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Abstract: Temporary mechanical circulatory support (tMCS) is a life-saving treatment option for
patients in cardiogenic shock (CS), but many aspects such as patient selection, initiation threshold
and optimal modality selection remain unclear. This study describes a standard operating procedure
(SOP) for tMCS allocation for CS patients and presents outcome data before and after implementation.
Data from 421 patients treated for CS with tMCS between 2018 and 2021 were analyzed. In 2019,
we implemented a new SOP for allocating CS patients to tMCS modalities. The association between
the time of SOP implementation and the 30-day and 1-year survival as well as hospital discharge
was evaluated. Of the 421 patients included, 189 were treated before (pre-SOP group) and 232 after
implementation of the new SOP (SOP group). Causes of CS included acute myocardial infarction
(n = 80, 19.0%), acute-on-chronic heart failure in patients with dilated or chronic ischemic heart failure
(n = 139, 33.0%), valvular cardiomyopathy (n = 14, 3.3%) and myocarditis (n = 5, 1.2%); 102 patients
suffered from postcardiotomy CS (24.2%). The SOP group was further divided into an SOP-adherent
(SOP-A) and a non-SOP-adherent group (SOP-NA). The hospital discharge rate was higher in the
SOP group (41.7% vs. 29.7%), and treating patients according to the SOP was associated with an
improved 30-day survival (56.9% vs. 38.9%, OR 2.21, 95% CI 1.01–4.80, p = 0.044). Patient allocation
according to the presented SOP significantly improved 30-day survival.

Keywords: cardiogenic shock; mechanical circulatory support; standard operating procedure; extra-
corporeal life support; percutaneous microaxial flow pump technology; LV unloading

1. Introduction

Despite significant progress in the diagnosis of cardiogenic shock (CS) and our un-
derstanding of the pathophysiology and management strategies of CS, morbidity and
mortality remain high [1,2]. CS forms the common final path of different etiologies with
acute myocardial infarction-related cardiogenic shock (AMICS) as one of the most frequent
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causal factors [3]. Acute-on-chronic heart failure in the presence of dilated or ischemic heart
failure, valvular cardiomyopathy, myocarditis and other underlying cardiac pathologies
may lead to CS [4]. Postcardiotomy cardiogenic shock (PCCS) following cardiac surgery
has a special significance due to the very heterogeneous cohort, underlying causes and the
particularly high mortality [5].

CS commonly presents as a progressing syndrome with rapid deterioration of the
patient’s condition, associated with a significant increase in morbidity and mortality as
shock status escalates [6]. In this context, 30-day mortality rates above 50% in AMICS
patients and up to 75% in PCCS patients are reported [5,7]. For patients classified as stage E
according to the Society for Cardiovascular Angiography and Interventions (SCAI), Schrage
et al. recently showed a 30-day mortality rate of nearly 80% [6]. Until recently, temporary
mechanical circulatory support (tMCS) devices were seen as a strategy of last resort. In
the past decade, tMCS has shifted more into focus, and its use in CS was upgraded in the
latest ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure [8].
Due to the technological and procedural advances over the last few years, it is possible
to bridge an increasing number of patients to recovery, transplant or durable MCS [9–11].
Nevertheless, evidence remains sparse and there is still some uncertainty about numerous
aspects, such as patient and device selection and the timing and duration of tMCS. Aside
from the necessity for randomized controlled trials to answer these questions, specific
protocols updated with the latest developments in tMCS, stipulating defined patient and
device selection criteria, are reasonable strategies to improve patient outcomes [12,13]. In
particular, the indications for ECLS, percutaneous microaxial flow pump technology and
the combination of both support systems have evolved over the past years.

In this study, we describe the implementation of a new standard operating procedure
(SOP) for the application of tMCS in patients suffering from CS and the impact of this
standardized approach on outcomes.

2. Materials and Methods

This study is a retrospective analysis of patients suffering from CS of all etiologies
that were treated with tMCS at our institution between 2018 and 2021. The tMCS SOP was
introduced in October 2019. The study was conducted in accordance with the Declaration
of Helsinki and approved by the Institutional Ethics Committee (application number:
EA2/196/21). The Institutional Ethics Committee waived the requirement for informed
consent, due to the retrospective nature of the analysis and since only anonymized data
were collected and analyzed.

2.1. Patient Selection

Data from 451 consecutive patients suffering from CS who were treated with tMCS
at our institution between January 2018 and May 2021 were extracted from the electronic
health record. CS was defined according to ESC guidelines for the diagnosis and treatment
of acute and chronic heart failure [14]. Exclusion criteria for this study were patients aged
<18 years, patients with congenital heart disease and patients with multiple MCS runs.
PCCS patients were not excluded.

2.2. Observed Outcomes

The observed outcomes of the study were 30-day survival, hospital discharge and
1-year survival.

2.3. Data Collection

Demographic, clinical and hemodynamic data as well as laboratory values before
tMCS implantation were collected from the electronic patient records. Data for 1-year
survival were requested from a national registry database (Berlin civil registry office).
The vasoactive–inotropic score (VIS) was calculated before MCS implantation using the
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following formula: dopamine + dobutamine + milrinone (×10) + epinephrine (×100) +
norepinephrine (×100) (all µg/kg/min) + vasopressin (×10,000) (IU/kg/min) [15].

2.4. Statistical Analysis

Continuous variables are summarized as mean and standard deviation (SD), or as
median and interquartile range [Q1, Q3] in the case of non-normal data. For categorical
variables, numbers and percentages are presented. Patient groups were compared using
Student’s t-test for normally distributed continuous data and the Mann–Whitney-U test
for non-normally distributed continuous data. For categorical data, Chi2 tests with Yates’
continuity correction were used. We used standardized mean difference (SMD) as a measure
of imbalances between the two patient groups.

Due to imbalances in confounding variables between the pre- and post-SOP patient
groups, we used propensity score matching. We calculated the propensity score by logistic
regression with predefined variables (age, gender, BMI, diabetes, chronic kidney disease,
AMI, previous heart surgery, acute-on-chronic cardiomyopathy, previous episode of cardiac
arrest/resuscitation, and MAP before MCS). We performed 1:1 propensity score matching
using the nearest-neighbor algorithm without replacement and with a caliper width of 0.4.
The balance of covariates was considered satisfactory for a standardized mean difference
(SMD) of 0.2.

Survival was evaluated by Kaplan–Meier estimates with 95% confidence intervals
(CIs). The risk of all-cause mortality in the pre-SOP group compared to the post-SOP group
was estimated using a stratified Cox regression on the matched data, and hazard ratios
(HRs) with 95% CIs are given.

To estimate the effect of the implementation of the SOP or adherence on binary
outcomes, logistic regression models were fitted and odds ratios (ORs) with 95% CIs based
on cluster-robust variances were calculated.

In a subgroup analysis of all post-SOP patients, we performed propensity score
matching based on a logistic regression on SOP adherence with age, gender, BMI, diabetes,
previous heart surgery, acute-on-chronic cardiomyopathy and AMI, using the nearest-
neighbor algorithm without replacement and with a caliper width of 0.2. For outcome
analysis, we used stratified Cox regression and logistic regression with cluster-robust
variances.

R version 4.0.2 (R development Core team (2020). R: A Language and Environment
for Statistical Computing) was used for all statistical analyses.

3. Standard Operating Procedure

The SOP for allocating patients in CS to a specific tMCS approach is shown in Figure 1.
According to the current guidelines [8], patients receiving medical treatment for CS are con-
tinuously monitored for indicators of hemodynamic deterioration. Particularly metabolic
decompensation as evidence of an insufficient circulatory supply despite inotropic support
and an increasing demand for vasopressor therapy are entry criteria for further escalation
to tMCS in accordance with current guidelines.

First, conditions that would lead to a palliative care approach are excluded. Patients
with ongoing cardiopulmonary resuscitation (CPR) are initially supported with a peripheral
v-a ECLS to provide extracorporeal CPR (eCPR), followed by implantation of a percuta-
neous microaxial flow pump within two hours. Patients with ROSC after CPR; patients
with biventricular failure, respiratory failure, ongoing ventricular tachycardia or fibrillation;
and patients with a lactate level >8 mmol/L are supported with ECMELLA 2.0. This con-
cept enables a combined MCS approach through a single arterial access, facilitating early
mobilization and a bedside de-escalation strategy in these patients [16]. For the updated
ECMELLA 2.1 concept, the ECLS venous drainage is inserted via the right internal jugular
vein to facilitate unrestricted patient mobilization.
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Figure 1. SOP for allocating patients in CS to a specific tMCS approach. AVR—aortic valve replace-
ment. CPR—cardiopulmonary resuscitation. LVEF—left ventricular ejection fraction. ROSC—return
of spontaneous circulation. RV—right ventricle. RVAD—right ventricular assist device. V-a ECLS—
venoarterial extracorporeal life support. VF—ventricular fibrillation. VIS—vasoactive–inotropic
score. VSD—ventricular septal defect. VT—ventricular tachycardia.
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Patients in whom none of the above conditions apply are supported with a single-
modality tMCS approach using a percutaneous microaxial flow pump (Impella 5.5 or
previously 5.0 (Abiomed, Danvers, MA, USA)) inserted via an axillary artery.

Absolute contraindications for percutaneous microaxial flow pumps are limited to
the presence of a mechanical aortic valve prosthesis and a free-floating left ventricular
(LV) thrombus. Large ventricular septal defects are not a formal contraindication; how-
ever, the use of percutaneous microaxial flow pumps in such cases is complex and the
benefit is questionable [17–19]. Therefore, large ventricular septal defects are listed as
a contraindication in our SOP. A small marginal apical thrombus or smaller ventricular
septal defects make percutaneous microaxial flow pump therapy challenging, but they do
not constitute contraindications. Our first-line approach for percutaneous microaxial flow
pump therapy is a graft-assisted access via the axillary artery to enable early mobilization
in these patients. The SOP lists aortic arch stents as a contraindication for this approach.
However, this scenario reflects a rare condition, and femoral access for an Impella CP is a
viable alternative in these special cases.

Patients with absolute contraindications for these modified approaches are allocated
to traditional peripheral v-a ECLS implantation.

4. Results
4.1. Study Cohort

Details of the study cohort are shown in Table 1. Between January 2018 and May
2021, 451 patients suffering from CS were scheduled for tMCS therapy and enrolled in the
tMCS database. Prior to October 2019, 189 patients were treated with a tMCS approach
(pre-SOP group); of these, 24 patients (11.4%) were allocated to a proactive palliative care
approach. Following a revision of the SOP in October 2019, 232 patients received tMCS
therapy (SOP group); of these, 6 patients (2.5%) were treated with a proactive palliative
care approach (Figure S1). After propensity score matching, the cohort was reduced to 306
patients, yielding 153 pairs with 1:1 matching.

Table 1. Pre-SOP vs. SOP.

Variable

Unmatched Cohort (n = 421) Matched Groups (n = 306)

Pre-SOP
(n = 189)

SOP
(n = 232) p Pre-SOP

(n = 153)
SOP
(n = 153) p

Age (years) 60.12 {13.99} 61.94 {13.01} 0.165 60.50 {14.45} 60.14 {13.79} 0.842

Sex (male) 146 (77.2) 173 (74.6) 0.600 121 (79.1) 113 (73.9) 0.345

BMI 27.59 {5.72} 28.37{6.64} 0.221 27.99 {5.83} 27.64 {5.37} 0.593

Diabetes 61 (32.3) 70 (31.0) 0.859 50 (32.7) 44 (28.8) 0.536

CKD 45 (24.3) 74 (32.9) 0.073 44 (28.8) 43 (28.1) 1.000

MAP (mmHg) 66.00
[57.50, 75.00]

69.00
[62.00, 78.00] 0.017 66.00

[58.00, 76.00]
68.00
[61.00, 77.00] 0.12

Heart rate (bpm) 96.00
[82.00, 112.50]

93.00
[78.00,105.00] 0.136 97.00

[82.00, 111.00]
93.00
[77.00, 104.00] 0.178

Lactate (mmol/L) 6.11 [2.78,10.99] 4.78
[1.72,10.1] 0.014 6.05

[2.77,10.57]
4.22
[1.44,10.19] 0.258

pH 7.32
[7.25, 7.39]

7.31
[7.23, 7.39] 0.352 7.32

[7.25, 7.39]
7.31
[7.22, 7.40] 0.142

VI score 32.00
[13.00, 48.90]

18.88
[8.00, 41.35] 0.001 30.70

[13.00, 51.98]
18.00
[7.61, 40.75] 0.01
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Table 1. Cont.

Variable

Unmatched Cohort (n = 421) Matched Groups (n = 306)

Pre-SOP
(n = 189)

SOP
(n = 232) p Pre-SOP

(n = 153)
SOP
(n = 153) p

RRT prior to tMCS 21 (11.2) 27 (11.7) 1.000 20 (13.2) 19 (12.5) 0.982

Cause of CS

AMICS 34 (18.0) 24 (10.3) 0.034 21 (13.7) 22 (14.4) 1.000

Acute-on-chronic CMP 56 (29.6) 90 (38.8) 0.063 49 (32.0) 51 (33.3) 0.903

PCCS 80 (42.3) 100 (43.1) 0.951 69 (45.1) 67 (43.8) 0.912

Other 18 (10.1) 18 (7.8) 0.502 14 (9.2) 13 (8.5) 0.840

Previous cardiac arrest 71 (37.6) 58 (25.0) 0.007 48 (31.4) 45 (29.4) 0.731

Duration of CPR (min) 20.00
[10.00, 58.75]

20.00
[10.00, 50.75] 0.459 17.50

[10.00, 40.00]
19.50
[10.50, 53.75] 0.401

eCPR 30 (18.5) 36 (20.9) 0.667 21 (16.3) 26 (23.4) 0.22

Mechanical aortic valve 2 (1.2) 0 (0) 0.465 2 (1.5) 0 (0.0) 0.559

Aortic arch stent 1 (0.6) 4 (2.3) 0.385 1 (0.8) 1 (0.9) 1.000

Free-floating LV thrombus 0 (0) 1 (0.6) 1.000 0 (0.0) 1 (0.9) 0.928

MCS type

v-a ECLS 139 (73.5) 109 (47.0) <0.001 109 (71.2) 70 (45.8) <0.001

Impella 26 (13.8) 61 (26.3) 0.002 20 (13.1) 41 (26.8) 0.004

ECMELLA 24 (12.7) 62 (26.7) 0.001 23 (15.0) 42 (27.5) 0.012

AMICS—acute myocardial infarction-associated cardiogenic shock; BMI—body mass index; CKD—chronic kidney
disease; CMP—cardiomyopathy; CS—cardiogenic shock; eCPR—extracorporeal cardiopulmonary resuscitation;
MAP—mean arterial pressure; PCCS—postcardiotomy syndrome cardiogenic shock; RRT—renal replacement
therapy; tMCS—temporary mechanical circulatory support; v-a ECLS—venoarterial extracorporeal life support;
VI score—vasoactive–inotropic score. Data are presented as number (%) or mean {SD}. Data followed by square
brackets show the median with interquartile range. Grey highlighted fields indicate significantly differing results,
assumed by a p-value < 0.05.

The SOP group was further subdivided into a group where the SOP decision algorithm
was followed (SOP adherent group, SOP-A, n = 120/230, 52.17%) and a second group with
SOP derogations (SOP non-adherent group, SOP-NA, n = 110/230, 47.82%). Due to missing
data, 2 of the 232 patients after the SOP implementation were excluded (Table 2). The
subgroups were again propensity score-matched to ensure comparability, yielding 72
matched pairs in these subgroups.

Table 2. SOP-A vs. SOP-NA.

Variable

Unmatched Cohort (n = 230) Matched Groups (n = 144)

SOP-A
(n = 120)

SOP-NA
(n = 110) p SOP-A

(n = 72)
SOP-NA
(n = 72) p

Age (years) 59.63 {13.06} 64.44 {12.53} 0.005 62.07 {12.17} 62.58 {12.38} 0.802

Sex (male) 97 (80.8) 74 (67.3) 0.028 56 (77.8) 57 (79.2) 1.000

BMI 28.11 {7.24} 28.71 {5.95} 0.506 28.72 {7.67} 28.88 {5.64} 0.888

Diabetes 37 (31.6) 32 (29.9) 0.894 24 (33.3) 23 (31.9) 1.000

CKD 39 (33.6) 35 (32.7) 0.998 23 (31.9) 25 (34.7) 0.860

MAP (mmHg) 71.00
[63.00, 77.00]

68.00
[60.50, 77.50] 0.571 69.00

[63.00, 76.00]
67.00
[59.25, 81.00] 0.661
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Table 2. Cont.

Variable

Unmatched Cohort (n = 230) Matched Groups (n = 144)

SOP-A
(n = 120)

SOP-NA
(n = 110) p SOP-A

(n = 72)
SOP-NA
(n = 72) p

Heart rate (bpm) 93.00
[79.00, 105.00]

94.00
[78.00, 105.50] 0.698 91.00

[77.00, 105.00]
98.50
[87.00, 108.00] 0.335

Lactate (mmol/L) 2.99
[1.44, 6.13]

7.55
[3.77, 10.93] <0.001 3.05

[1.55, 6.05]
8.55
[4.17, 10.88] <0.001

pH 7.34
[7.26, 7.40]

7.29
[7.20, 7.37] 0.018 7.33

[7.24, 7.40]
7.29
[7.20, 7.37] 0.087

VI score 18.00
[8.89, 37.75]

21.60
[8.00, 42.25] 0.504 19.00

[9.79, 40.00]
26.45
[10.50, 51.30] 0.331

RRT prior to tMCS 10 (8.3) 16 (14.7) 0.193 8 (11.1) 14 (19.7) 0.232

Cause of CS

AMICS 17 (14.2) 7 (6.4) 0.086 7 (9.7) 5 (6.9) 0.763

Acute-on-chronic CMP 50 (41.7) 38 (34.5) 0.330 31 (43.1) 27 (37.5) 0.610

PCCS 48 (40.0) 52 (47.3) 0.328 29 (40.0) 32 (44.4) 0.742

Other 5 (4.1) 13 (11.8) 5 (7.2) 8 (11.2) 0.356

Previous cardiac arrest 31 (25.8) 27 (24.5) 0.942 17 (23.6) 16 (22.2) 1.000

Duration of CPR (min) 20.00
[10.00, 51.25]

21.50
[10.50, 60.00] 0.814 35.00

[10.00, 57.75]
14.00
[6.00, 51.25] 0.279

eCPR 11 (15.5) 25 (24.8) 0.176 6 (14.6) 19 (27.9) 0.133

Mechanical aortic valve 0 (0.0) 0 (0.0) NaN 0 (0.0) 0 (0.0) NaN

Aortic arch stent 3 (4.2) 1 (1.0) 0.383 2 (4.9) 1 (1.5) 0.653

Free-floating LV thrombus 1 (1.4) 0 (0.0) 0.859 1 (2.4) 0 (0.0) 0.797

MCS type MCS type

v-a ECLS 8 (6.7) 101 (91.8) <0.001 6 (8.3) 68 (94.4) <0.001

Impella 50 (41.7) 9 (8.2) <0.001 32 (44.4) 4 (5.6) <0.001

ECMELLA 62 (51.7) 0 (0) <0.001 34 (47.2) 0 (0.0) <0.001

AMICS—acute myocardial infarction-associated cardiogenic shock; BMI—body mass index; CKD—chronic kidney
disease; CMP—cardiomyopathy; CS—cardiogenic shock; eCPR—extracorporeal cardiopulmonary resuscitation;
MAP—mean arterial pressure; PCCS—postcardiotomy syndrome cardiogenic shock; RRT—renal replacement
therapy; stMCS—short-term mechanical circulatory support; v-a ECLS—venoarterial extracorporeal life support;
VI score—vasoactive–inotropic score. Data are presented as number (%) or mean {SD}. Data followed by square
brackets show the median with interquartile range. Grey highlighted fields indicate significantly differing results,
assumed by a p-value < 0.05.

4.2. Outcome Analysis
4.2.1. Unmatched Cohorts

In the unmatched cohort, the 30-day survival in the SOP group was 43.1% compared
to 37.4% in the pre-SOP group (p = 0.282), and the 1-year survival was 28.2% vs. 26.1%
(p = 0.726), respectively. Hospital discharge was 36.0% in the SOP group compared to 26.8%
in the pre-SOP group (p = 0.198). The corresponding HR for the pre-SOP group was 1.13
(95% CI 0.90–1.42, p = 0.285).

4.2.2. Matched Cohorts

After matching, the baseline values that were not part of the SOP decision algorithm
were balanced between the groups (Supplementary Figure S2). In the matched groups,
30-day survival was 48.4% in the SOP group compared to 39.5% in the pre-SOP group,
yielding an OR of 1.45 (95% CI [0.87, 2.40], p = 0.159). One-year survival was 33.1% vs.
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27.6% (OR 1.33, 95% CI [0.75, 1.37], p = 0.334), respectively; see Figure 2. Hospital discharge
was significantly higher in the SOP group compared to the pre-SOP group (41.7% vs. 29.7%).
The corresponding OR for hospital discharge was 1.74 (95% CI 1.02–2.98, p = 0.043). The
HR for the pre-SOP was 1.11 (95% CI [0.83, 1.47], p = 0.485).
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4.2.3. Matched Subgroups SOP-A and SOP-NA

When comparing the matched SOP subgroups to further separate patients who were
treated in accordance with the implemented SOP, 30-day survival was significantly higher
in the SOP-A group when compared to the SOP-NA group (56.9% vs. 38.9%), with a
corresponding OR of 2.21 (95% CI [1.01, 4.80], p = 0.044), Figure 3. One-year survival was
40.0% compared to 31.8% (OR 1.39, 95% CI [0.62, 3.13], p = 0.424), and hospital discharge
was 47.1% in the SOP-A group compared to 32.5% in the SOP-NA group (OR 1.49, 95% CI
[0.70, 3.19], p = 0.304). The corresponding HR for the SOP-A group was 0.69 (95% CI [0.46,
1.02], p = 0.063).
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5. Discussion

Data from the retrospective propensity score-matched analysis presented here show
that the implementation of and adherence to our SOP decision algorithm was associated
with an increased 30-day survival. This improvement can be attributed to a structured and
focused approach in patients with CS, a more appropriate patient selection for a specific
tMCS approach, the combination therapies with more than one ECLS modality, and earlier
and more effective LV unloading using microaxial flow pumps.

5.1. Rationale of SOP Revision

CS causes a rapid deterioration of end-organ function leading to a life-threatening
vicious circle [20]. Percutaneous microaxial flow pumps and v-a ECLS both provide cir-
culatory support. While v-a ECLS allows for both circulatory and respiratory support, it
increases LV afterload which reduces the chance of LV recovery [21,22]. Microaxial flow
pumps provide circulatory support by active LV unloading, but no respiratory support
is possible and sufficient right heart function is required. While percutaneous microaxial
flow pumps improve ventricular recovery in patients suffering from cardiogenic shock [23],
the maximum extent of support depends on the actual device (Impella 2.5, CP, 5.0 or 5.5)
with the type-specific maximum flow limits inherent to the design. In the presence of
respiratory and/or right ventricular failure, ECLS is necessary. V-a ECLS as a stand-alone
tMCS strategy is limited by increasing adverse event rates with longer support times and
the lack of LV unloading [24]. It was shown to be inferior to a combined approach using a
percutaneous microaxial flow pump and v-a ECLS, the so-called ECMELLA concept [25].
Schrage et al. were able to demonstrate the superiority of a combined MCS approach with
ECMELLA compared to isolated support with v-a ECLS in patients with acute myocardial
infarction-associated cardiogenic shock, despite the increased complication rate with in-
creased bleeding events in the group treated with microaxial flow pumps. Several studies
and meta-analyses support this approach [26–28]. Possible complications of percutaneous
microaxial flow pump devices have to be taken into account; however, the survival benefit
offered by the combined ECMELLA approach puts this into perspective. Lorusso et al. re-
cently summarized the current evidence for LV unloading and recommended LV unloading
as part of an effective tMCS therapy whenever possible [29].

In this sense, Impella and v-a ECLS are not competing but complementing strategies.
The key question is when to escalate from a single-modality approach to a complementary
tMCS strategy—such as the ECMELLA concept. In a previous study, we were able to show
that the level of support required should be driven by the stage of shock [30]. Patients
with a lactate level above 8 mmol/L and/or post-resuscitation prior to implantation of
Impella 5.0 or 5.5 had a decreased 30-day survival rate when treated with Impella alone. In
these cases, the required flow rates necessary for a reversal of end-organ damage appear
beyond the limits of an isolated Impella approach, and consequently, our SOP was adapted
to primarily allocate such patients to ECMELLA.

5.2. Outcome

A crude comparison of patients treated before and after implementation of the new
SOP yielded no significant change in hospital discharge, 30-day survival or 1-year survival.
After propensity score matching, the likelihood of hospital discharge was 74% higher
for patients treated after the implementation of our SOP. Furthermore, patients treated
according to the SOP were less likely to die within the first year after the event, even though
the HR of 0.69 slightly failed to reach statistical significance.

Introducing improvements in technology and learning from clinical research for the
treatment of CS in daily practice is challenging. A delay of up to 17 years is assumed
for the transfer of knowledge from scientific evidence into clinical practice [31–33]. A
mere 50% adherence to the revised SOP within less than two years leaves ample room
for further improvement but is not unexpected. This can hopefully be improved upon
further by highlighting the positive effects on outcomes. To evaluate the impact of the
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updated support algorithms stipulated by the SOP, rather than just the impact of the
SOP implementation per se, we differentiated between patients who were actually treated
according to the SOP (SOP-A) and those who were not (SOP-NA). Patients who were
treated according to the SOP had a more than 2-fold higher likelihood of 30-day survival
when compared to those not treated according to the SOP.

Concerning the other studied endpoints, hospital discharge and 1-year survival tended
to be improved in the SOP-A group; however, due to the low number of cases subsequent
to propensity score matching, they failed to achieve statistical significance.

In summary, treating patients according to our SOP significantly increases the 30-day
survival. We postulate that this improvement in patient outcomes was achieved mainly
through enhanced patient selection and inclusion into standardized treatment algorithms.
A lower VIS and a lower lactate level in the SOP group likely indicate an earlier treatment
with a tMCS approach. We consider this finding one of the key results of the implementation
of the revised SOP, which is also reflected in current guidelines [8].

5.3. Observed Cohort and Comparative Evaluation

As a tertiary specialized cardiovascular center, we provide care to patients referred
by numerous surrounding healthcare providers. Due to this highly specialized status, our
patient portfolio differs from that of most other cardiological or cardiosurgical departments,
and we have a disproportionately high number of patients in advanced stages of shock,
but relatively few patients with new-onset cardiovascular events and early stages of CS.
Furthermore, in most of these patients, a first-line standard approach—whether primary
percutaneous coronary intervention or tMCS— failed, which is why a large proportion of
them was scheduled to undergo urgent or emergent cardiac surgery.

Patients who had to be allocated to tMCS within seven days of cardiac surgery were
classified as PCCS. In this group with a well-documented high level of mortality, it is
nearly impossible to discriminate whether the need for tMCS is due to their underlying
disease, the postcardiotomy syndrome or both [4]. Because of the heterogeneous nature
of this patient population, such cohorts are frequently not included in outcome analyses,
unlike in the study presented here. We explicitly decided to keep PCCS patients in the
analysis to reflect the impact of the SOP on all patients requiring tMCS. Bearing in mind
the tremendously high mortality rates of PCCS patients, an overall 30-day survival of 41%
is an encouraging result.

5.4. Limitations

Our study has several limitations. This is a retrospective analysis conducted in a
single, high-volume center, and the aspect of predominantly treating patients who failed to
respond to initial treatment elsewhere must be considered. Consequently, the heterogeneity
of the patient cohort is not negligible, and therefore, differentiated conclusions are hard to
draw. Furthermore, since an overwhelming majority of the patients were transferred to our
hospital by another healthcare provider, time-to-treat analyses are hard to perform. The
retrospective design of the study entails numerous known limitations; however, propensity
score matching of the patient groups ensured comparability. Some of our findings failed to
reach statistical significance, which is most likely due to the limited number of patients.
The presented SOP is based on published studies, an internally developed best clinical
practice and expert opinions. Furthermore, this study presents an SOP as an encompassing
treatment algorithm, and thereby no conclusion on the significance of single aspects or
MCS devices can be drawn.

6. Conclusions

The SOP presented here offers a simple and versatile approach for patients in CS
secondary to various etiologies. In this propensity score-matched analysis, treating patients
according to the SOP decision algorithm was associated with an increased 30-day survival
and a trend towards a decreased likelihood to die within the first year after the event. The



Life 2022, 12, 1931 11 of 13

results support undertaking larger, prospective trials to confirm the outcome improvements
associated with the implementation of this SOP.

Supplementary Materials: The following supporting information can be downloaded at: https:
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