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Abstract

Direct comparisons between historical and contemporary populations allow for detecting changes in genetic diversity
through time and assessment of the impact of habitat fragmentation. Here, we determined the genetic architecture of
both historical and modern lions to document changes in genetic diversity over the last century. We surveyed micro-
satellite and mitochondrial genome variation from 143 high-quality museum specimens of known provenance, allowing
us to directly compare this information with data from several recently published nuclear and mitochondrial studies.
Our results provide evidence for male-mediated gene flow and recent isolation of local subpopulations, likely due to
habitat fragmentation. Nuclear markers showed a significant decrease in genetic diversity from the historical
(HE¼ 0.833) to the modern (HE¼ 0.796) populations, whereas mitochondrial genetic diversity was maintained
(Hd¼ 0.98 for both). Although the historical population appears to have been panmictic based on nDNA data, hierar-
chical structure analysis identified four tiers of genetic structure in modern populations and was able to detect most
sampling locations. Mitogenome analyses identified four clusters: Southern, Mixed, Eastern, and Western and were
consistent between modern and historically sampled haplotypes. Within the last century, habitat fragmentation caused
lion subpopulations to become more geographically isolated as human expansion changed the African landscape. This
resulted in an increase in fine-scale nuclear genetic structure and loss of genetic diversity as lion subpopulations became
more differentiated, whereas mitochondrial structure and diversity were maintained over time.

Key words: Key words: lion, Panthera leo, mitogenome, nDNA, mtDNA, aDNA, spatiotemporal, historical DNA, habitat
fragmentation, male-mediated gene flow, genetic diversity.

Introduction
Effective, long-term conservation of wildlife populations ben-
efits from knowledge of a species’ genetic history and the
genetic variation that exists across its range. Coupled with
an understanding of human-mediated landscape changes,
knowledge of spatiotemporal trends in genetic diversity can
help inform the management of wildlife populations
(Mart�ınez-Cruz et al. 2007; Spurgin et al. 2014; Casas-Marce
et al. 2017).

Multiple published investigations document the genetic
consequences of large-scale landscape changes over short
periods of time (Mart�ınez-Cruz et al. 2007; Tracy and
Jamieson 2011; Spurgin et al. 2014; Borrell et al. 2018) (i.e.,
100 years). Levels of genetic diversity are directly related to a
species ability to adapt, survive, and thrive, and loss of genetic

diversity can be detrimental to overall population health and
long-term survival (Reed and Frankham 2003; Allendorf et al.
2013; Yoder et al. 2018; Leigh et al. 2019). However, without a
baseline for comparison, it is difficult to assess what effect
landscape changes in recent history may have on a species.
With the recent advances in sequencing technology and
methodology for isolating genetic material (DNA) from ar-
chived museum specimens, genetic information can now be
accessed from both historical individuals and their contem-
porary counterparts. Combining these data sets provide a
quantitative measure of changes in genetic diversity.

The exponential increase in the human population, urban
development, and rural expansion (Cameron 1990) since the
late-1800s has resulted in changes to the African landscape
and fragmentation to once contiguous wildlife ranges
(Newmark 2008; Riggio et al. 2015; Crooks et al. 2017).
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Many species across Africa are declining due to human-
induced threats (Craigie et al. 2010; Ceballos et al. 2015,
2017), even in protected areas (Craigie et al. 2010). The ad-
verse effects of low genetic diversity have been observed in
small feline populations that exist in heavily managed fenced
reserves (Trinkel et al. 2008; Johnson et al. 2010; Bertola et al.
2012; Creel et al. 2013; Kerk et al. 2019). The lion population
has changed dramatically over the past 100 years
(Chardonnet 2002; Barnett et al. 2006a; Riggio et al. 2015),
particularly in terms of size and distribution, in response to
habitat availability and anthropogenic pressures related to a
growing human population (Wittemyer et al. 2008; Riggio
et al. 2012; Blackburn et al. 2016; United Nations 2017).

Around the turn of the 19th century, explorers, naturalists,
and hunters went on expeditions to collect biological speci-
mens for preservation in natural history museums. These
expeditions resulted in hundreds of lion specimens, being
deposited in museums across the world, which predate the
exponential human population growth across Africa
(Cameron 1990; David 2011). With the continued develop-
ment of techniques for improved isolation and sequencing of
degraded genetic material (ancient DNA, aDNA), these col-
lections now provide access to genetic information from his-
torical as well as contemporary individuals.

Previous studies that sampled nuclear genetic diversity
reported both high (Lyke et al. 2013; Morandin et al. 2014;
Smitz et al. 2018) and low (Tende et al. 2014b; VanHooft et al.
2018; Curry et al. 2019) levels of gene flow, but this was largely
dependent on the amount of connectivity present between
sampling locations, for example, isolated populations such as
those in the Kainji Lake National Park and Yankari Game
Reserve in Nigeria (Tende et al. 2014b) and Kafue National
Park and the Luangwa Valley Ecosystem in Zambia (Curry
et al. 2019). Genetic differentiation can even be seen between
populations within national parks (VanHooft et al. 2018).
However, where there are no geographic or man-made bar-
riers to limit movement, there is only weak evidence of

population structure and high levels of gene flow
(Morandin et al. 2014; Smitz et al. 2018).

Studies including historical and ancient lion samples have
been primarily restricted to mtDNA analyses incorporated
within a modern lion data set (Barnett et al. 2006a, 2006b,
2009, 2014, 2016). A recent study including historical individ-
uals focused on assessing changes in the recent past but was
confined to a local analysis of the Kavango–Zambezi (KAZA)
transfrontier conservation area (Dures et al. 2019). Here, we
report the first range-wide study assessing changes in genetic
diversity of the lion, based on both historical and modern
samples collected throughout Africa and India. By comparing
diversity estimates from samples from different time periods,
we can detect and evaluate changes in genetic diversity that
have occurred during this time of landscape and anthropo-
genic change.

Results

Nuclear DNA
The modern data set (MD) contained 135 lions from 14
sampling locations collected from the 1990 to 2012 and the
historical data set (HD) consisted of 143 lions dating prior to
1949 (table 1 and supplementary appendix S1,
Supplementary Material online). Nine microsatellite loci
(Leo006, Leo008, Leo085, Leo098, Leo126, Leo224, Leo230,
Leo247, and Leo281) were shared between the two data
sets. The MD had >75% allele calls reported, and the HD
had an average of 90% amplification success across the nine
loci. Sampling was similarly distributed across the lion range
for both the MD and HD (fig. 1).

Fine-scale structure was observed in the MD but not the
HD. The MD hierarchical structure analysis resulted in four
tiers of structure: continental (K¼ 2), subcontinental (K¼ 4),
regional (K¼ 6), and local (K¼ 11), as seen in the final anal-
ysis with location priors (fig. 2 and supplementary appendix
S2.a, Supplementary Material online, shows a graphical dis-
play of the step-by-step hierarchical population structure).
The initial run had a DK of two separating Asia (GIR) from
Africa. The African population could then be further broken
down into a Western, Eastern, and Southern population with
a DK of three from structural analysis of only the African
population. Analysis of the Western population also resulted
a DK of three separating a West African (WES), Central
African (CEN), and a population between the two (MID).
The Eastern population had a DK of two separating lions in
Kenya (KEN) from all lions sampled in Tanzania (TAN). The
Southern population is separated into five local populations
that can be grouped into three regional populations as DK
was 5, however, there was a sizable peak also seen at K¼ 3.
Eastern and western Zambia (ZAE and ZAW) make up a
Southeast population, whereas Etosha and Kalahari (ETO
and KAL) make up a Southwest population. Kruger was iden-
tified as a single population at both K¼ 3 and K¼ 5.
Population clustering in the MD principal coordinate analysis
(PCoA) follows the subcontinental tier (fig. 3). Mean hetero-
zygosity across polymorphic loci (HE) is lowest in Gir and
highest in CEN although only 44% of loci are polymorphic

Table 1. Historical Versus Modern Genetic Diversity for nDNA and
mtDNA.

Historical Modern Significance Trend

nDNA
(nine msat loci)

N 143 N 135 #
HE 0.833 HE 0.796 ***
A 15 A 11.6 ***
PA 6.2 PA 1.2 ***
M 0.41 M 0.32 ***

mtDNA
(280 SNPs)

N 102 N 19 fi
s 280 s 258
p 0.222 p 0.258 n.s.
Hd 0.98 Hd 0.98 n.s.
H 74 H 17
PM 22 PM 1

NOTE.—N, sample size; HE, expected heterozygosity; A, allelic richness; PA, private
alleles; M, Garza–Williamson index; s, segregating sites; p, nucleotide diversity; Hd,
haplotype diversity; H, number of haplotypes; PM, private mutations; SNP, single
nucleotide polymorphism. Trend is based on statistical significance from a com-
parison of means. HE, A, PA, and M had a P value <0.005 (***) indicating a down-
ward trend (#) from historical to modern. The P value for p and Hd was>0.05 (n.s.)
indicating maintained diversity (!) from historical to modern.
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FIG. 1. Map of lion sample locations. Dot size coincides with sample size for each location.
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FIG. 2. The four tiers of modern lion population structure as determined by hierarchical structure analysis based on nine microsatellites. Groups are
colored based on figure 1.
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in this population (supplementary appendix S3,
Supplementary Material online).

Bayesian clustering in STRUCTURE did not identify any
population structure in the HD. Although DK was also 2
for the initial run, individuals could not be assigned to mean-
ingful populations (supplementary appendix S2.b,
Supplementary Material online). Further evidence of this
lack of structure was observed in the PCoA results (fig. 3).
PCoA did not reveal any population clusters but did show
weak evidence of isolation-by-distance (IBD; supplementary
appendix S5, Supplementary Material online), indicating an
admixed population.

A significant decrease (P value <0.005) from HD to MD
was evident across diversity indices (table 1). Correcting for
sample size through rarefaction, the HD has an allelic richness
of 14.2 and private allelic richness of 4.6, higher than the MD
at 11.3 and 1.7, respectively. The Garza–Williamson index (M)
of the HD is 0.41 and the MD is 0.32.

Mitochondrial DNA
Results from mitochondrial analyses can be found in table 1.
There was no significant difference found between mtDNA
nucleotide diversity (p) and haplotype diversity (Hd). The
historical population had 74 haplotypes with 22 private
mutations, whereas the modern population had 17 haplo-
types with only 1 private mutation. Two haplotypes (Hap_33
and Hap_66) are in both data sets. The low number of private
mutations in the modern population was likely a result of the
small number of mitogenomes compared with the historical
population. Although we were able to obtain a large number
of historical mitogenomes from museum samples, the num-
ber of modern mitogenomes was restricted to published data.

Mitochondrial genome analyses identified four major
clades: Southern, Mixed, Eastern, and Western. Each clade
was represented by at least one of the 19 modern lions. A
Northern subclade was nested within the Western clade.
Bootstrap values in the unrooted maximum likelihood
(ML) tree (fig. 4) indicating strong support for these four
clades. The four clusters in the principal component analysis
(PCA, supplementary appendix S6, Supplementary Material
online) and the four main branches of the haplotype network

(supplementary appendix S7, Supplementary Material online)
also support these same four clades.

There are five conventionally recognized regions of Africa
according to the United Nations geoscheme for Africa:
Southern, Eastern, Western, Central, and Northern (https://
unstats.un.org/unsd/methodology/m49/). The Southern
clade includes the conventionally recognized regions of
Southern Africa incorporating Botswana, South Africa,
Namibia, and Zimbabwe. Haplotypes from Botswana and
South Africa were present in both the Southern and the
Mixed clades. The Mixed clade consists of haplotypes from
the Southern, Eastern, and Western subcontinental groups.

The Western clade included countries in the convention-
ally recognized regions of Central and Western Africa includ-
ing present-day Democratic Republic of Congo, Benin,
Central African Republic, and Cameroon. The Eastern clade
consists primarily of historical lions from British East Africa,
specifically present-day Kenya, Tanzania and Uganda, and a
modern lion from Somalia. Eastern haplotypes within the
Western clade are from bordering countries suggesting
gene flow between neighboring regions, which is in line
with previously published patterns (Bertola et al. 2016).

The Mixed clade is intermediary, consisting of lions from
Southern and Eastern Africa. Zambia and Malawi were found
exclusively in the Mixed clade, whereas all other countries
found in the Mixed clade are also within the Southern and/
or Western clades. The historical samples from the Congo
Region (present day Republic of the Congo and Gabon) were
assigned to the Western subcontinental group by convention
(fig. 1), but mitochondrial analyses consistently clustered
them within the Southern and Mixed clades. The Congo
Region is below the Congolese rainforests, a geographical bar-
rier isolating it from West and Central Africa to the north. For
the lion, the Congo Region is, therefore, closer to East and
Southern Africa.

Discussion
A century ago, the lion population consisted of close-
proximity prides with enough overlapping movement to ap-
pear panmictic. Our comparison of nDNA and mtDNA data

FIG. 3. Results of a PCoA of nine microsatellite loci analyzed in historical and modern lion samples.
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between historical and modern samples indicates the pres-
ence of substantial historical male-mediated gene flow and
evidence of recent isolation of local subpopulations likely due
to habitat fragmentation.

Although lions currently exhibit fine-scale population
structure, the historical population lacked any apparent
structure, suggesting lions acted as a panmictic population
only a century ago. This result was supported by structure
analysis and PCoA. The modern populations cluster into four
subcontinental groups, which are not recovered in the his-
torical population, even between Asia and Africa.

Four tiers of modern nuclear genetic structure were iden-
tified through hierarchical structure analysis. Continental
structure separated Asia from Africa. The subcontinental
tier identified three main groups in Africa: Western, Eastern,
and Southern. This is consistent with previous studies that
also observed strong differentiation between Africa and Asia

as well as subcontinental structure within Africa (Bertola et al.
2015, 2019; Manuel et al. 2020). Smitz et al. (2018) identified
only two groups at the subcontinental scale; lack of identifi-
cation of a Southern group was likely due to low sampling.
The regional tier divides the Southern group into a
Southwest, South, and Southeast group. The highest level
of population structure was able to detect most sampling
locations as in Antunes et al. (2008). Only sampling locations
in Tanzania were unable to be individually identified, similar
to findings of Smitz et al. (2018). Admixture was evident
within local groups (fig. 2, K¼ 11) indicating recent gene
flow. The UA group comprised individuals sampled within
local groups that could not be assigned to a particular tier due
to admixture. Other range-wide studies of lions have shown a
similar localized structure pattern with individuals assigned to
sampling populations with evidence of isolation-by-distance
(Antunes et al. 2008; Dubach et al. 2013). Although several
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FIG. 4. ML tree based on 280 variable sites in 121 lion mitogenomes showing nodes with>70% bootstrap support. Black dots denote the nodes of
the four major clades. Arcs indicate clade boundaries. The gray dot denotes the nested Gir Forest clade. Color corresponds to sampling location
according to conventionally recognized regions in figure 1.
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previous studies on lion phylogeography did include historical
samples (Barnett et al. 2006a, 2014; Bertola et al. 2016; Manuel
et al. 2020), they did not study the effect of sample age on
derived population structure.

Habitat fragmentation restricts gene flow and often leads
to loss of genetic diversity (Fahrig 2003; Delaney et al. 2010).
The KA–ZA transfrontier conservation area has seen a de-
crease in genetic and allelic diversity over the past century
(Dures et al. 2019). Our study showed that, range-wide, there
has been a significant decrease in nDNA diversity from the
historical to the modern lion population (table 1). Expected
heterozygosity, allelic richness, and number of private alleles
have all significantly decreased (P value <0.0005). Although
there is evidence of a recent reduction in population size in
both the historical and modern populations, both displaying
an M value <0.67 (Garza and Williamson 2001; table 1), M is
significantly lower in the modern population. This indicates
that the reduction predates Africa’s exponential human pop-
ulation growth, but the reduction has increased in the past
century.

Given the strong signal differentiating the Asiatic and
African lions in the analysis of modern populations, we pre-
dicted the historical lions from the Gir Forest National Park
(NP) in India would cluster independently of the historical
African lions. The PCoA, however, showed that the Gir Forest
lions cluster together in the center of a single historical lion
cluster (fig. 3). Lions were at the brink of extinction in Asia at
the beginning of the 20th century (Singh and Gibson 2011)
when these samples were collected (1906–1929). Today there
are over 500 lions in the Gir Forest NP (Jhala et al. 2019). The
historical and modern samples from the Gir Forest NP were
collected before the peak of a recent bottleneck and its sub-
sequent population restoration. Our comparisons document
this severe bottleneck that resulted in low genetic diversity in
Asia compared with Africa (supplementary appendix S3,
Supplementary Material online) and demonstrate how diver-
sity shared with the rest of the population is lost to a bottle-
neck. Habitat fragmentation leading to the isolation of
subpopulations within Africa appears to be following the
same trend as the Asiatic lion a century ago.

Historical and modern mtDNA show strikingly different
patterns than nuclear data. Although nuclear diversity has
decreased significantly, mtDNA diversity has remained con-
stant over time (table 1). mtDNA is matrilineally inherited,
and localized studies show that there is little or no female-
mediated gene flow between subpopulations across Africa
(Tende et al. 2014a; Curry et al. 2015, 2019). Female lions
primarily remain with their natal pride, whereas males dis-
perse (Pusey et al. 1987; Spong and Creel 2001). Therefore,
pride structure can dictate mtDNA population structure.
With females remaining close to their natal prides, habitat
fragmentation will not greatly alter pride structure, thereby
keeping mtDNA diversity constant over time. Accordingly,
the distribution of modern haplotypes within clades
(N¼ 17) is geographically consistent with historical haplo-
types (N¼ 74). The four major clades (Southern, Mixed,
Eastern, and Western) geographically follow the

subcontinental groups identified by nDNA analysis
(Southern, Eastern, Western, and Northern).

The Western clade includes lions from West and Central
Africa as well as Asiatic lions. Previous studies have suggested
that the Asiatic, West, and Central African lions should be
grouped taxonomically (Bauer et al. 2015; Bertola et al. 2016).
United States Fish and Wildlife Services recently updated the
lion taxonomy under the Endangered Species Act to recog-
nize these populations as the same subspecies, Panthera leo
leo, and East and Southern Africa populations as Panthera leo
melanochaita (USFWS 2015). Our mitogenome results sup-
port this dichotomy, placing the Gir Forest NP lions within
the Western clade in all analyses.

If unobstructed by geographic or artificial barriers, a male
lion’s home range can be hundreds to thousands of kilometer
square (Stander 2006; Ngwenya et al. 2013; Gatta 2016) and
can span different habitats (Bauer et al. 2003; Lehmann et al.
2008; Loveridge et al. 2009). However, the original range of the
lion has been severely reduced as a direct result of the growing
human population (Riggio et al. 2012) and changes in land-
use, such as expansion of large-scale cultivation and increased
movement of livestock into protected areas (Tumenta et al.
2013; Masanja 2014; Sogbohossou et al. 2014). As lion habitat
has become more fragmented and groups of prides become
more isolated, gene flow is restricted, and subpopulations
become more genetically distinguishable. The dichotomy be-
tween the historic nuclear and mitochondrial structure is
indicative of male-mediated gene flow and female philopatry.
This pattern is not as evident in the modern population be-
cause fragmentation has hindered the ability of males to mi-
grate between increasingly isolated subpopulations.

The differences evident between the historical and modern
lion populations have several important conservation impli-
cations. If left unattended, these subpopulations could be-
come completely isolated leading to further differentiation
and reduction in genetic diversity. Managing a species as a
continuous population without a continuous habitat requires
considerable resources. Lions currently reside in 28 countries
whose different approaches to wildlife policy could compli-
cate range-wide management (Nyhus 2016) and act as addi-
tional artificial barriers. Cooperative international
management would be needed to restore historical levels of
connectivity. Currently, the African Lion Working Group rec-
ommends using regional guidelines for sourcing lions for
translocations (ALWG 2016). Although mtDNA structure
should still be considered, strict guidelines dictated by
nDNA genetic similarities within regional populations may
not be as critical for maintaining the population’s genetic
diversity if the goal is to reflect historical levels of gene flow.
Rather, natural dispersal capability should be used as a guide-
line for selecting suitable source and target populations, al-
though long-distance translocations, especially
transcontinental translocations, are not recommended.

Connectivity is critical to enable gene flow between sub-
populations to avoid the erosion of genetic diversity
(Keyghobadi 2007). As an iconic flagship species, these results
expose the influence of habitat fragmentation, potentially
affecting hundreds of other species. We already are observing

Influence of Habitat Fragmentation across Africa . doi:10.1093/molbev/msaa174 MBE

53



the initial effects of this fragmentation on lions through in-
creased nDNA structure and decreased nDNA diversity.
Science-based management policies and informed steward-
ship can help mitigate the loss of nDNA diversity and con-
tinued preservation of mtDNA diversity. Intervention, ideally
in the form of restoring and protecting natural wildlife corri-
dors, is needed to increase gene flow between lion subpopu-
lations and reduce the effects of habitat fragmentation.

Materials and Methods

Nuclear Analysis
Biological material from 162 lions dating prior to 1949 was
collected from museums (fig. 1, supplementary appendix S9,
Supplementary Material online) in the form of bone frag-
ments, whole teeth or tooth fragments, nasal turbinate bones,
and/or dried tissue. Microsatellite amplification was per-
formed following protocols and procedures described in
Curry and Derr (2019) using their panel of microsatellite
loci designed using historical samples having minimal linkage
disequilibrium. Nine microsatellite loci (Leo006, Leo008,
Leo085, Leo098, Leo126, Leo224, Leo230, Leo247, and Leo281)
that had >75% allele call coverage across both the MD and
the HD for all loci were employed in the final analyses. Only
lions with known sampling date and location and >70%
amplification success were used in downstream analyses.
Sample preparation, DNA extraction and storage, PCR am-
plification, allele calling, and call verification followed proto-
cols described in Curry and Derr (2019). Further details are
found in supplementary appendix S11, Supplementary
Material online.

The MD consists of microsatellite allele calls from Bertola
et al. (2015) (MD-1), Driscoll et al. (2002) (MD-2), and Curry
et al. (2019) (MD-3). Six additional lions were included from
the African Wildlife Genomics collection at Texas A&M
University (MD-4). These data sets were combined to expand
sample size and range for structure analysis and population
statistics as well as for direct comparison with the HD. Data
calibration is needed when combining microsatellite allele
calls from different studies (Ellis et al. 2011). Details on cali-
bration of allele calls can be found in supplementary appendix
S10, Supplementary Material online.

Nuclear diversity calculations were done using Arlequin
v3.5 (Excoffier et al. 2005), GenePop (Rousset 2008), HPRare
(Kalinowski 2005), and GenAlEx v6.5 (Peakall and Smouse
2012). MD and HD were analyzed separately, and results
were then compared. A comparison of means was used to
determine statistical significance of differences between his-
torical to modern metrics.

Knowing that population structure has been found region-
ally (Antunes et al. 2008; Morandin et al. 2014; Miller et al.
2015; Bertola et al. 2016; Tensen 2016; VanHooft et al. 2018;
Smitz et al. 2018), we implemented a hierarchical strategy to
uncover any hidden structure that may be lost when subpo-
pulations are analyzed together (Coulon et al. 2008; Noss
1990; Balkenhol et al. 2014). STRUCTURE runs were per-
formed on each of the full MD and HD data sets without
priors for 15 iterations of K 1–15 for 100,000 Markov chain

Monte Carlo replications with 10% burn-in. STRUCTURE was
rerun for each population as determined through DK values
from STRUCTURE HARVESTER (Earl and vonHoldt 2012)
with individuals assigned to populations based on Q scores
from runs combined in CLUMPP (Jakobsson and Rosenberg
2007). To determine structural tiers, this was continued until
no additional population structure was found. Samples were
assigned to the finest level of structure then run as a full
population with location priors for 15 iterations of K 1–12.
Runs were combined using CLUMPP (Jakobsson and
Rosenberg 2007) and visualized at each tier using
DISTRUCT (Rosenberg 2004). To further look at structure
patterns, a mantel test for IBD and PCoA were performed
in GenAlEx v6.5 (Peakall and Smouse 2012).

Mitochondrial Analysis
Only polymorphic sites found in the sequences generated in
this study were used for downstream analyses. Conservative
filtering was implemented to accommodate the higher error
rate associated with DNA damage possible in older samples
(Shapiro and Hofreiter 2012; Templeton et al. 2013; Gorden
et al. 2018). However, conservative filtering in the historical
mitogenomes may increase false negative variation present in
the published, modern mitogenomes. Therefore, polymor-
phic sites found only in the published mitogenomes were
excluded to reduce potential biases produced by differences
in sequencing between studies.

Whole mitogenomes were assembled based on whole-
genome sequencing of 155 samples (152 historical and 3
modern). Details on whole-genome sequencing, quality filter-
ing, and single nucleotide polymorphism identification can be
found in supplementary appendix S11, Supplementary
Material online. After filtering, 102 historical lions and 3 mod-
ern lions were of sufficient quality for downstream analyses
(NCBI Bioproject: PRJNA602714). Sixteen additional modern
lion sequences from GenBank (KP001493–KP001506 [Bertola
et al. 2016], KP202262 [Davis et al. 2010], KC834784
[Bagatharia et al. 2013]) were added for a total of 19 modern
lions.

Mitochondrial diversity analyses of the multiple sequence
alignment of 280 polymorphic sites were performed using
PLINK v1.9 (Purcell et al. 2007), Arlequin v3.5 (Excoffier
et al. 2005), and DnaSP v6 (Rozas et al. 2017). PCA was
performed using R package SNPRelate (Zheng et al. 2012)
through calculation of eigenvectors and visualized using the
plot3D function in the rgl R package. A median-joining hap-
lotype network was created using POPArt (Bandelt et al.
1999) and an unrooted ML tree was inferred in RAxML using
a rapid bootstrap with 1000 replicates evaluated under the
GTR þ GAMMA þ I substitution model (Stamatakis 2014).

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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