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Abstract Ensuring drug safety in the early stages of drug development is crucial to avoid costly fail-

ures in subsequent phases. However, the economic burden associated with detecting drug off-targets and

potential side effects through in vitro safety screening and animal testing is substantial. Drug off-target

interactions, along with the adverse drug reactions they induce, are significant factors affecting drug

safety. To assess the liability of candidate drugs, we developed an artificial intelligence model for the pre-

cise prediction of compound off-target interactions, leveraging multi-task graph neural networks. The

outcomes of off-target predictions can serve as representations for compounds, enabling the differentia-

tion of drugs under various ATC codes and the classification of compound toxicity. Furthermore, the pre-

dicted off-target profiles are employed in adverse drug reaction (ADR) enrichment analysis, facilitating

the inference of potential ADRs for a drug. Using the withdrawn drug Pergolide as an example, we eluci-

date the mechanisms underlying ADRs at the target level, contributing to the exploration of the potential

clinical relevance of newly predicted off-target interactions. Overall, our work facilitates the early assess-

ment of compound safety/toxicity based on off-target identification, deduces potential ADRs of drugs,

and ultimately promotes the secure development of drugs.
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1. Introduction

Ensuring drug safety is of utmost importance for individuals using
medications, encompassing measures to minimize the risks of
adverse drug reactions (ADRs) and potential harms associated
with drug utilization. This commitment contributes significantly to
the overall success and viability of pharmaceutical endeavors1-4.
Traditional approaches to safety evaluation and toxicity prediction
for compounds have relied on costly in vitro methods (e.g., organ-
on-a-chip) and in vivo methods (e.g., animal models) that may not
accurately reflect human responses5. ADRs are influenced by
factors such as drug dose, drug metabolism and patient individual
differences6,7. Categorically, about 75% of ADRs fall into Type A,
which is dose-dependent and predictable based on the pharma-
cological characteristics of the drug. Notably, off-target in-
teractions primarily constitute secondary pharmacological features
leading to Type A ADRs1, making off-target toxicity a substantial
contributor to drug attrition8-10. This underscores the importance
of identifying undesired drug targets1,11, presenting a relatively
cost-effective approach for evaluating drug safety.

Pharmaceutical companies commonly employ in vitro phar-
macological assays to profile compounds against a comprehensive
panel of unsafe off-targets to reduce the number of molecules
tested in subsequent assays1. Based on the internal off-target
panels of four pharmaceutical companies—AstraZeneca,
GlaxoSmithKline, Novartis, and Pfizer, Bowes et al. proposed 44
early drug safety targets that include the toxicity of the central
nervous system, immune system, gastrointestinal tract, and heart1.
AbbVie obtained 70 safety-related targets via a literature search,
most of which are included in Eurofins’ safety panel12. Roche
utilized experimental data based on the Bioprint� database and
employed a statistical ranking method, resulting in a panel of 50
safety targets13. However, compared to screening compounds on
known therapeutic targets, off-target screening of compounds is
challenging due to the lack of boundaries.

Conducting extensive experimental screening on numerous
targets can be cost-prohibitive. Therefore, employing in-silico
predictions to assess compoundetarget interactions provides a
costeeffective approach to investigating off-target compound
safety13,14. The traditional target prediction methods rely on
chemical similarity search, where many studies use multi-target
structureeactivity relationship (SAR) models to retrieve putative
targets of compounds. With the advent of the big data era, inte-
grating artificial intelligence (AI) methods into this process offers
further cost reduction opportunities. Mayr et al.15 employed data
collected from ChEMBL to construct a series of supervised binary
classification models, such as Random Forest (RF), K-Nearest
Neighbor (KNN), and Deep Neural Network. In a recent study by
Roche, researchers proposed a suite of off-target prediction models,
including Neural Networks, RF, Auto-Sklearn, AutoGluon, and
H2O. These models were assessed using a dataset of 4000 com-
pounds from the company, enabling a thorough exploration and
comparison of neural networks and machine learning methods in
constructing off-target prediction models for 50 distinct targets,
each with varying dataset sizes and imbalances16. Lunghini et al.17
introduced ProfhEX, a platform that utilizes tree-based Gradient
Boosting (GB) and RF algorithms to establish prediction models for
46 off-targets. The platform also provides a comprehensive
mechanistically-driven liability profile of small molecules.

Previous research related to compound safety has predomi-
nantly concentrated on singular aspects. Apart from off-target
prediction, ADR prediction and toxicity prediction are also
commonly employed for evaluating compound safety18. Various
machine learning algorithms have been applied to ADR predic-
tion, leveraging features such as drug phenotype, chemical and
biological information, and target proteins to model the complex
drug‒ADR relationships19-21. Liu et al. integrated phenotype,
chemical and biological information of drugs and tested various
classifiers such as Logistic Regression, Naive Bayes, KNN, RF
and SVM for each ADR22. Zhang et al. modeled drugs and their
side effects as a multi-label task, using various information such as
chemical substructures, target proteins, and indications to repre-
sent drugs23. Zhang et al. constructed a KG containing four types
of nodes (drug, indication, target, and side effect), and proposed a
novel knowledge graph embedding method combined with a lo-
gistic regression classification model to predict whether a given
drug has a certain ADR24. For compound toxicity prediction,
computational toxicology, an emerging field, offers numerous
models for large-scale virtual screening to identify candidates for
subsequent experimental testing25-27. These models can be expert-
designed, involving techniques like structural alerts28,29 or read-
cross30, or they can be created automatically using machine
learning techniques. While expert-designed rules provide some
guidance for toxicity prediction, they often exhibit excessive
sensitivity, leading to numerous false-positive outcomes. Machine
learning methods primarily rely on quantitative structureeactivity
relationship (QSAR)31, which characterizes a drug’s chemical
structure and combines it with relevant supervised learning algo-
rithms such as RF, XGBoost, and SVM, among others, for toxicity
modeling8,25,32. Hao et al.33 introduced the drug toxicity predic-
tion model DTox which is based on Visible Neural Network
(VNN), established a meaningful network structure through a
hierarchical approach. Sharma et al.34 employed pre-trained
SMILES embeddings as molecular representations in deep net-
works. This approach allows simultaneous learning of in vitro,
in vivo, and clinical toxicity tasks, thereby enhancing toxicity
prediction.

However, ADR and toxicity data are primarily derived from
limited clinical sources, posing challenges to traditional prediction
methods, especially those relying on marketed and clinical com-
pound structures, which could exhibit poor generalizability.
Moreover, considering the inherent link between drug off-target
effects and ADRs, as well as toxicity3,35, characterizing the
compound’s off-targets becomes a critical determinant of its
safety. In light of this, we propose predicting a drug’s off-target
profile and utilizing it as a compound representation for subse-
quent tasks, including ATC classification, toxicity prediction, and
ADR enrichment analysis. Initially, using a comprehensive
compoundeprotein interaction database, we construct a multi-task
graph neural network model to predict compounds’ off-target

http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1 The data volume corresponding to each target type before and after negative sampling.

GPCR Ion channel Enzyme Kinase Transporter Nuclear

receptor

Others

Number of targets 146 (49

human)

33 (16

human)

27 (9

human)

10 (6

human)

11 (4

human)

10

(4 human)

5 (2

human)

Before negative

sampling

Positive 114 k 23 k 19 k 9 k 20 k 10 k 6 k

Negative 177 k 21 k 47 k 15 k 11 k 17 k 2 k

Pos: Neg 0.64 1.08 0.40 0.62 1.69 0.58 2.68

After negative

sampling

Positive 114 k 23 k 19 k 9 k 20 k 10 k 6 k

Negative 500 k 130 k 103 k 42 k 100 k 46 k 34 k

Pos: Neg 0.23 0.18 0.18 0.22 0.20 0.22 0.20
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profiles based on their chemical structures and compare it with
several previous off-target prediction models to demonstrate its
performance. The off-target prediction results for any given
molecule can then serve as a molecular representation, capturing
the molecule’s off-target and subsequent ADR or toxicity effects.
We explored the use of these representations in drug ATC clas-
sification and toxicity prediction, comparing their performance
with that of ECFP-based models to showcase their effectiveness.
Furthermore, ADR enrichment analysis is employed to leverage
the off-target profile, identifying crucial ADRs at the target level,
particularly severe ADRs leading to drug withdrawal. Using
Pergolide as a case study, we predicted its off-target profile and
subsequently utilized the off-target representation to elucidate its
ADR mechanisms, attempting to provide the potential explana-
tions for drug‒target‒ADR correlations of Pergolide. Hence,
initiating from the molecular structures, we can obtain the mole-
cules’ off-target representations, which provide valuable infor-
mation for safety-related prediction tasks. This early safety
assessment protocol can steer a rational drug development pro-
cess, facilitating the discovery of safe compounds.

2. Method

2.1. Collection and processing of compoundetarget interaction
datasets

Initially, our project created an off-target panel consisting of 90
targets. More information about these targets can be found in
Supporting Information Text S1 and Table S1. According to the
gene names of the targets, we collected compounds associated
with the corresponding targets from ChEMBL36 and PubChem37,
following the steps outlined in Supporting Information Text S2.
All databases used in our study are presented in Supporting
Information Table S2. We eliminated experiment indicators with
insufficient data and mainly retained the following six indicators:
Ki, Kd, IC50, EC50, %activity, and %inhibition. To classify com-
pounds under a specific target as active or inactive, we applied the
threshold settings introduced in the Illuminating the Druggable
Genome (IDG) project (Supporting Information Table S3)38,39. To
facilitate subsequent training needs, we merged the data obtained
from ChEMBL and PubChem and only selected targets containing
at least 10 positive compounds. In total, 242 multi-species targets
were retained, including 90 human targets, screening against
approximately 320,000 unique compounds. The statistic of the
processed data is shown in Table 1.

To expose the model to a larger number of negative samples
and facilitate a more comprehensive understanding of the negative
sample space40, mitigate false positives and enhance the model’s
usability, we employed a negative sampling approach to augment
the negative samples. Under each target class, we selected com-
pounds as negative sampled decoys based on their similarity to
positive samples in terms of physical and chemical properties and
molecular fingerprint similarity of less than 0.6. The sampling
ratio differed among target classes to maintain a positive-to-
negative compound ratio of approximately 1:5 in the data after
negative sampling. This ensured that the model had enough
exposure to negative samples. The data amounts after negative
sampling are detailed in Table 1. Supporting Information Fig. S1
depicts the chemical spatial distribution of the sampled decoys
and positive molecules under different target classes. The simi-
larity in chemical spatial distribution indicates the reasonableness
of the sampling approach. Employing these decoys, we aimed to
demonstrate the model’s ability to distinguish between the two
molecule types based on their structural characteristics, rather than
solely considering their physical and chemical properties41.

The compoundetarget interaction data division used in this
project adopts the drug-blind mode, which does not consider the
target and groups all small molecules together for classification.
We performed random stratified partitioning with a ratio of 0.1 to
obtain the test set first and then performed five-fold cross-vali-
dation on the remaining data to obtain train and validation datasets
for each fold. We then trained and validated the model five times
and evaluated the model by computing the average of the results
obtained from the five experiments.

2.2. Construction of multi-task GNN models

Multitask learning is a machine learning approach that utilizes a
shared representation, training multiple related tasks simulta-
neously42,43. We employ a hard parameter sharing GNN model for
multitask learning. Throughout the training process, the tasks
share common hidden layers and hyperparameters, with a distinct
separation occurring into individual tasks at the output of the
network’s fully connected layer, as depicted in Fig. 144. The model
incorporates implicit data augmentation by exploiting similar
structural features of molecules45. This approach enhances the
model’s focus on influential features, as evidence from other tasks
is effectively utilized.

A graph neural network, Attentive FP, is used for molecular
representation, which leverages the graph attention mechanism to
represent molecules and learn related tasks46. Specifically, we
adopted the Attentive FP network architecture, based on
DeepChem, for predicting drugs off-targets (Fig. 1). The network
consists of three Attentive FP convolutional layers for extracting
atomic features and two readout layers for extracting molecular
features, culminating in a fully connected layer to produce



Figure 1 Illustration of off-target prediction model for drugs and the utilization of the off-target representation.
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prediction values. To reduce the bias caused by the imbalance
label (negative samples are much more than positive samples), we
used a weighted cross-entropy loss function, where the class
weights were set as the inverse of class frequencies47. Early
stopping and hyperparameter search strategy were used for model
optimization. The hyperparameter search range of the multi-task
GNN can be found in Supporting Information Table S4.

2.3. Execution of ADR enrichment analysis

The ADR enrichment analysis approach is essentially a
bioinformatics-inspired strategy, similar to gene set enrichment
analysis. Initially, we established ADR-targets mappings, creating
an annotation database akin to gene ontology. The foundation for
the pairs of ADR-targets was built on studies by Novartis48, Jef-
frey et al.3 and other drug safety researchers1,49. These compre-
hensive connections between ADRs and off-targets were
established through rigorous testing and analysis of commercially
available drugs. Leveraging their data, we created a mapping
linking each ADR with its related off-targets. To ensure precision
in subsequent ADR enrichment analysis, ADRs corresponding to
off-targets of fewer than 3 were excluded, and those with severity
scores less than 0.1 were filtered to retain more hazardous ADRs.
ADR severity scores ranging from 0 to 1 were obtained from
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Stanford’s study, which ranked 2929 ADRs through crowdsourc-
ing18. Consequently, we obtained 358 ADR terms associated with
193 off-targets (all included in our off-target panel). The process is
detailed in Supporting Information Fig. S2. These ADR-targets
mappings served as an annotation database like gene ontology
(GO) used in gene enrichment analysis, providing prior informa-
tion for ADR enrichment analysis.

The enrichment analysis utilized the hypergeometric distribu-
tion. For a given ADR, the probability that predicted off-targets
for a drug are included in the ADR-related off-target set is
calculated by Eq. (1):

pðkÞZPðXZkÞZ

�
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�
�
�
N �K

n� k

�
�
N

n

� ð1Þ

where N represents the total number of targets in the annotation
database (193 targets); n denotes the number of predicted positive
targets for a drug, and K denotes the number of targets belonging
to the specific ADR term, of which, k is predicted as positive
targets for the drug. In essence, this equation signifies the prob-
ability that the predicted off-target profile for a drug is enriched in
a specific ADR. For enrichment analysis, P-values are calculated
based on the binomial approximation of the hypergeometric dis-
tribution, with Bonferroni correction and multiple hypothesis
testing performed by FDR adjustment50,51 (See Supporting
Information Text S3 for detailed instructions). ADR enrichment
analysis was conducted using the enrichr function in the GSEApy
Python package (version 1.0.6).

2.4. Evaluation metrics

The classification model’s performance is assessed using AUROC,
Balanced Accuracy (BACC), Matthews Correlation Coefficient
(MCC), and F1 scoredcritical indicators for evaluating classifiers
in imbalanced data scenarios. These metrics are computed from
the confusion matrix: True Positives (TP), False Positives (FP),
False Negatives (FN), and True Negatives (TN). Specifically,
BACC, MCC, and F1 are calculated using Eqs. (2)e(4) respec-
tively. The Area Under the Receiver Operating Characteristic
Curve (AUROC) is the area beneath the ROC curve, which con-
sists of the True Positive Rate (TPR) (Eq. (5)) against the False
Positive Rate (FPR) (Eq. (6)) at different thresholds, the AUROC
can be calculated using Eq. (7).
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For multi-label learning, two prominent ranking-based metrics
hold significance: Mean Average Precision (mAP) and Rank Loss.
mAP, particularly, functions as an indicator of the ranking quality
reflected in prediction outcomes. In the context of C classes of
labels, mAP is calculated as the average of the Average Precision
(AP) across all classes (Eq. (8)), where AP is determined by
calculating the area under the Precision-Recall curve for each
class i (Eq. (9)).

mAPZ
1

C

XC
iZ1

APi ð8Þ

APZ
Xn

kZ1

ðPrecisionk � ðRecallk � Recallk�1ÞÞ ð9Þ

where Precision and Recall are computed at each threshold k, i.e.,
a specific point along the Precision-Recall curve; n is the number
of thresholds, i.e., the total number of positive instances.

Rank Loss is a metric employed in multi-label classification to
quantify the quality of the ranking assigned to positive labels for
each instance. The calculation involves sorting the predicted
probabilities of positive labels in descending order for each
instance, forming a ranked list. Subsequently, the algorithm counts
the number of inversions, representing instances where the pre-
dicted ranking contradicts the true ranking of positive labels. This
count is then divided by the total number of possible pairs of
positive labels, calculated as Eq. (10):

Rank lossZ
Number of inversion

Total number of possible pairs
ð10Þ

where the total number of possible pairs is calculated as n� ðn�
1Þ=2, and n is the number of positive labels for the instance. The
process is repeated for all instances, and the average Rank Loss is
determined by averaging the obtained values. A lower Rank Loss
value signifies superior performance, with an optimal score of 0,
indicating perfect agreement between predicted and true rankings.

3. Results and discussion

3.1. The overall workflow of drug safety analysis based on off-
target prediction

The workflow of drug safety analysis based on off-target predic-
tion is shown in Fig. 1. Initially, we constructed an off-target panel
and curated corresponding targetecompound interaction data.
Based on these data, we built 7 ligand-based off-target prediction
models through multi-task GNNs, corresponding to 7 target
families, i.e., GPCR, ion channel, enzyme, kinase, transporter,
nuclear receptor and others. Consequently, the binding probabil-
ities against the off-target panel can be obtained for each com-
pound. The predicted off-target profiles can then be employed as
molecular representations for the subsequent classification of a
drug’s ATC, toxicity, as well as ADR enrichment analysis.

3.2. Classification performance of off-target prediction models

We constructed multi-task GNNs (MTGNN) for the ligand-based
prediction of off-target profiles. The panel for off-target analysis
comprises 90 protein targets of Homo sapiens collected from the



Figure 2 Performance comparison among MTGNN, NeuralNetworks, RandomForest, and Auto-Sklearn in constructing off-target models. (A)

A bar chart compares the number of tasks (y-axis) corresponding to the maximum scores achieved by each method on AUROC, MCC, BACC, and

F1 metrics. The number above each bar indicates the tasks with the highest score for that method. (B) Average performance, measured by BACC,

is depicted for the seven types of target models under four off-target prediction models. (C) The performance of MTGNN and Neural Networks in

tasks with different data volumes. The bar chart shows the average BACC (y-axis) for tasks with corresponding data volumes (x-axis).

ManneWhitney U test is used to test for significant differences, where: ns indicates no significant difference; 0.01<*P < 0.05; 0.001<**P < 0.01.

(D) The histogram of the number of human target tasks (y-axis) corresponding to different interval ranges (x-axis) of BACC. (E) Scatter plots

depict Recall and Precision values for human target tasks. Each color represents a different target type, and dot size corresponds to the amount of

available data for that target, with larger dots indicating larger datasets. The y-axis represents the positive rate of the overall data volume, while the

x-axis represents the respective indicator value.
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previous research1,12,13, comprising 50 GPCR targets, 16 ion
channel targets, 9 enzyme targets, 6 kinase targets, 4 nuclear re-
ceptor targets, 4 transporter targets and 2 other targets. Subse-
quently, seven distinct multi-task GNN models were created, one
for each of the seven target families. The multi-task strategy was
employed to leverage shared information among tasks within each
target family44 resulting in an enhancement of model quality and
robustness, while simultaneously preventing cross-family negative
transfer. Additionally, corresponding protein targets from other
species were included in the training data to improve the multitask
model, as these targets could serve as valuable sources of induc-
tive bias. The hyperparameter values for these seven multi-task
GNN models were individually optimized through grid search-
ing (see Supporting Information Table S5). As a result, for each
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compound, the interaction probabilities with the 242 targets can be
inferred from these seven multi-task GNNs (see Method; the in-
formation for the off-targets can be found in Table S1).

We compare the performance of our off-target prediction
MTGNN model with Roche’s off-target prediction methods,
including NeuralNetworks, RandomForest, and Auto-Sklearn.
Detailed information on the models and their parameter settings
can be found in Roche’s work16 and Supporting Information
Table S6. Fig. 2A provides an overview of the highest-scoring
models based on AUROC, BACC, MCC, and F1 scores. In
terms of AUROC and BACC, MTGNN scored higher than the
other models for 134 and 143 targets, respectively. In terms of
MCC, MTGNN outperformed NeuralNetworks and Auto-Sklearn.
Regarding F1 score, RandomForest had the best MCC for up to 94
targets, but its overall performance was suboptimal due to poor
AUROC and BACC. Regarding F1 score, MTGNN outperformed
RandomForest and Auto-Sklearn but was inferior to
NeuralNetworks. Given the importance of distinguishing true
positives and true negatives in off-target modeling, we considered
that BACC serves as the primary evaluation indicator16. As can be
observed from the BACC results in Fig. 2B, MTGNN demon-
strates the highest average BACC than the other three models for
each target family. Furthermore, when considering the average
performance for all targets together while disregarding their target
type, MTGNN outperformed all Roche’s off-target models in all
indicators (Supporting Information Fig. S3). Further details and
evaluation metric values for these methods under each target type
are available in Supporting Information Table S7.

In the specific context of this study, it is evident that MTGNN
exhibits superior overall performance, thus positioning it as a top-
ranked method. The robust predictive capacity of MTGNN is
attributed to its integration of domain information from related
tasks, thereby enhancing its performance on tasks characterized by
limited data availability. As illustrated in Fig. 2C, MTGNN
consistently outperforms Neural Networks across a range of
dataset sizes, which was identified as the best-performing model
by Roche. This is particularly pronounced when dealing with data
insufficiency, as seen in the dataset size intervals of [1, 100] and
[100, 500]. This observation is of paramount significance for the
extension of target range research aimed at broad and compre-
hensive predictions of off-target effects.

It’s noteworthy that experts advocate the utilization of human
targets, rather than animal homologs, in constructing off-target
panel for predicting ADRs in humans1. Thus, we focus on the
predicted outcomes for 90 human targets. As depicted in Fig. 2D,
these human targets consistently exhibit robust classification
performance, with a significant majority achieving BACC scores
exceeding 0.7. In Fig. 2Eea detailed exploration of precision and
recall metrics for each of the 90 human targets reveals high recall
values (>0.8) for most tasks, coupled with moderate precision
levels ranging from 0.4 to 0.6. Despite the low positive rate
(<25%) for these tasks due to augmented negative samples, the
models maintain their sensitivity to potentially unsafe
compoundetarget interactions. Given the paramount importance
of avoiding false negatives in early-stage drug development to
prevent the oversight of unsafe molecules during safety assess-
ments, our model holds considerable value in mitigating research
and development failures arising from unsafe off-target
interactions.

As the off-target prediction task essentially involves protein‒
ligand interaction, we conducted a comparison between our off-
target prediction models and benchmark models for drugetarget
interaction prediction, namely GraphDTA52, TransformerCPI53

and TransformerCPI2.054. To ensure an unbiased assessment, we
retrained these benchmark models using our dataset, maintaining
consistency in the training data. Each benchmark model utilized
the original hyperparameters as provided in their respective pub-
lications, implemented an early stopping strategy, and underwent
training until convergence. Our findings indicate that our multitask
off-target prediction model outperforms or performs comparably
to the baseline models across AUROC, MCC, F1, and BACC
metrics (Supporting Information Table S8). Despite not incorpo-
rating protein information, our multitask off-target prediction
model effectively learns patterns from off-target data containing
sufficient compound structure information, enabling it to describe
drugetarget interactions under specific targets. Moreover,
compared to drugetarget interaction models, the multitask algo-
rithm reduces the model’s complexity, facilitating easier training
and faster convergence.

3.3. Application of off-target prediction panel

The off-target prediction model offers the capability to infer
interaction probabilities against 242 targets for any given mole-
cule. This can be regarded as a 242-dimensional representation
that characterizes the off-target-related molecular features. We
explore the utilization of these representations in drug ATC
classification, toxicity prediction and ADR enrichment analysis.

3.3.1. Drug ATC classification
The Anatomical Therapeutic Chemical (ATC) classification sys-
tem, was proposed by the World Health Organization (WHO) in
1981 (https://www.whocc.no/atc/structure_and_principles/).

Researchers leverage the hierarchical structure of ATC codes
as features to improve the performance of ADR prediction
models. Drugs categorized under different ATC codes often
manifest specific ADRs, influenced by their off-target profiles55.

To assess how the off-target representation characterizes the
ATC code, as described in Supporting Information Text S4, we
modeled the ATC classification as a multi-label problem, where
each compound corresponds to 14 ATC labels. From the ATC-
SMILES dataset, a benchmark collection designed for the ATC
classification task56, we curated a total of 3491 compounds
spanning 14 categories. For precise counts of compounds under
each ATC code, refer to Supporting Information Table S9. The
impact of off-target representation on ATC classification was
demonstrated through a comparative experiment involving two
models, MLKNN and ECFP_MLKNN, using the compound’s off-
target representation and molecular fingerprint features (1024-
dimensional ECFP4 fingerprint) as characteristics, respectively.
Conducting five-fold cross-training and evaluation on the same
test set revealed that MLKNN outperformed ECFP_MLKNN, as
indicated by superior AUROC, mAP, and Rank Loss metrics
(Fig. 3A, and Supporting Information Table S10). This un-
derscores the efficacy of the off-target representation-based multi-
label model in accurately ordering ATC codes for compounds,
surpassing the performance of conventional molecular fingerprint
features.

It’s noteworthy that compounds classified under “Nervous
system (N)” manifest a higher frequency of off-target bindings
(Fig. 3B), as depicted in Fig. 3C, in contrast to other drug cate-
gories, evident in denser and darker points on the heatmap. Prior
investigations have highlighted that in drugs exhibiting fatal
toxicity, 78.6% acted on the Nervous system (N)57. This

https://www.whocc.no/atc/structure_and_principles/


Figure 3 The performance comparison of ATC classification models and the off-target prediction results analysis of different ATC codes

compounds/drugs. (A) The bars depict performances of MLKNN and ECFP_MLKNN models, where higher AUROC and mAP indicate better

model performance, and lower rank loss indicates superior performance. Different colored bars represent different models, and y-axis represents

the mean metric values of the five-fold cross-training. ManneWhitney U test is used to test for significant differences, where: ns indicates no

significant difference; 0.001< **P < 0.01. (B) A bar chart displays the number of binding off-targets (y-axis) for the 14 categories of compounds

(x-axis). (C) The heat map showcases the off-target panel prediction results for all study compounds. ATC codes (AeV) are represented on the y-

axis, while target points are on the x-axis. Dark colors (value of 1.0) indicate binding, and light colors (value of 0.0) indicate no binding.
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occurrence can be attributed to the fact that many drugs in the N
category often display pharmacological promiscuity, targeting
GPCR receptors58,59, including adenosine receptors, acetylcholine
receptors, serotonin receptors, along with potassium ion channels,
voltage-gated sodium ion channels, and specific transporter tar-
gets60-63. These characteristics are reflected in the off-target rep-
resentation of these drugs.

3.3.2. Toxicity prediction
The off-target representation is considered a crucial feature for
toxicity prediction, forming the basis for an off-target-based
toxicity prediction approach applicable to any given drug. To
conduct the experiment, we curated a drug toxicity dataset from
different datasets: (1) The Clintox dataset, obtained from
MoleculeNet64, comprises 108 toxic and 1365 non-toxic com-
pounds after data cleaning. (2) From DrugBank and online re-
sources, we collected 107 drugs withdrawn due to toxic side
effects. (3) Onakpoya et al.65 compiled 462 drugs withdrawn
globally for toxic side effects, resulting in 390 small molecules.
(4) ChEMBL provided 865 compounds flagged with ‘Black Box
Warnings’, identifying 505 toxic compounds. After merging and
deduplication, the dataset includes 877 toxic (labeled as 1) and
1229 non-toxic compounds (labeled as 0).

UMAP visualization was employed to illustrate the relationship
between off-target representation and compound toxicity. As shown
in Fig. 4A, the off-target representation exhibited clearer
discrimination between safe and unsafe compounds, outperforming
molecular fingerprint features (Fig. 4B). This observation may be
attributed to the evidently fewer bound safety-related off-targets for
most safe drugs, a phenomenon illustrated by the denser and darker
points in the heatmap for toxic drugs in contrast to non-toxic drugs
(Fig. 4C). Moreover, to gauge the impact of off-target and structural
representation on the compound toxicity prediction model, we
employed a toxicity classifier using LightGBM based on the off-
target representation (Supporting Information Text S5).
LightGBM demonstrated superior performance compared to
various machine learning models (RF, SVM, and XGBoost). We
also implemented ECFP_LightGBM, where the off-target repre-
sentation was substituted with a molecular fingerprint feature
(1024-dimensional ECFP4 fingerprint). The best hyperparameter
settings for LightGBM and ECFP_LightGBM are shown in
Supporting Information Table S11. Compared to LightGBM, the
performance of ECFP_LightGBMexhibited a noticeable decline on
the same test set (Fig. 4D, and Supporting Information Table S12).
Moreover, we conducted a comparison with two recent toxicity
prediction models, DTox33 and STDNN-SE34, which characterized
compounds using MACCS fingerprints and pre-trained SMILES
embeddings, respectively. Our findings indicate that LightGBM,
based on off-target representations, outperformed on the same test
dataset (Table S12). This further affirms the rationality and effec-
tiveness of using our off-target panel predictions as representations
for predicting compound toxicity-related properties.



Figure 4 The visualization of toxic compounds and not toxic compounds and the performance comparison of toxicity prediction models. (A)

UMAP plot representing off-target panel prediction results for Toxic and Non-toxic data. (B) UMAP plot of ECFP fingerprint characterization for

Toxic data and Not toxic data. (C) Heat map displaying off-target panel prediction results fotextr Toxic and Non-toxic data. (D) The performance

of LightGBM and ECFP_LightGBM for toxicity prediction. The bar chart shows the mean value of the five-fold cross-training (y-axis) under

different metrics (x-axis). ManneWhitney U test is used to test for significant differences, where: ns indicates no significant difference; 0.001<

**P < 0.01.
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3.3.3. ADR enrichment analysis
The relationship between an Adverse Drug Reaction (ADR) and
its corresponding off-target can be analogized to that of a bio-
logical pathway and its associated gene set. Upon obtaining the
predicted off-target profile of a queried drug, potential ADRs can
be inferred through enrichment analysis, employing an annotation
database that correlates each ADR with its corresponding off-
target set. Our study established mappings between 358 ADR
terms and 193 off-targets, serving as an annotation database for
prior information in ADR enrichment analysis, conducted using
the hypergeometric distribution (refer to Method).

We conducted ADR enrichment analysis on four withdrawn
drugs due to safety concernsdPergolide, Phenylpropanolamine,
Sibutramine, and Sertindole, evaluating the efficacy of the
enriched ADRs compared to the known relevant ADRs of these
drugs (Supporting Information Table S13). Positive off-target
predictions for these drugs were obtained, analogous to “differ-
ential genes”, with prediction values exceeding 0.3 to broaden the
scope of enriched ADRs beyond the conventional threshold of 0.5.
Additional analyses employing various positive off-target thresh-
olds of 0.2, 0.5 and 0.8 demonstrate that a threshold of 0.3 fa-
cilitates a more significant enrichment of ADRs (Supporting
Information Fig. S4).

Fig. 5 illustrates the ranking of ADR enrichment analysis re-
sults for each drug based on Adjusted P-value. Detailed
enrichment analysis ranking results for each drug can be found in
Supporting Information Tables S14‒S17.

(1) Pergolide is a dopamine receptor agonist commonly uti-
lized in the treatment of Parkinson’s disease and other
conditions66, has been associated with an increased risk of
cardiac valvulopathy, leading to its withdrawal from the US
and Canadian markets in 2007. Among the 42 pertinent
ADRs for Pergolide, 18 are significantly enriched
(P < 0.05) out of a total of 358 ADRs (Fig. 5A). These
include high-frequency ADR terms associated with pergo-
lide such as Orthostatic hypotension (frequent, 9%),
Extrapyramidal disorder (frequent, 1.6%), Insomnia
(frequent, 7.9%), and Dyskinesia (frequent, 62.4%).
Notably, consistent with Pergolide’s withdrawal due to
cardiotoxicity, several cardiotoxic-related ADR terms were
significantly enriched, including Tachycardia, Cardiac
failure congestive, and Heart rate increased.

(2) Similarly, phenylpropanolamine has 25 relevant ADRs, and
9 of them are significantly enriched (Fig. 5B). Neurotox-
icity and Central nervous system stimulation, two signifi-
cantly enriched ADR terms, are associated with
hemorrhagic stroke67-69, the primary reason for the with-
drawal of Phenylpropanolamine from the market. Apart
from its impacts on the nervous system,



Figure 5 The ADR enrichment analysis results of four drugs. The graph illustrates the top 50 significant ADR terms, with the red dotted line

representing the position where the P-value is 0.05. Known literature-reported drug-ADR associations are highlighted in red, and the intensity of

the color reflects the severity score of the corresponding ADR, with darker shades indicating higher severity scores. The bars present the top 50

ADR terms (y-axis) and their corresponding enrichment results (x-axis) for each drugdPergolide (A), Phenylpropanolamine (B), Sibutramine (C),

and Sertindole (D).
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Phenylpropanolamine also induced a series of cardiac side
effects70, including significantly enriched Arrhythmia,
Cardiac failure, and Prolonged electrocardiogram QT. The
recognition of critical and potentially fatal adverse drug
reactions, such as prolonged Electrocardiogram QT, in the
early stages of drug discovery is imperative for prioritizing
human safety and identifying potential risks.

(3) Sibutramine was withdrawn from the Canadian and U.S.
markets due to the increased risk of heart attacks and
strokes in patients with a history of heart disease. It is
associated with 35 known ADRs, and the enrichment results
reveal 9 significant ADRs among them (Fig. 5C). Notably,
Tachycardia, Anticholinergic syndrome, and Cerebrovas-
cular disorder71,72, which are related to its withdrawal, are
significantly enriched.

(4) Sertindole, withdrawn from the market due to cardiotox-
icity, did not show significant enrichment in cardiotoxic-
related Tachycardia. However, 9 out of 25 ADRs associ-
ated with this drug were significantly enriched, with all of
the top six enrichment results being known ADRs of this
drug (Fig. 5D). These examples underscore the effective-
ness of off-target prediction results in enriching relevant
ADRs, particularly severe ADRs leading to drug with-
drawal, thereby highlighting the validity of off-target rep-
resentation in characterizing ADRs.

Additionally, ML-based models for ADR prediction were
established and compared with ADR enrichment analysis. As
Figure 6 Drug‒target‒ADR association diagram for Pergolide. The lef

lists the predicted off-targets along with their respective probability values.

predicted and known targets. Side effect descriptions associated with ea

corresponding ADRs of Pergolide. Colored ADRs are linked to predicted n

in HR”, “tachycardia”, “[heart failure” and so on in the target’s side

“insomnia” and “Ysleep” in the target’s side effect description). BP: bloo

from the beginning of the P wave (atrial depolarization) to the beginning
described in Supporting Information Text S6, the off-target profiles
or ECFP are used as drug features to train MLKNN models and RF
models for ADR prediction. Among these models, the off-target-
based MLKNN model showcased an optimal AUROC of 0.905
(Supporting Information Table S18), and thus, the ADRs of the
aforementioned four drugs were predicted based on it. The classi-
fication results indicate that among the 42 ADRs related to Per-
golide, 11 were identified; for Phenylpropanolamine, 5 out of 25
ADRs were identified; for Sibutramine, 8 out of 35 ADRs were
identified; and for Sertindole, 6 out of 25 ADRs were identified.
The fewer ADRs identified by the off-target-based MLKNN model
compared with ADR enrichment analysis indicates that the latter is
more effective, possibly due to sparse training data causing diffi-
culties in ML model training and potential overfitting. Therefore,
ADR enrichment analysis is theoretically more reasonable and
provides more accurate results than ADR prediction ML modeling.

3.4. DrugetargeteADR networks

Through off-target prediction and subsequent ADR enrichment
analysis, we can establish correlations between a drug’s off-targets
and the corresponding ADRs, providing an off-target-based
explanation for ADRs. Using Pergolide as a case study, we pre-
dicted its off-target profile and correlated the known ADRs of the
drugs with the predicted off-targets to create a drug‒target‒ADR
correlation network.

Firstly, the accurate prediction of Pergolide’s off-target profile
was achieved (known off-targets are obtained from databases such
t table enumerates the known targets of the drug, while the right table

Targets with a blue background represent overlapping targets between

ch target are provided adjacent to them, with arrows indicating the

ew targets. (e.g., Cardiotoxicity is marked in red, corresponding to “[

effect description; Insomnia is marked in purple, corresponding to

d pressure; HR: heart rate; GI: glycemic index; PR interval: the time

of the QRS complex (ventricular depolarization).
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as ChEMBL, PubChem and DrugBank, overlapping with our off-
target panel). Fig. 6 demonstrates that out of the 10 known targets
of Pergolide predictable by the off-target model, 8 were appro-
priately included in the predicted off-target profile. Subsequently,
using the off-target representation, the ADR enrichment analysis
correctly identified its crucial ADRs related to Cardiotoxicity,
Orthostatic hypotension, Insomnia, etc. (see ADR enrichment
analysis). Furthermore, the off-target model indicated the presence
of additional potential off-targets related to Pergolide’s ADRs,
providing the potential explanation for its drug‒target‒ADR
correlation. For instance, cardiac-related toxicities associated with
Pergolide were linked to both its known targets (HTR2A,
ADRA2B, and HTR2B73) and predicted targets (CHRM1 and
CACNA1C). Diarrhoea, a prevalent side effect of Pergolide, can
be ascribed not only to Pergolide’s known target ADRA2A but
also possibly to the predicted targets SLC6A474 and TACR275. For
Insomnia, besides the known target HTR1A of Pergolide, two
predicted new targets, SLC6A476 and HTR777, were correlated
with this ADR. Similarly, the drugetargetenetwork diagram for
Sertindole can be found in Supporting Information Fig. S5, and
the relationship between side effects and targets can be analyzed
in a similar manner as for Pergolide (Supporting Information Text
S7).

Based on the predicted off-target profiles for Pergolide and
Sertindole, we conducted molecular docking for each drug’s
newly predicted targets, following the outlined procedure in
Supporting Information Text S8. The binding modes of the two
drugs with their corresponding targets are illustrated in Fig. 7.
Molecular docking of Pergolide with SLC6A4 and HTR7, and
Sertindole with CHRNA4 and OPRK1, revealed substantial
binding energies. The strongest binding occurred within the
Figure 7 Molecular docking-predicted binding mode. (A) Molecule d

docking of Pergolide binding to HTR7 (PDB: 7XTC). (C) Molecule doc

docking of Sertindole binding to OPRK1 (PDB: 6B73). Left panel: overall

Sertindole; light gray cartoon: protein; yellow dotted line: hydrogen bond;

dotted line: salt bridge.
Sertindole‒OPRK1 complex, with a binding energy of
�9.026 kcal/mol, indicating a robust interaction. Specifically, key
interactions were observed in these complexes, suggesting a close
and potentially highly active interaction between the drugs and the
targets.

In the SLC6A4 protein, crucial hydrogen bonds and hydro-
phobic interactions played a significant role in securing the
attachment of small molecules to proteins. Pergolide formed key
hydrogen bonds with TYR9578 and ALA169 on the helix. The
indole moiety exhibited a piepi stacking interaction with
TYR176, and the quinoline ring’s nitrogen cation interacts with
PHE341 through piecation interactions78. Additionally, valuable
hydrophobic interactions occurred79 (Fig. 7A). In the HTR7 pro-
tein Pergolide forms a piepi stacking interaction with PHE344
and establishes a salt bridge with ASP16280. Moreover, valuable
hydrophobic interactions further strengthen the binding of the
molecule to the HTR7 protein (Fig. 7B).

In the CHRNA4‒Sertindole complex, nitrogen cations on the
pyridine ring formed piecation interactions with TPR156 and
TYR20481, and it also formed a hydrogen bond interaction with
TPR156 (Fig. 7C). In the OPRK1 protein, Sertindole bound within
the helical structure, forming hydrogen bonds with TYR312
through the carbonyl group on the imidazole ring and with
TYR313 through the nitrogen on the imidazole ring82. It also
exhibited piepi stacking interaction with TRP287 and salt-bridge
interaction with ASP138 (Fig. 7D).

In summary, the molecular docking analysis for predicted off-
targets of Pergolide and Sertindole unveiled robust binding en-
ergies and essential molecular interactions within the respective
protein complexes, confirming the high prediction accuracy of our
model in identifying potential off-targets. This approach,
ocking of Pergolide binding to SLC6A4 (PDB: 5I73). (B) Molecule

king of Sertindole binding to CHRNA4 (PDB: 5KXI). (D) Molecule

view; right panel: partial view; magenta stick: Pergolide; yellow stick:

blue dotted line: piepi stacking; green dotted line: pi‒cation; magenta
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combining off-target prediction and subsequent ADR enrichment
analysis, facilitates the establishment of an off-target-based
explanation for ADRs.

3.5. Code availability

All data and scripts to build the models are available in the GitHub
repository: https://github.com/myzhengSIMM/Offtarget_drugsafety.

4. Conclusions

Off-target interactions frequently occur with drug usage and are a
major cause of drug side effects and candidate failure during drug
discovery. We employed a multi-task GNN to accurately predict
these off-target interactions derived from molecular graphs. These
predictions were then utilized to comprehensively assess drug
safety from multiple aspects, including ATC catalogs, toxicity, and
ADRs, providing a valuable supplement to traditional, time-
consuming, and labor-intensive safety pharmacology experi-
ments. Notably, in ADR enrichment analysis, based on differential
targets for each drug derived from off-target prediction results,
severe ADRs leading to drug withdrawal were significantly
enriched in our cases, further illustrating the effectiveness of the
off-target panel for drug safety assessment.

One limitation of our study lies in the reliance on ligand
similarity for off-target prediction, excluding protein-related in-
formation. The variability in predictive performance across
different protein targets and families indicated potential disparities
driven by data or biological factors. Therefore, incorporating
protein-related insights into off-target predictions holds promise
for enhancing the accuracy of our predictions. Additionally, it’s
important to note that our model is not universally applicable for
off-target prediction, and re-modeling may be necessary when the
number of targets changes. Inspired by the application of pre-
training and transfer learning in the field of medicine83-85, we
consider building a general paradigm for off-target panel predic-
tion by simultaneously incorporating information from both pro-
teins and compounds in future work. In terms of safety
assessment, the free plasma concentration of drugs significantly
impacts adverse reactions and drug safety3,86,87. Compounds
predicted to have multiple off-target bindings pose lower risks
when they have a low free plasma concentration. Conversely,
compounds with fewer target bindings but high free plasma con-
centrations can be more hazardous13. Hence, evaluating drug
safety and explaining ADRs should consider the free plasma
concentration during therapeutic use. It’s noteworthy that drugs
used to treat severe, refractory diseases might result in more
frequent and severe side effects, which are deemed acceptable32.

Overall, our work aims to predict drug off-target interactions to
assess drug safety. Utilize the compound’s off-target representa-
tion to deduce ATC catalogs, toxicity, and ADR offers a valuable
framework and methodology for the preclinical identification of
compound toxicity. Future steps include expanding the off-target
panel, optimizing off-target and ADR prediction models, and
refining the safety prediction model to contribute to the develop-
ment of safer pharmaceuticals.
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