
Research Article
Radiomics Analysis of Lymph Nodes with Esophageal Squamous
Cell Carcinoma Based on Deep Learning

Li Chen ,1,2 Yi Ouyang ,1 Shuang Liu ,3 Jie Lin,4 Changhuan Chen,5 Caixia Zheng,5

Jianbo Lin,6 Zhijian Hu ,3 and Moliang Qiu 6

1School of Arts and Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
2Fujian Key Laboratory of Medical Bioinformatics, Fuzhou, Fujian 350122, China
3School of Public Health, Fujian Medical University, Fuzhou, Fujian 350122, China
4College of Mathematics and Informatics, Fujian Normal University, Fuzhou, Fujian 350122, China
5Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, Fujian 350009, China
6/e First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350009, China

Correspondence should be addressed to Zhijian Hu; huzhijian@fjmu.edu.cn and Moliang Qiu; 354559429@qq.com

Received 26 April 2022; Revised 26 July 2022; Accepted 13 August 2022; Published 13 September 2022

Academic Editor: Weiren Luo

Copyright © 2022 Li Chen et al.0is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Purpose. To assess the role of multiple radiomic features of lymph nodes in the preoperative prediction of lymph node metastasis
(LNM) in patients with esophageal squamous cell carcinoma (ESCC).Methods. 0ree hundred eight patients with pathologically
confirmed ESCC were retrospectively enrolled (training cohort, n� 216; test cohort, n� 92). We extracted 207 handcrafted
radiomic features and 1000 deep radiomic features of lymph nodes from their computed tomography (CT) images. 0e t-test and
least absolute shrinkage and selection operator (LASSO) were used to reduce the dimensions and select key features. Handcrafted
radiomics, deep radiomics, and clinical features were combined to construct models. Models I (handcrafted radiomic features), II
(Model I plus deep radiomic features), and III (Model II plus clinical features) were built using three machine learning methods:
support vector machine (SVM), adaptive boosting (AdaBoost), and random forest (RF). 0e best model was compared with the
results of two radiologists, and its performance was evaluated in terms of sensitivity, specificity, accuracy, area under the curve
(AUC), and receiver operating characteristic (ROC) curve analysis. Results. No significant differences were observed between
cohorts. Ten handcrafted and 12 deep radiomic features were selected from the extracted features (p< 0.05). Model III could
discriminate between patients with and without LNM better than the diagnostic results of the two radiologists. Conclusion. 0e
combination of handcrafted radiomic features, deep radiomic features, and clinical features could be used clinically to assess
lymph node status in patients with ESCC.

1. Introduction

Esophageal cancer (EC) is a common malignant digestive
tumor with a high incidence and death rate in China, with
esophageal squamous cell carcinoma (ESCC) being the most
common [1]. Most patients with EC are diagnosed as locally
middle or advanced, and are, therefore, not eligible for
surgery at the time of diagnosis, which results in poor
prognosis and low survival rate [2, 3]. Lymph node me-
tastasis (LNM) is one of the main factors that affect prog-
nosis because the spread of lymph nodes (LN) is highly

variable and unpredictable [4]. As such, accurate assessment
of LN status is an important factor in tumor staging and
a prerequisite for optimal treatment. 0e American Joint
Committee on Cancer (AJCC) proposed the eighth edition
of the International Staging Standard for Esophageal Cancer,
including the number of LNM in the postoperative staging
of LNs, and provided a clinical staging system for EC based
on preoperative imaging for the first time [1].

Computed tomography (CT) is themost commonly used
noninvasive image method to evaluate LN status before and
after an operation [5]. As such, it is of great significance in
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the clinical staging of early screening LNs for EC, regional
LN dissection, and nonsurgical radiotherapy and chemo-
therapy. However, at present, the morphological criteria for
judging the size of LN based on CT are still controversial, as
the size and axial ratio of LN were manually measured by
doctors with different clinical diagnosis experience [6].
0erefore, whether LNM is judged or not is still primarily
based on postoperative pathological examination results [1].
0is has a certain influence on the choice of precise surgical
procedures and the clinical stage of chemoradiotherapy [7].

0e high-throughput radiometric analysis provides
a large amount of medical image information, including size,
shape, texture, and other characteristics of tumors or LNs
[8–10]. Several studies have suggested that radiomic analysis
of tumors could be used to discriminate prognostic bio-
markers from ESCC staging to improve subsequent clinical
treatment [11–13]. 0erefore, radical analysis can help
doctors determine the heterogeneity of tumors and LNs and,
thus, make accurate clinical treatment decisions for patients
with EC. 0e identification of LNM using CT radiomics has
important clinical significance in LN staging, chemo-
radiotherapy, and prognosis prediction.

Recently, deep learning has demonstrated great per-
formance in medical image classification and recognition
[14, 15]. Deep radiomic features have been extracted from
CTimages and illustrated an in-depth characterization of LN
phenotypes from another perspective, which could be used
to improve the predictive performance of LNM.[16, 17].
Deep learning models have also been applied to extract
features to evaluate chemoradiotherapy treatment responses
of ESCC in several studies [13]. Although these deep
radiomic features improved the prediction of LNM com-
pared with handcrafted radiomic features, how to explain
the lesion representation from texture and size remains to be
studied.

Some studies have shown that integrating clinical factors
and radiomic features of tumors can improve the predictive
performance of LNM in ESCC [4, 18–20]. 0ese results
indicate that radiomic features can sufficiently illustrate
tumor heterogeneity and predict LNM in preoperative pa-
tients. However, most of the area under the curve (AUC)
results were <0.8; therefore, improving the prediction of
LNMusing CT images is necessary. Few studies have directly
analyzed the features of LNs in ESCC using deep radiomic
features. In this study, we hypothesized that CT-based
radiomic features of LN could be exploited to evaluate
LN status in ESCC. Our aim was to analyze CT-based
radiomic models that integrate the clinical, radiomic, and
deep radiomic features of LNs to accelerate the predictive
performance of LNM in patients with ESCC.

2. Materials and Methods

2.1. Data. 0ree hundred and fifty-five patients with ESCC
who presented to Fuzhou First Hospital between February
2016 and December 2020 were enrolled in our study. 0e
selection criteria were as follows: (a) underwent preoperative
contrast-enhanced CT examination within 2 weeks, (b)
confirmed ESCC histology, (c) confirmed LN status in

pathology after surgery, and (d) complete clinical and
pathological information available. 0e exclusion criteria
were as follows: (a) patients whose LNs had poor-quality CT
images (n� 6), (b) patients who received preoperative
chemoradiotherapy (n� 34), (c) incomplete clinical and
pathological information (n� 4), and (d) patients who
presented with other malignancies (n� 3). 0e remaining
308 patients were randomly divided into two cohorts in a 7 :
3 ratio (training cohort, n� 216; test cohort, n� 92).

2.2. Image Acquisition and LN Segmentation. Patients un-
derwent contrast-enhanced CT from the neck to the ab-
domen. 0e CT parameters are described in Section 1 of
Appendix A1. As the location of the LNs was variable and
complex, the maximum cross-sectional area of suspicious
mediastinal LNs of one or several slices was selected for each
patient according to previous reports [7]. 0e LNs as the
region of interest (ROI) in each 2D image were automatically
segmented according to the labels. 0ese labels were de-
lineated slice-by-slice by two experienced radiologists using
the ITK-SNAP software (version 3.6.0, https://www.itksnap.
org). Two radiologists assessed the segmentation results and
reached a consensus through discussion. To evaluate the
reproducibility of radiomics to segmentation uncertainty,
we randomly chose CT images of 30 patients from the
training cohort in an unknown manner. Radiomic features
from the 2D ROI of LNs were extracted having intraclass
correlation coefficients of >0.8.

2.3. Feature Extraction. To reduce the impact of various CT
scanners, the DICOM images were uniformly converted to
grayscale images during preprocessing. 0ere may be only
one or several lymph nodes in a slice, and according to the
labels, the handcrafted radiomic features of LNs in all 2D
images were automatically extracted for further analysis
(Figure 1). 0e 207 features included 10 categories: (a) gray-
levelco-occurrence matrix (GLCM); (b) gray-levelrun-
length matrix (GLRLM); (c) Gabor wavelet filter (Gabor);
(d) statistical features, including shape, size, and extremes;
(e) histogram of oriented gradients (HOG); (f ) local entropy;
(g) Hu invariant moment (HU); (h) Hessian matrix (Hes-
sian); (i) entropy; and (j) phase congruency (Phase). GLCM,
GLRLM, Gabor, HOG, and local entropy are textural fea-
tures, whereas HU, Phase, and Hessian features were the
shape features. 0e handcrafted radiomic feature extraction
process is detailed in Section 2 of Appendix A1. 0is process
was implemented using MATLAB (version 2020a; Math-
Works Inc., Natick, MA, USA).

Deep neural networks (DNNs) have already been suc-
cessfully utilized to extract tumor features [13]. We extracted
deep radiomic features using a pretrained ResNet50 model
through transfer learning, according to the results of
a previous study [21]. Global max pooling was used to select
the maximum values of each layer in the feature maps as
output values. Using the ResNet50 model, 1000 features
were extracted from each patient. Deep radiomic feature
extraction was implemented using Python software
(version 3.7).
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Clinical features extracted from the clinical and CT
reports included patient age and sex.

2.4. Feature Selection. Dimensional reduction and extrac-
tion of optimal features were performed using the least
absolute shrinkage and selection operator (LASSO) ap-
proach, as demonstrated in radiomic studies of LNM [8], in
which a two-step feature selectionmethod was applied. First,
a t-test was used to reduce the dimensions of the features
with p< 0.05. 0en, the radiomic features were normalized
using the standard scaler method. 0is preprocessing
method ensured that the radiomic features were within
similar ranges, which weakened the effect of radiomic fea-
tures with different large discrete values.0e LASSOmethod
was utilized to choose the key features of these effective
features. 0e hyperparameter “lamda” was optimized using
10-foldcross-validation with the smallest mean squared
error. 0e key handcrafted radiomic and deep radiomic
features were selected separately using the above method.
0e clinical features retained their original number. To
implement feature selection, we used the scipy and sklearn
packages (version 1.0) in Python software (version 3.7).

2.5. Radiomic Signatures and Predictive Models. To develop
and validate the performance of multiple radiomic models
that integrate clinical, handcrafted, and deep radiomic
features, we constructed three combinations of three feature
types after feature selection. First, a model consisting of
handcrafted radiomic features (Model I) was constructed.
Model II comprised deep radiomic features and handcrafted
radiomic features. Model III consisted of clinical, hand-
crafted radiomic, and deep radiomic features.

0ese radiomic models were explored using machine
learning methods, which included a support vector machine

(SVM), adaptive boosting (AdaBoost), and random forest
(RF) in the training cohort. We validated and evaluated the
performance of the multiple radiomic models in both co-
horts. Accuracy, specificity, sensitivity, area under the curve
(AUC), and receiver operating characteristic (ROC) curves
were obtained to determine the prediction performance of
these radiomic models.

Meanwhile, for intelligent development in the future, we
compared the best and worst models with the predictive
results of the two radiologists and calculated and analyzed
the AUC and ROC. 0ese evaluation methods were
implemented using Python software.

2.6. Statistical Analysis. Statistical analysis was performed
using R software (version 3.5.3). 0e differences in clinical
factors (categorical variables) between the two cohorts were
computed using the chi-squared test. Categorical variables
were presented as absolute numbers and percentages.
Depending on the results of the normality tests, continuous
variables were represented by either the mean± standard
deviation or the median and interquartile range. In-
dependent sample t-tests or Wilcoxon tests were utilized to
compare clinical factors (continuous variables) between
cohorts with and without LNM. A two-sided p value <0.05
was considered statistically significant.

3. Results

3.1. Data Characteristics. In this study, 308 patients with
ESCC were enrolled and divided into two cohorts (training
cohort, n� 216; test cohort, n� 92). 0e clinical character-
istics of the patients with and without LNM are listed in
Table 1. No significant differences between cohorts were
observed.
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Figure 1: 0e extraction of radiomic features. (a) Original CT images with and without lymph node metastasis (LNM). (b) Labeled lymph
nodes (LNs), negative LNM in the green box, positive LNM in the red box. (c) Region of interest (ROI) with and without LNM. (d) Feature
extraction of handcrafted radiomic features and deep radiomic features.
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3.2. Feature Extraction and Selection. Eighteen of 207
extracted effective radiomic features had a p value <0.05, as
determined by the t-test. Ten key handcrafted radiomic
features were selected from the 18 effective features using
LASSO with 10-foldcross-validation. Radiomic features are
presented in Table 2. Equally, 40 of 1000 extracted effective
deep radiomic features had a p value <0.05, after the t-test.
Twelve key deep radiomic features were selected from the 40
effective features using LASSO with 10-foldcross-validation.
0e key deep radiomic features and their p values are listed
in Section 3 of Appendix A1. According to the coefficient
profiles, we selected key features with nonzero coefficients
through 1000 iterations. Selected key lambdas were 0.01151
and 0.2024, respectively. 0ese handcrafted radiomic fea-
tures and deep radiomic feature reduction using LASSO are
shown in Figure 2. After LASSO processing, we obtained the
nonzero coefficients of the features. 0e coefficients of the
Hessian features were larger than those of other key
radiomic features, as illustrated in Figure 2.

3.3. Construction of Multiple Radiomic Models and
Assessment. Key radiomic features were implemented to
generate radiomic models to distinguish between patients
with and without LNM. We constructed and assessed three
radiomic models to select the best model; their perfor-
mances, including accuracy, specificity, sensitivity, and AUC
values, are shown in Table 3. 0e three models based on
SVM, AdaBoost, and RF showed predictive performances
with AUC values ranging from 0.66 to 0.95 in the training
cohort and from 0.70 to 0.80 in the test cohort. We found
that the AUC value of Model III was superior to those of
Models I and II in the training and test cohorts, indicating
that the combination of multiple features could improve
prediction. 0e three models based on SVM performed
worse than those based on RF and AdaBoost. 0e models
based on RF showed better stability in the two cohorts,
unlike those based on SVM and AdaBoost. Figure 3 shows
the ROC curves of these models for the training and testing
cohorts.

0e comparative performance of the best radiomic
model and that of the two radiologists is illustrated in Ta-
ble 4. 0e ROC curves of the comparisons are shown in
Figure 4. We found that the predictive performance of the
best model was better than that of the two radiologists, and

the quantitative analysis of radiomic features may help
improve the prediction of LNM.

4. Discussion

In this study, we constructed three CT-based combined
radiomic models to predict LNM in ESCC patients. Models I
(handcrafted radiomic features), II (Model I plus deep
radiomic features), and III (Model II plus clinical features)
were constructed based on SVM, AdaBoost, and RF. Our
results showed that these radiomic models, particularly
Model III, have the potential to predict LNM in patients with
ESCC based on RF. 0is could help clinicians estimate LN
status for personalized chemoradiotherapy treatment and
prognosis prediction.

In many previous studies, handcrafted radiomic features
of CT images were based on the image biomarker stan-
dardization initiative (IBSI) [5, 13]. 0e key handcrafted
radiomic features can improve the prediction model and
prevent overfitting. 0ese radiomic features describe the
texture, size, and heterogeneity of LNs. Our results showed
that GLCM, statistical, and Hessian features were selected
through LASSO, which represented the complex texture and
variable size of LN. Qu et al. indicated that GLCM features
were associated with LNM in ESCC [4], and Piazzese et al.
analyzed 2DGLCM features as corresponding stable features
in esophageal cancer [11]. Our results were consistent with
the findings of previous studies. Few studies have reported

Table 1: Demographic statistics of patients in the training cohort and test cohort.

Variable
Training cohort Test cohort

LNM− (n� 108) LNM+ (n� 108) χ2/Z p LNM− (n� 46) LNM+ (n� 46) χ2/Z p

Sex 4.256 0.039 2.841 0.092
Women 27 15 15 8
Men 81 93 31 38

Age −0.543 0.587 −0.754 0.451
Mean 60.8 60.1 61.9 61.0
Median 61.5 61 64.0 61.0
Range 29.0∼82.0 37.0∼82.0 42.0∼85.0 45.0∼82.0
SD 9.0 8.96 9.0 8.4

LNM, lymph node metastasis; +, positive; −, negative; SD, standard deviation.

Table 2: Key radiomic features after LASSO.

Handcrafted radiomic
category Radiomic feature name p_value

GLCM GLCM_Correlation 0.010
GLCM_IMC 0.031

Statistic stats_Area 0.001
stats_Orientation 0.038

Hessian

max_hessiandet 0.002
hessian_hist2 0.024
hessian_hist5 0.030
hessian_hist7 0.040
hessian_hist8 0.010

Phase congruency max_phasecong3 0.045
Note. (1) Suffix of 2,5,7,8 mean the distribution histograms of the Hessian
features. (2) Suffix of 3 means the different directions of the phase con-
gruency. (3) IMC means information measure of correlation.
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Figure 2: Selection of radiomic features and deep radiomic features associated with lymph node metastasis via LASSO method. (a) 0e
coefficient profiles of 207 handcrafted radiomic features against the deviance explained. (b)0e 10-foldcross-validation curve of handcrafted
radiomic features with the optimal lamda value of 0.01151 and 10 nonzero coefficients. (c) 0e coefficient profiles of 1000 deep radiomic
features against the deviance explained. (d) 0e 10-foldcross-validation curve of deep radiomic features with the optimal lamda value of
0.02024 and 12 nonzero coefficients. (e) 0e coefficient values of key handcrafted radiomic features. (f ) 0e coefficient values of key deep
radiomic features.
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Table 3: 0e predictive performance of multiple radiomic models in the training and test cohorts.

Models
Training cohort Test cohort

SEN SPE ACC AUC SEN SPE ACC AUC
Model I-AdaBoost 0.81 0.73 0.77 0.90 (0.86, 0.94) 0.85 0.61 0.73 0.74 (0.64, 0.84)
Model II-AdaBoost 0.78 0.76 0.77 0.90 (0.85, 0.93) 0.78 0.61 0.70 0.76 (0.66, 0.86)
Model III-AdaBoost 0.91 0.86 0.88 0.95 (0.93, 0.98) 0.78 0.74 0.76 0.78 (0.69, 0.88)
Model I-SVM 0.80 0.67 0.73 0.82 (0.77, 0.88) 0.74 0.57 0.65 0.70 (0.60, 0.81)
Model II-SVM 0.63 0.61 0.62 0.66 (0.59, 0.73) 0.67 0.63 0.65 0.71 (0.61, 0.82)
Model III-SVM 0.89 0.81 0.85 0.93 (0.90, 0.96) 0.61 0.72 0.66 0.72 (0.62, 0.82)
Model I-RF 0.69 0.65 0.67 0.77 (0.71, 0.83) 0.70 0.70 0.70 0.74 (0.63, 0.84)
Model II-RF 0.75 0.72 0.74 0.80 (0.74, 0.86) 0.78 0.70 0.74 0.79 (0.70, 0.88)
Model III-RF 0.74 0.78 0.76 0.83 (0.78, 0.89) 0.76 0.76 0.76 0.80 (0.71, 0.89)
SEN, sensitivity; SPE, specificity; ACC, accuracy; AUC, area under the receiver operating characteristic curve; 95% confidence intervals are included in
parentheses.
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Figure 3: Continued.

Journal of Oncology 7



on the application of phase congruency in radiomics. Phase
congruency provides reliable texture information under
different illumination conditions [22]. Phase congruency is
commonly used in palmprint authentication, image

segmentation, face representation, and other tasks [22–26].
In our study, phase congruency was one of the key selected
handcrafted radiomic features, indicating that it has a better
representation of the texture complexity of LNs.0us, it may
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Figure 3: 0e receiver operating characteristic curves of the multiple models in the training and the test cohorts. (a) 0e ROC curves
showing the predictive performances of the three models based on SVM in the training cohort. (b) 0e ROC curves showing the predictive
performances of the three models based on SVM in the test cohort. (c) 0e ROC curves showing the predictive performances of the three
models based on AdaBoost in the training cohort. (d) 0e ROC curves showing the predictive performances of the three models based on
AdaBoost in the test cohort. (e) 0e ROC curves showing the predictive performances of the three models based on RF in the training
cohort. (f ) 0e ROC curves showing the predictive performances of the three models based on RF in the test cohort.
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be a representative radiomic signature for CT images and
may contribute to the diagnosis and evaluation of other
diseases.

In our study, models based on a combination of multiple
features demonstrated the potential predictive performance
of LNM. Our results showed that Models II and III were
better than Model I, indicating that a combination of
multiple types of features could enhance the prediction
performance of LNM. 0is also indicated that the power of
the deep learning method to determine the complex het-
erogeneity of LNs was better than expected. Furthermore, we
used machine learning methods to construct nine radiomic
models. Model III based on RF showed good stability and
excellent prediction performance compared to other models
based on SVM and AdaBoost in both cohorts. 0e results
indicated the excellent generalization performance of the RF
algorithm on the prediction model, particularly based on the
combination of the three types of features. Many previous
reports have focused on the radiomic features of the tumor,

which were applied to predict LNM [5, 18, 19]. Indeed, Wu
et al. proposed a multilevel CT radiomic model of tumors in
ESCC; the AUC value of the predictive performance of LNM
was 0.728 [18]. Shen et al. built a radiomics-based nomo-
gram of tumors for the prediction of preoperative LNM in
EC with an AUC of 0.771 [5]. Tan et al. validated that the
radiomic nomogram of tumors outperforms the size criteria
of LN from CT-reported in discriminating LNM, AUC of
radiomics nomogram was 0.772 [19]. 0e above analysis of
the radiomic features based on the tumor was useful to
identify the preoperative LN status, but in our study, Model
III based on RF (AUC value = 0.8) was better than the above
results. 0is indicated that radiomic analysis of LN could
improve the prediction of LNM in ESCC, particularly the
combination of deep radiomic, handcrafted, and clinical
features.

Many studies have recommended that the quantitative
radiomic features of medical images could reveal the bi-
ological information of LN, which potentially improves

Table 4: 0e predictive performance of the best model and the two radiologists in the test cohort.

Training cohort Test cohort
SEN SPE ACC AUC SEN SPE ACC AUC

Radiologist 1 (15 years of experience) 0.69 0.66 0.67 0.67 0.65 0.67 0.66 0.66
Radiologist 2 (5 years of experience) 0.48 0.73 0.61 0.61 0.43 0.74 0.59 0.59
Model III-RF 0.74 0.78 0.76 0.83 0.76 0.76 0.76 0.80
SEN, sensitivity; SPE, specificity; ACC, accuracy; AUC, area under the receiver operating characteristic curve.
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Figure 4: Comparison of the prediction of the models and the two radiologists in the training and test cohorts. (a)0e ROC curves showing
the predictive performances of the best model and worse model and two radiologists in the training cohort. (b)0e ROC curves showing the
predictive performances of the best model and worse model and two radiologists in the test cohort.
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LNMprediction and prognosis [8, 9, 17]. Our study analyzed
the radiomic features of LN and built models combining
multiple types of features to predict LN metastasis. Fur-
thermore, we found that the prediction of Model III was
greater than the results of the above reports, with an AUC of
0.80. 0is validated that the radiomic features of LN were
useful for discriminating LN status, especially with the
addition of clinical features. In brief, the combination of
handcrafted radiomic features, deep learning radiomic
features, and clinical features may be able to illustrate in-
formation about LN from different levels.

Clinically, the assessment of LN status is primarily
performed by radiologists based on the LN axis ratio and size
criteria calculated from preoperative CT images; however,
this is controversial and inaccurate. In our study, to validate
the potential ability of radiomic models, we compared the
radiomic models with the discrimination results of LNM
provided by two experienced radiologists, without knowing
the pathological reports. 0e results showed that the dis-
crimination results by the two radiologists were un-
satisfactory, with an accuracy of 0.66 and 0.59 and an AUC
of 0.66 and 0.59, respectively, which were worse than those
of the models based on multiple radiomic features in the test
cohort. 0is indicates that the size cannot satisfactorily il-
lustrate the LN status only from vision, like previous reports
[6, 27]. 0is may also affect the treatment and prognosis
prediction of nonsurgical patients.

0is study has several limitations. First, we only used
single-center data for model training and validation. Pro-
spective external validation of radiomic models with multi-
center trials is required to generalize the results. Second,
because the location of LN was complex and variable, we
considered only the largest cross-sectional area of LN in each
patient in this study, which may have impacted the last pre-
diction because of incomplete LN information. A combination
of radiomic analysis of the primary tumor and LNs with other
omics techniques may potentially provide accurate prediction
performance. 0ird, we collected contrast-enhanced CT im-
ages; however, some patients were unable to undergo this
examination because of poor renal function or allergies.
Compared with contrast-enhanced CTscan examination, non-
contrast-enhanced CT scan examination is quicker and more
convenient; therefore, we plan to investigate the radiomic
features of non-contrast-enhanced CT images in the future.

5. Conclusions

In conclusion, we developed radiomic models combining
handcrafted radiomic features with deep radiomic and
clinical features, which could be clinically used to assess LN
status in patients with ESCC. 0is could serve as an in-
telligent method for clinicians to estimate LN status for
chemoradiotherapy and to facilitate prognosis prediction
and preoperative assessment.
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