March 2022. This extension is key to tracking

the historical evolution of health outcomes and restrictions in Italy. Focusing on the epidemic

wave that started in mid-2021 after the diffusion of Delta, we compare the functioning of

alternative mechanisms to show how the policy framework may affect the trade-off between

health outcomes and the restrictiveness of mitigation measures. Mechanisms based on the

reproduction number are generally highly responsive to early signs of a surging wave but

entail severe restrictions. The emerging trade-off varies considerably depending on specific

conditions (e.g., vaccination coverage), with less-reactive mechanisms (e.g., those based

on occupancy rates) becoming more appealing in favorable contexts.

Introduction

During the COVID-19 pandemic, public authorities faced the demanding task of adopting

mitigation policies to minimize the strain on health systems while considering the implied

socioeconomic costs. At the onset of the pandemic in the spring of 2020, several countries

resorted to nationwide lockdowns, given the high uncertainty about the impact of the novel

disease on the national health systems. These policies had profound effects on both public

health [1–6] and socioeconomic variables worldwide [7–15]. After the initial emergency, a

new surge in cases in autumn 2020 prompted many countries to introduce tier systems of con-

tingent measures based on epidemiological indicators such as incidence and growth rates of
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confirmed cases and hospital bed occupancy rates (e.g., Italy [16], Germany [17], the United

Kingdom [18], and France [19]). Unlike the initial lockdowns, these mechanisms allow for a

dynamic adaptation of non-pharmaceutical interventions (NPIs) to the evolution of the epi-

demic. Compared with purely discretionary measures, such rule-based systems offer several

advantages, including predictability and time-consistency of the responses and geographical

differentiation of the interventions within a common nationwide approach.

Analyses, often supported by an underlying epidemiological model, generally, focus on the

role of specific policy interventions (e.g., border closure [20], mask mandate [21, 22], remote

working [23], vaccination [24], school closures [25–28]). These frameworks assess how intro-

ducing a particular policy impacts the epidemic’s evolution, holding everything else fixed.

While still valid, such an approach overlooks the critical interplay between the epidemic trajec-

tory and response mitigation policies observed in the real world. In other words, governments

tend to calibrate their policies and containment measures depending on the epidemiological

situation and its evolution following the enforced interventions. This aspect becomes even

more relevant with rule-based mechanisms in which the epidemic and restrictions interact

almost automatically. Adequate models are critical to evaluating possible epidemic trajectories

under different self-adaptive, reactive mechanisms and informing the decision process of a

policymaker aiming to reach her targets in terms of health and social and economic activities.

Related work and contribution of the paper

A thorough understanding of the relationships between epidemic dynamics, non-pharmaceu-

tical interventions, health outcomes, and economic activity proved crucial for policymakers to

assess the impact of the epidemic and of the related policy responses. In some cases, fully-

fledged macroeconomic tools have been developed for investigating the effects of pandemic-

related outcomes on macroeconomic indicators (e.g., [29–32]) or exploring the spillovers

on trade and production networks [33]. However, in previous contributions, containment

policies are often modeled in a stylized, simplified manner. This feature may limit the possibil-

ity of obtaining a reliable quantification of the effect of NPIs on the epidemic and economic

outcomes.

Our paper contributes to the literature on epidemic-policy models, enabling a realistic

interplay between containment measures and the evolution of the epidemic. The interplay

allows assessing the impact of alternative NPIs mechanisms both on health outcomes and

restrictions on social interactions, which are directly related to the economic activity [34–37].

In detail, we integrate an extended SIR model with an algorithmic component enhancing reac-

tive adjustment of the infection rate levels based on epidemic outcomes. Remarkably, the

embedded algorithmic component mimics the actual policy mechanism adopted by the Italian

government. Weekly rule-based evaluation of epidemiological indicators enforces adaptive

regional NPIs, to balance the health-wealth trade-off posed by the COVID-19 pandemic [38].

Then, we test how different policy mechanisms, based on alternative epidemic indicators,

influence the health outcomes and restrictions evolution.

To derive the epidemiological indicators required for the functioning of the policy mecha-

nism, we extend the SIR model and account for several transition paths of individuals across

compartments, allowing for geographic and demographic heterogeneity of the Italian

population.

Other works by national and international policy institutions featured a static policy-ori-

ented component and a SIR model to address such a task [39–41]. To the best of our knowl-

edge, our contribution is the first to model the interplay between policy interventions and

epidemic dynamics in a fully-fledged, realistic framework.
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Materials and methods

Model

The core of our framework is the interaction between the SARS-CoV-2 transmission and

restrictions. We model the transmission for each Italian region and autonomous province

with an age-structured compartmental model, which extends the workhorse SIR framework

[42] by accounting for different courses of the symptomatic disease, variants of the virus,

effects of temperature, types of vaccines, and progress in the vaccination campaign (Fig 1).

Regarding vaccines, we incorporate the currently available evidence regarding their waning

immunity against infection and protection against severe disease [43–45].

Our model mimics the response mechanisms adopted by the Italian Ministry of Health

(MoH) between November 2020 and March 2022. Regional epidemiological variables define

weekly indicators (e.g., case incidence, reproduction number, hospital occupancy rates), which

constitute the inputs of an algorithm producing restriction tiers and the related containment

policies for the ensuing week. The enforcement of diverse degrees of restrictions characterizes

heterogeneously the evolution of the epidemic and the corresponding indicators across

regions, affecting the path of future restrictive measures (see S1 and S2 Appendices) [46].

We stratify the Italian population by geography and age. Concerning the former, we follow

the Nomenclature of Territorial Units for Statistics—Level 2 (NUTS 2), dividing the Italian ter-

ritory into 19 regions and two autonomous provinces. In line with this, we introduce region-

specific fixed effects in infection transmission to reflect regional heterogeneity in characteris-

tics that may influence the contagion (e.g., population density, climate and pollution

Fig 1. Representation of the epidemiological compartmental model. Model compartments: Susceptible to the virus (S), infectious with Delta (Iz) and

with Alpha (Iα), hospitalized in the medical area (MA) and intensive care unit (ICU), recovered from natural infection (R), immunized with the first group

of vaccines (first and second/third dose, respectively, V1,1 and V1,2−3) and with the second group of vaccines (first and second dose, respectively, V2,1, V2,2),

breakthrough infectious with Delta (BTIz) and Alpha (BTIα), hospitalized with breakthrough disease (MABT, ICUBT) and recovered from breakthrough

infection (VR). The dashed line separates the dynamics associated with natural infections from those of vaccinated individuals. Each compartment is

stratified by age class and region. See S1 Appendix for details.

https://doi.org/10.1371/journal.pone.0272009.g001
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conditions, and individual behaviors). Regarding the age classification, we consider five mutu-

ally exclusive groups: 0–12, 13–18, 19–64, 65–79, and 80+. Our model does not incorporate

movement across regional borders and transition between age groups.

Besides the above stratification, we augment the model with additional compartments for

different courses of the symptomatic disease, vaccine types, and virus variants. Finally, we

allow for a time-varying parametrization reflecting changes in the seasonal conditions, cover-

age, and efficacy of the vaccines by region and targeting group.

We account for the presence of strains of SARS-CoV-2 with different characteristics. The

evidence available through the Italian National Institute of Health (Istituto Superiore di Sanità,

henceforth ISS) shows that two variants were highly prevalent in the country in the two halves

of 2021: Alpha until June, and Delta, from July onward [47, 48]. We parameterize the features

of each according to the available literature, showing that Delta is significantly more transmis-

sible than Alpha [49] and twice as likely to result in hospitalization among non-vaccinated

individuals [50].

In December, a new variant, Omicron, spread in the country [51]. Although the simulations

cover July 2021—March 2022, we do not account for Omicron when calibrating the relevant

parameters, and we abstract from its impact on the epidemic situation. This simplification

allows us to appreciate more clearly the policy mechanisms’ functioning under heterogeneous

conditions. Ideally, one wants to evaluate a mechanism by considering an entire epidemic

wave to observe the full path of health and restriction outcomes and construct the relevant

indicators for the analysis. Such an approach reduces the likelihood of a misjudgment induced

by the use of partial information. For this reason, we do not limit the simulation when Delta

prevailed, and daily cases were still rising (i.e., July—December 2021). Similarly, we neglect the

insurgence of Omicron (December 2021) in the simulations as it would add a source of uncer-

tainty to the model’s parametrization and complicate the interpretation of the results. The

period December 2021—March 2022, in which Omicron spread in the country, is not used for

calibrating the relevant parameters (see Calibration). Nonetheless, we test that results are qual-

itatively unchanged when including Omicron in the model.

Vaccination campaign

During the simulation period, the vaccination campaign in Italy has relied mainly on four

approved vaccines: two mRNA vaccines (Comirnaty by Pfizer/BioNTech and Spikevax by

Moderna) and two viral vector vaccines (Vaxzevria by Oxford University and AstraZeneca

and the COVID-19 Vaccine by Janssen/Johnson&Johnson). For simplicity, we group them

into two classes: 1) Comirnaty/Spikevax and 2) Vaxzevria/COVID-19 Vaccine Janssen. The

two classes differ in the administration mode and efficacy in preventing infections, hospitaliza-

tions, and deaths. In addition, we differentiate the protection against the disease among immu-

nized individuals according to the number of doses received—first, second, and booster—and

variant type since vaccines appear less effective against Delta than Alpha [52]. Regarding

Delta, vaccines are still protective among fully vaccinated individuals [53] and can prevent hos-

pital admissions in most cases [50]. The available evidence also shows that the protection asso-

ciated with vaccination wanes over time. We account for this finding by accounting for the

age-dependent, vaccine-specific reduction in protection against infection and risk of hospitali-

zation over time. Alongside effectiveness, we track differences in vaccination uptakes across

regions and age groups by using historical data until November 2021, available through the

GitHub repository maintained by the Italian Civil Protection [54]. The data contain aggregate

information on vaccine rollout by date, region, age group, and vaccine type, allowing us to

compute the age of each vaccinee cohort for each region and vaccine type. Such information is
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then used with the available evidence on waning immunity at different time horizons to obtain

the average vaccine efficacy used in the model for each age group, vaccine cohort, region, and

vaccine type.

We consider three scenarios for the vaccination campaign. First, Actual rollout relies on his-

torical data. Second, Optimistic rollout assumes a faster rollout than observed between June

and November (20% faster in the second and third age groups, 55% for the fourth age group,

and 105% for the fifth age group). Third, Pessimistic rollout assumes a slower rollout than

observed (80% of actual doses for all age groups between June and December).

For December 2021—March 2022, we consider a reprise of first doses in all scenarios,

which should fit the increase due to the extended application of COVID-19 certificates. How-

ever, the slowdown of new first doses differs across scenarios, with Pessimistic (Optimistic) roll-
out showing a faster (slower) reduction of first doses than Actual rollout. Regarding boosters,

we replicate the policy enacted by the Italian government in Actual rollout. In September,

boosters were available to the elderly six months after the second dose [55]. Later, the Italian

government extended the criteria for eligibility to younger cohorts and shortened the mini-

mum distance between the second and third doses to five months [55] and finally to four [55].

Optimistic (Pessimistic) rollout assumes a fast (slow) rollout of boosters to eligible individuals.

Moreover, vaccinated individuals may access boosters four months after full vaccination in

Optimistic rollout. Since we do not have individual-level information on the time span between

the vaccinations, the allocation of boosters in our simulations works according to a first-in-

first-out principle.

Policy mechanisms

We focus on four alternative policy-response mechanisms, three enforced in Italy after

November 2020. The first one (Rt-New Positives), in place from March 2021 to May 2021, is

mostly based on the reproduction number, Rt—i.e., the expected number of secondary cases

per infectious individual at a given time t—estimated on reported symptomatic cases and the

weekly incidence [56]. The latter is primarily used by the second mechanism (Incidence), in

force between May—July 2021. The third mechanism (Occupancy rates), effective between July

2021—March 2022, considers occupancy rates of non-critical medical area (MA) and intensive

care unit (ICU) beds as leading indicators [46]. On top of the implemented schemes, we also

design an additional mechanism that might be interesting from a policy perspective. The

mechanism takes the reproduction number estimated on hospital admissions in MA (Rt-Hos-
pital admissions) as the leading policy indicator. Compared to Rt-New positives, this alternative

scheme may accommodate the decoupling between the evolution of new cases and hospital

admissions induced by the high and long-lasting vaccine protection against severe disease.

Furthermore, the possibility of introducing a newly designed mechanism proves the flexibility

of our approach.

Following the weekly collection of epidemic indicators carried out by the Italian MoH, the

policy mechanism defines the tier-based restrictions through an algorithm depending on the

value of the indicators themselves. In particular, the MoH assigns each Italian region to a zone

with increasingly restrictive containment measures—white (mild restrictions), yellow, orange,

or red (near-lockdown provisions). Although the Italian government adjusted the rule-based

mechanism over time to accommodate changes in the epidemiological setting (e.g., the onset

of new variants, the progressive achievement of high vaccination coverage), the provisions

within each tier have been mostly consistent over time, at least for unvaccinated individuals.

The four mechanisms are evaluated in terms of critical epidemiological indicators, like the

number of daily new cases, occupancy rates in MAs and ICUs, and the Italian Stringency
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Index (ItSI) [46], an ad-hoc synthetic indicator measuring the intensity of restrictions imple-

mented in Italy throughout the pandemic adapted from the Oxford Stringency Index [57].

Calibration

Model parameters are adopted from published estimates or directly estimated from ISS

COVID-19 Surveillance epidemic data [58], except for two sets of free model parameters for

each considered region (S1 Table).

The first set of parameters represents the relative regional effectiveness of tier provisions.

These parameters are scale factors for transmissibility that reflect local dynamics relatively to a

national baseline (see S1 Appendix for details). Since the complex nature of our developed

framework prevents analytical formulation of the optimization problem, the value for each

region is optimized via grid search (with step size � = 1e − 4) to minimize empirically the mean

squared error between actual and model-based incidence for the period November 9—Decem-

ber 30, 2020. The range of the uniform grid is identified from the relation between the regional

reproduction number and observed policy tiers focusing on the periods before and after the

introduction of the tier-based policy mechanism (October 1, 2020—January 25, 2021) (see S1

Appendix). For this purpose, we rely on the observed tier restrictions, excluding the algorithm

that defines policy tiers in a self-adaptive way from the model. Once the optimal regional val-

ues are derived, we restore the algorithmic mechanism and let restrictions be determined

endogenously within our model for validation. Then, we verify that the model accurately

tracks both the epidemic conditions and the restrictions (S1 Fig).

The second set of parameters is the regional prevalence of Delta on June 14, 2021. We cali-

brate prevalence levels by using a grid search with step size � in the unit interval to minimize

collectively the mean squared error between the actual and model-based incidence over three

weeks (June 14—July 4, 2021), taking the restrictions as given.

Results

This section shows how our approach may provide illustrative scenarios for the evolution of

the COVID-19 epidemic. We assess and compare the impact of different mechanisms of self-

adaptive interventions on health and social-interaction outcomes. Moreover, we show how

other external policy-relevant variables (e.g., vaccination rollout and uptake) may influence

the effectiveness of various self-adaptive mechanisms.

Comparison among self-adaptive mechanisms

Fig 2 shows the evolution of the target variables obtained assuming the actual evolution of the

ongoing vaccination campaign (Actual rollout). Two epidemic waves occur under all mecha-

nisms, accurately reflecting the historical data. The summertime wave is attributable to the

onset of Delta, whose spread was boosted by the increased mobility observed throughout the

first decade of July, coinciding with the European Football Championship [59]. The fall-winter

wave was driven by several factors, possibly including the waning efficacy of the vaccines and

the increase in indoor social interactions associated with dropping temperatures, school re-

openings, and a substantial return to workplaces. However, some relevant differences across

the mechanisms emerge (S2 Table).

First, Occupancy rates is the one that leads to the highest incidence (Fig 2A), which results

in the highest occupancy rates in the hospitals (Fig 2C and 2D). Indeed, under this scheme,

containment measures are less responsive to changes in epidemic conditions, which entails

longer waves of infections. At the same time, this low responsiveness implies a material reduc-

tion in the restrictiveness indicator as compared to the other policy frameworks (Fig 2B).
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Second, Rt-New positives guarantees consistently fewer infections and hospitalizations than

the other mechanisms but at the cost of stricter containment measures. By relying on the effec-

tive reproduction number of detected cases, the mechanism determines a swift increase in

restrictions (Fig 2B) during the summer wave (Fig 2A). However, the low incidence achieved

at the beginning of the fall, combined with the progress in the vaccination campaign, allows

for a delayed wave and a low level of restrictions until November-December 2021. Restrictions

increase steeply at the beginning of 2022 when the epidemic also accelerates under this mecha-

nism. Compared to Occupancy rates, Rt-New positives reduces reported cases by about 4,800

and hospital bed occupancy rates in non-critical medical areas by 4.2 percentage points (p.p.)

and 3.4 p.p. in ICU over the entire simulation period. At the same time, the ItSI is about 40%

higher, which implies a considerable increase in the socioeconomic costs related to social dis-

tancing provisions.

Incidence and Rt-Hospital admissions occupy intermediate positions in the health-strin-

gency spectrum. The two mechanisms are associated with similar cases and hospital admis-

sions, and the overall level of restrictions is comparable until fall 2021, albeit with different

timing. Rt-Hospital admissions tends to react more promptly than Incidence to a change in epi-

demic conditions. Noticeably, the progress in the vaccination campaign achieved by the end of

Fig 2. Comparison among mechanisms, Actual rollout. From left to right and top to bottom: new cases (thousands, Panel A),

Italian Stringency Index (ItSI, Panel B) [46], occupancy rates in non-critical medical areas (MA, Panel C), and intensive care

units (ICU, Panel D). Gray dots represent observed data (increasingly shaded to highlight the decoupling between model

assumption and the actual unfolding of the pandemic due to Omicron). The mechanisms evaluated are i) Occupancy rates,
reproducing the mechanism in force in Italy from July 2021 to March 2022, ii) Incidence, reproducing the mechanism in force

from May to July 2021, and iii) Rt (New Positives), reproducing the mechanism in force from March to May 2021, and iv) Rt
(Hospital Admissions), a fictitious framework based on Rt (New Positives) in which the reproduction number, Rt, relies on

hospital admissions (instead of new cases). The hypotheses underlying Actual rollout are further described in S4 Appendix.

https://doi.org/10.1371/journal.pone.0272009.g002
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the year determines that the hospital bed occupancy rates associated with Rt-Hospital admis-
sions and Incidence are close. However, unlike the summer wave, the former triggers substan-

tially stricter restrictions than the latter.

Role of vaccination

The evaluation of different mechanisms may also depend on external conditions regarding, for

instance, the virus’s characteristics, the vaccination campaign’s progress, vaccine efficacy, and

waning protection. To assess the impact of external conditions on the interplay between health

and policy outcomes, we focus on the vaccination campaign. Since their approval and initial

distribution, vaccines have been a critical policy variable in tackling the COVID-19 pandemic

for their ability to shape the relationship between restrictions and epidemic outcomes [60, 61].

For example, low vaccine protection or coverage may make adopting highly responsive mecha-

nisms desirable to limit the burden of a massive epidemic outbreak on the national health

system.

We conduct simulations assuming higher and lower exogenous vaccine coverage than the

baseline (Actual rollout). We label these simulations as Optimistic rollout and Pessimistic roll-
out, respectively. Optimistic rollout (Fig 3) assumes a faster rollout, a larger final uptake among

the population, and a faster deployment of the third dose (booster). Conversely, Pessimistic

Fig 3. Comparison among mechanisms, Optimistic rollout. From left to right and top to bottom: new cases (thousands, Panel

A), Italian Stringency Index (ItSI, Panel B) [46], occupancy rates in non-critical medical areas (MA, Panel C), and intensive care

units (ICU, Panel D). The mechanisms evaluated are i) Occupancy rates, reproducing the mechanism in force in Italy from July

2021 to March 2022, ii) Incidence, reproducing the mechanism in force from May to July 2021, and iii) Rt (New Positives),
reproducing the mechanism in force from March to May 2021, and iv) Rt (Hospital Admissions), a fictitious framework based on

Rt (New Positives) in which the reproduction number, Rt, relies on hospital admissions (instead of new cases). The hypotheses

underlying Optimistic rollout are further described in S4 Appendix.

https://doi.org/10.1371/journal.pone.0272009.g003

PLOS ONE An epidemic model for SARS-CoV-2 with self-adaptive containment measures

PLOS ONE | https://doi.org/10.1371/journal.pone.0272009 July 25, 2022 8 / 18

https://doi.org/10.1371/journal.pone.0272009.g003
https://doi.org/10.1371/journal.pone.0272009


rollout (Fig 4) relies on a slower and less extensive rollout than observed. All simulations

account for uncertainty in the vaccination-induced immunity (S4 Appendix for more details).

Results confirm that vaccination coverage is a crucial variable interacting with the policy

mechanisms. In the counterfactual Optimistic (Pessimistic) rollout scenario, new cases, occu-

pancy rates of hospital beds, and the ItSI would all reach remarkably lower (higher) levels than

Actual rollout.
In Optimistic rollout, vaccines effectively slow down the spread of the disease in the popula-

tion, reduce the share of infected requiring medical treatment, and drag down the level of

restrictions needed to contain the epidemic by acting effectively on the respective underlying

indicator. For instance, average MA occupancy rates are 0.5–1.9 p.p. lower in Optimistic roll-
out than in Actual rollout, with the difference varying across mechanisms (S2 Table). Indeed,

Optimistic rollout is characterized by a lower level of heterogeneity in cases and hospital admis-

sions across the mechanisms. Rt-New positives is still associated with the lowest number of

daily newly reported cases (2,074 on average throughout the considered period). However, the

gains from decreased hospitalizations are considerably reduced relatively to Actual rollout.
Conversely, under these favorable conditions, health outcomes under Occupancy Rates are

closer to those produced by the other mechanisms with a material reduction of restrictions.

The difference in MA occupancy rates between Occupancy Rates and Rt-New positives is about

Fig 4. Comparison among mechanisms, Pessimistic rollout. From left to right and top to bottom: new cases (thousands, Panel

A), Italian Stringency Index (ItSI, Panel B) [46], occupancy rates in non-critical medical areas (MA, Panel C), and intensive care

units (ICU, Panel D). The mechanisms evaluated are i) Occupancy rates, reproducing the mechanism in force in Italy from July

2021 to March 2022, ii) Incidence, reproducing the mechanism in force from May to July 2021, and iii) Rt (New Positives),
reproducing the mechanism in force from March to May 2021, and iv) Rt (Hospital Admissions), a fictitious framework based on

Rt (New Positives) in which the reproduction number, Rt, relies on hospital admissions (instead of new cases). The hypotheses

underlying Pessimistic rollout are further described in S4 Appendix.

https://doi.org/10.1371/journal.pone.0272009.g004
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2.2 p.p. on average (1.8 for ICU), while the ItSI remains about 40% higher under Rt-New posi-
tives. This evidence suggests that a policymaker aiming to reduce restrictions may prefer a

mild policy framework, such as Occupancy Rates, when external conditions are propitious

(e.g., high vaccination coverage or low transmissibility of the virus).

Findings are much more heterogeneous under Pessimistic rollout. In this case, Occupancy
Rates leads to a substantial increase in hospitalizations and more impactful and persistent

waves than the other mechanisms. Restrictions are still lower during the summer when cli-

matic conditions reduce transmissibility but tend to increase substantially in the fall-winter

wave. Occupancy rates determines a high ItSI, larger than that implied by Incidence during the

same wave. Restrictions under Occupancy rates are not far from that reached with other mech-

anisms (-15.3% compared with Incidence, -28.6% compared with Rt-New Positives; S2 Table),

but the delayed response leads to hospital occupancy rates that are about twice as large as those

obtained with the other mechanisms. More responsive schemes, e.g., those relying on repro-

duction numbers, materially reduce hospital admissions in this unfavorable scenario. On aver-

age, restrictions associated with responsive mechanisms are large, but the differences from the

other mechanisms are smaller than those found in Actual rollout and Pessimistic rollout. In this

contest, Rt-Hospital admissions seems a valuable alternative to Rt-New positives in force in

Italy throughout the spring of 2021. While the restrictions of the two mechanisms are close

during the winter wave, Rt-Hospital admissions is much more lenient than Rt-New positives
during the previous summer wave.

Fig 5 summarizes the above discussion, highlighting the trade-off between epidemic/health

outcomes and restrictions under varying external conditions and policy mechanisms.

Other applications

Integrating endogenous mitigation responses in epidemic models may prove helpful in various

applications beyond the comparison between different policy mechanisms. Taking into

account self-adaptive NPIs allows simulation results to track the historical epidemic data

much more precisely than models with fixed restrictions over time (S5 Appendix). This feature

can also be exploited in projection exercises to investigate the possible future trajectories of

epidemic variables and restrictions. Indeed, simulations based on the model presented in this

work have been used to incorporate the projections of epidemic variables in forecasting mod-

els targeting the growth of Italian gross domestic product [62].

Accounting for the reaction of containment policies is crucial also for counterfactual and

ex-post evaluations of a given exogenous event. For example, we have discussed the effects of

different vaccine rollout, considering the possible restrictions changes (Vaccination cam-

paign). In S6 Appendix, we provide an additional example of possible counterfactual analyses

that can be conducted within the proposed modeling framework. In particular, we assess the

determinants of the divergence between the epidemics in the United States and the European

Union observed during the first half of 2021. Since late February 2021, the United States

showed a lower incidence than most EU countries, despite more intense community mobility.

The fast rollout in the United States in the first phases of the vaccination campaign may be a

possible explanation for this parting. However, another relevant factor may be the prevalence

of different variants hitting the two regions: at the time, Alpha, more contagious than the wild-

type, was more widespread in the European Union than in the US.

The proposed modeling framework can help disentangle the contribution of each compo-

nent (vaccination rollout and variant prevalence). In a counterfactual simulation, we apply to

Italy the favorable conditions prevailing in the United States regarding vaccination rollout and

variant prevalence for the period February—May 2021. A delayed diffusion of the new variants
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would reduce substantially new cases and the severity of restrictions. A faster vaccine rollout

would have further eased restrictions and a drop in cases. Results suggest that postponing the

diffusion of these variants through controls on international movements and identification,

isolation, and monitoring of new outbreaks can help curb the epidemic. The benefits from

such an approach are akin to those of a substantial acceleration in vaccination.

Discussion

Many countries resorted to geographically differentiated, reactive measures in their fight

against COVID-19. This approach offers several advantages compared with discretionary strict

nationwide interventions. However, it also requires assessing the adequacy of a policy in which

the policymaker commits to a course of actions under rapidly evolving external conditions

(e.g., diffusion of new variants of concern, the progress of the vaccine campaign). Dynamic

assessment of policy effectiveness is crucial to projecting credible epidemic scenarios and

related restrictions over different time horizons. The framework presented in this paper can

help policymakers choose the appropriate criteria to strike a balance between minimizing the

health damages induced by the epidemic and the severity of restrictions.

Fig 5. Trade-off between average restriction levels, as measured by the ItSI, and the average values of daily reported new positives (panel A), MA

occupancy rate (panel B), ICU occupancy rate (panel C) under each considered vaccine rollout (Actual rollout, Optimistic rollout, and Pessimistic
rollout) and mechanism (Rt-New positives, Incidence, Occupancy rates, Rt-Hospital admissions), July, 2021—March, 2022. The diamonds refer to

Actual rollout, the triangles to Optimistic rollout, the nablas to Pessimistic rollout. Green symbols refer to Rt-New positives, blue symbols to Incidence,
red symbols to Occupancy rates, purple symbols to Rt-Hospital admissions. In each panel and for a given vaccine rollout, there is an inverse relation

between the level of restrictions, as measured by the ItSI, and the value of the corresponding epidemiological indicator during the considered period.

https://doi.org/10.1371/journal.pone.0272009.g005
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In this paper, we account for the interaction between containment policies and the evolu-

tion of the pandemic by embedding rule-based, self-adaptive policy restrictions into an epi-

demic model and show the insights that such an enriched model brings. Different rules

translate into diverse outcomes regarding restrictions and the epidemic. The complex interplay

between restrictions and uncertain epidemiological conditions may magnify differences across

viable regulatory frameworks.

The extension of the SIR model to include different self-adaptive policy mechanisms pre-

sented in this paper replicates the Italian framework in force between November 2020 and

March 2022, which assigned regions to restriction tiers depending on specific epidemic indica-

tors. In this manner, we can simulate the evolution of the variables of interest during the diffu-

sion of Delta from July 2021 to March 2022. As NPIs are not the only available tool, we also

consider alternative scenarios for the vaccination rollout to provide a spectrum of outcomes

that policymakers may face under various external conditions. Introducing a self-adaptive

rule-based policy mechanism differs substantially from exploring the set of available policies

with a standard SIR model because, in the former case, NPIs are automatically activated and

deactivated depending on their effects on the epidemic’s trajectory.

Simulations show that policy mechanisms based on the reproduction number reduce the

impact on the health system compared to alternative mechanisms based on stock variables

(e.g., hospital bed occupancy rates or incidence), especially with low vaccine coverage among

the population. The rationale is that it takes time before the disease spreads enough to raise the

occupancy rate or the incidence (i.e., the pivotal epidemiological indicator) to the threshold

that triggers restrictions. Likewise, the effects of NPIs require time to show up in the data since

some degree of inertia may characterize the evolution of the epidemic. Conversely, responsive

mechanisms generally entail stricter containment measures (see also [63] on this trade-off).

The trade-off between health outcomes and the intensity of social interactions ensured by the

various regimes crucially depends on the external context. With favorable conditions, such as

high vaccination coverage, mild policy schemes guarantee a sizable reduction in restrictions

with a small increase in cases and hospital admissions. On the other hand, with low levels of

vaccination, responsive mechanisms substantially reduce cases and hospitalizations, as restric-

tions kick in early and substantially. Clearly, further elements (e.g., the availability of effective

treatments, the costs associated with long-term sequelae of COVID-19 infections, loss in

school days or working hours linked to quarantines) may affect this trade-off. Ultimately, the

evaluation of the trade-off depends on the policymaker’s (and public opinion’s) preferences

over epidemiological, economic, and social outcomes. By pinning down some key variables,

our framework improves the transparency of such an assessment while being flexible enough

to include other aspects characterizing the trade-off.

While we consider many possible sources of uncertainty in our simulations, we remain

agnostic on some other relevant factors. For example, the lack of robust evidence makes it

hard to estimate the effectiveness of individual interventions (e.g., contact tracing, school clo-

sures). To get around this limitation, we considered the overall impact of tier-related provi-

sions on the epidemic (rather than individual ones) by including changes in community

mobility indicators as a proxy of their effectiveness and calibrating regional elasticities to con-

sider the geographic heterogeneity of such effectiveness. Notification rates are likely to vary

over time due to the incidence of infections, testing capacity, and existing policy regulations.

Vaccination rates are also likely influenced by the policy framework and the evolution of epi-

demics and health conditions [64, 65]. Individual behavior may change over time or across

locations due to the so-called “lockdown fatigue” [66] or the adaptation to the varying external

conditions, including vaccination status and incidence levels. Moreover, the evaluation of

costs and benefits associated with restrictions may substantially vary depending on the state of
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the epidemic itself. With insufficient data to model these effects, quantitative outcomes associ-

ated with different epidemiological scenarios should be considered illustrative and valuable to

evaluate the potential interplay between the disease spread and endogenous mechanisms to

counter an increase in COVID-19 infections.

Due to the already high complexity of the model, we decided to simplify the representation

of other relevant aspects of SARS-CoV-2 epidemiology. For example, we did not include

mobility between regions [67, 68], and we considered a relatively coarse partition of the Italian

territory. We also did not consider the heterogeneity in infectiousness across symptomatic

states or the possibility that immunity from natural infection may wane over time [60, 69].

Moreover, our model does not include population dynamics—other than COVID-19-induced

mortality—due to their negligible impact over the short time horizon of the simulations.

Finally, although our framework is general enough to fit a large number of rule-based

mechanisms, as the proposed fictitious policy and vaccination scenarios show, we do not

model the selection of an optimal mechanism because this problem would require, among

others, embedding policymakers’ preferences into the set of possible outcomes. There is an

important warning in the background of our analysis regarding this choice. Informing rule-

based policies requires producing timely and reliable data [70]. Poor information may lead to

inadequate measures and jeopardize public trust, which is crucial to containing a pandemic

successfully.

Despite these difficulties, including a policy-response algorithmic component in a fully-

fledged epidemic model constitutes an essential step forward in designing evidence-informed

responses, especially within a rule-based framework. Throughout the COVID-19 pandemic,

many valuable contributions have tried to bridge the gap between epidemiology and econom-

ics [36, 37, 71, 72]. Including containment policies into an epidemiological model is key to

designing policies that improve socioeconomic and sanitary outcomes.

Conclusion

This paper proposes an epidemiological model with self-adaptive dynamic NPIs, which may

help evaluate the potential impact of the pandemic and related restrictions. For its realistic

setup and ability to track simultaneously the actual evolution of epidemic conditions and

related restrictions, our model may have a broad scope for policy applications. For instance, it

may provide useful inputs for exercises aiming to forecast the economic activity or conduct

cost-benefit analyses. The proposed framework can be easily adapted to evaluate rule-based

policies ex ante and ex post in different countries with appropriate fine-tuning of the parame-

ters and support informed policy choice among alternative response mechanisms.
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