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Abstract: The development of fast and affordable microbial production from recombinant pathways is a challenging endeavor, with
targeted improvements difficult to predict due to the complex nature of living systems.To address the limitations in biosynthetic path-
ways,much work has been done to generate large libraries of various genetic parts (promoters, RBSs, enzymes, etc.) to discover library
members that bring about significantly improved levels of metabolite production. To evaluate these large libraries, high throughput
approaches are necessary, such as those that rely on biosensors. There are various modes of operation to apply biosensors to library
screens that are available at different scales of throughput. The effectiveness of each biosensor-based method is dependent on the
pathway or strain to which it is applied, and all approaches have strengths and weaknesses to be carefully considered for any high
throughput library screen. In this review, we discuss the various approaches used in biosensor screening for improved metabolite
production, focusing on transcription factor-based biosensors.
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Introduction
One of the foci of metabolic engineering is the improvement and
optimization of metabolite production from microbial organisms
(Stephanopoulos, 2012). There have been many advances toward
discovering new target molecules that can be produced de novo;
however, the productivities from these pathways is often subopti-
mal (Dietrich et al., 2013). Due to the complexity of production in
living organisms, rational engineering of pathway improvement is
commonly met with limited success, making optimization a pro-
cess that is usually time- and labor-intensive (Cobb et al., 2013).
To bring about significant improvement in microbial productiv-
ity levels without the need for full knowledge of the complexities
of functionally expressing a heterologous metabolic pathway in a
living host at optimal levels, it is advantageous to generate large
(and usually randomized) libraries of whole cells or key pathway
enzymes.

In the creation of these libraries, more often than not, only a
very limited subset of variants will show significantly improved
performance. Depending on the diversification method and tar-
get sequence size, genetic libraries can reach sizes of 109 vari-
ants (Hanson-Manful & Patrick, 2013), making high-throughput
screening (HTS) an indispensable tool in library sorting (Dietrich
et al., 2010). Traditional chemical quantification methods, such as
mass spectrometry or chromatography, though well-defined and
accurate, are time consuming and will reasonably allow for only
a fraction of the generated variants to be tested. Moreover, while
some products can be screened directly as they are inherently flu-
orescent (Savitskaya et al., 2019) or of a distinctive color (Yang
et al., 2018), this is not common, making product quantification
a large bottleneck in the discovery of improved metabolic path-
ways or chassis.

Biosensors will detect internal stimuli such as pH (Zhu et al.,
2019), cell density (Gupta et al., 2017), stress response (Polizzi &

Kontoravdi, 2015), or metabolite concentration (Mannan et al.,
2017), and produce a proportional response. They can be protein
based, for example, relying on transcription factors (TFs) (Zhang
et al., 2017) or fluorescent proteins (Ameen et al., 2016); or they can
be nucleic acid based, utilizing riboswitches (Yang et al., 2013), in-
cluding Spinach-based riboswitches (You et al., 2015). These tools
allow for dynamic pathway control (Doong et al., 2018), environ-
mental monitoring (Fernandez-López et al., 2015), or detection of
changing levels of metabolite without the need for direct evalua-
tion of titer (Rogers & Church, 2016). The development of biosen-
sors has been crucial in the testing and screening of microbial
libraries, greatly increasing the size of searchable library space
as they enable the detection of inconspicuous small molecules.
Biosensors allow for the bypassing of the lengthy and laborious
product quantification step, increasing the speed and throughput
of library screening. The most commonly utilized form of biosen-
sors for these applications is the TF-based biosensor (Fig. 1),where
the output is controlled via transcriptional regulation, and regu-
lation is coordinated by a TF that is responsive to the presence of
the target molecule (Schallmey et al., 2014).

When generating libraries, there are often standard diver-
sification methods to achieve a desired outcome, such as
error-prone PCR (McCullum et al., 2010) for randomized enzyme
libraries, transposon insertion (Cain et al., 2020) for whole-cell ge-
netic disruption libraries, or atmospheric and room-temperature
plasma (ARTP) for whole-cell libraries from DNA damage (Zhang
et al., 2014). These methods tend to be pathway independent and
are able to achieve the desired diversity for a host of applica-
tions with only minor methodological modification. Conversely,
biosensor screens are muchmore specific and tend to require fine
tuning for effective application to the given pathway. It is possi-
ble to adjust the conditions of the screen (Flachbart et al., 2019),
the method of screening used (Kortmann et al., 2019), or the TF
itself, where TFs are often mutated to allow for novel product
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Fig. 1 A schematic of transcriptional biosensors that are activated in the presence of the metabolite of interest. In (a), the transcription factor acts to
repress the expression of the output gene until the repression is relieved by the metabolite. In (b), the transcription factor acts to activate the
expression of the reporter gene only in the presence of the metabolite. The legend indicates the corresponding shapes for each respective part in the
schematic.

Fig. 2 The screening assays used in biosensor-mediated high-throughput
screening (HTS) allow for the selection of improved variants in a library
based on an easily detectable output, such as fluorescence. The
throughput for each assay differs and impacts the size of searchable
library space in HTS.

detection (Taylor et al., 2016) or for improved dynamics (Mannan
et al., 2017). To date,much effort has gone into the development of
biosensors to facilitate successful high throughput library screen-
ing. There is thus a wealth of work reported on tuning, modify-
ing, and evolving biosensors that has been recently reviewed else-
where (Koch et al., 2019; Lim et al., 2018; Lin et al., 2017) and will
not be detailed in this review.

Biosensors offer great potential, but achieving this potential
requires correct selection of screening method and a biosensor
that has (or can be modified to have) the operational range to
detect the desired product. The main biosensor screen modali-
ties are well plates, agar plates, fluorescence-activated cell sort-
ing (FACS), droplet-based screening, and selection-based meth-
ods; each approach has a different capacity for library size (Fig. 2).
While throughput is one of the most important considerations
when applying a biosensor to a library screen, there are other as-
pects that are application and biosensor specific. Sensor charac-
teristics, equipment requirements, risk of false positives that pass
through the screen, and the dynamics of product generation and
transport are all key factors beyond the throughput of the assay
that should be weighed when selecting the method for a success-
ful biosensor-assisted HTS campaign.

In this review, we will discuss the various ways in which
biosensors—specifically TF-based biosensors—have been applied
in high-throughput library screens (Table 1), as well as any

modifications made to overcome challenges to the success of
these screens. We will highlight the advantages and disadvan-
tages of each method as well as the constraints that may prefer
one screen over another.

Well Plate-Based Biosensor Applications
Well plate assays are carried out in micro- or deep-well volumes
(200 to 1000 μL), where each library member is compartmental-
ized and an average output, frequently fluorescence, is quantified
for each volume. Thismethod is on the lower end of high through-
put and requires significant experimental effort in the setting up
and inoculation of plates with each library member. The use of
individual wells for each library member has the benefit of sep-
arating each within its own well, ensuring that variation at the
single-cell level does not influence the outcome of the screen.
However, with a lower throughput (∼104), there is a limit to the
searchable library space. That is not to say that this method can-
not be successful, as it has been used to improve production of
isobutanol (Yu et al., 2019) via strain evolution and used to dis-
cover 147 strain variants that could selectively degrade lignin to
vanillin and syringaldehyde fromametagenomic library (Ho et al.,
2018).

Zheng et al. applied a plate-based assay that separated the
biosensor strain from the production strain in a “two-strain one-
pot” method (Zheng et al., 2018). This work found that there was
more reproducibility when the production and biosensor vectors
were located within different strains compared to a single strain
containing multiple vectors. The producing cells were indepen-
dently grown and their supernatants were used to supplement
the medium for a biosensor grown in parallel, with the relative
amounts of product present in the supernatant activating each
biosensor culture accordingly. Using this procedure, the authors
successfully screened a library ofmyo-inositol oxygenase variants
in Escherichia coli to discover three differentmutants that exhibited
improved glucaric acid production. The identified variants dis-
played kcat/Km values over twice that of the wild-type and showed
improved Vmax values. The screening system was also applied to
yeast (though used for pathway optimization rather than library
screening) to screen for higher producers, indicating the ability
of this method to pair eukaryotic cell production with a sepa-
rate prokaryotic biosensor screen. This method was carried out
recently by Qiu et al. (2020) when they used a similar method to
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Table 1. Biosensors Applied to Improve Product Yields

Screen
method Organism Target molecule Library type Highlighted improvements Ref.

Well plate E. coli Vanillin and
syringaldehyde

Metagenomic
library

Discovery of 147 new clones that
selectively degrade lignin

(Ho et al., 2018)

E. coli Isobutanol ARTP whole-cell
library

2-fold improved production relative
to base strain

(Yu et al., 2019)

E. coli Glucaric acid Degenerate
nucleotide-
generated
enzyme library

4-fold improvement in specific titer
relative to parent strain and
2.5-fold increase in kcat/Km

(Zheng et al.,
2018)

Y. lipolytica/E. coli Erythritol ARTP whole-cell
library

2.4-fold improved production
relative to original strain

(Qiu et al., 2020)

Blue-
white
agar
plate
screen

E. coli Salicylate RBS
library/transposon-
mediated
mutagenesis

123% increased production in
shake flask

(Qian et al., 2019)

E. coli Mevalonate RBS library 3.8-fold improved production
relative to original plasmid

(Tang & Cirino,
2011)

E. coli Triacetic acid
lactone

epPCR and SSM
libraries

19-fold improved catalytic
efficiency of 2-pyrone synthase

(Tang et al., 2013)

E. coli Resveratrol epPCR enzyme
library

1.8-fold improved specific enzyme
activity over WT

(Xiong et al.,
2017)

GFP-based
agar
plate
screen

E. coli Lactulose epPCR enzyme
library

∼32-fold enhanced expression of
C2E enzyme

(Wu et al., 2017)

FACS E. coli Acrylic acid epPCR enzyme
library

1.6-fold improved RAPc8 amidase
kcat/Km

(Raghavan et al.,
2019)

S. cerevisiae cis, cis-muconic acid UV-mutagenesis
whole-cell
library

49.7% increased production
compared to control strain

(Wang et al.,
2020)

E. coli 3-dehydroshikimate
(DHS)

ARTP mutant
library

90% increased production over
base strain

(Li et al., 2019)

S. cerevisiae Fatty acyl-CoAs Whole-cell gene
overexpression
library

80% increased fatty alcohol levels
over base strain

(Dabirian et al.,
2019)

C. glutamicum L-lysine epPCR enzyme
library

Up to 19% increased titer from
plasmid; up to 14% increased
titer from chromosomal pathway
expression

(Kortmann et al.,
2019)

C. glutamicum L-valine ARTP whole-cell
library

21.5% increased production
compared to starting strain

(Han et al., 2020)

C. glutamicum Shikimic acid RBS library 90% increased production
compared to production using a
known strong RBS

(Liu et al., 2018)

C. glutamicum L-arginine,
L-Histidine,
L-lysine

epPCR enzyme
library

87-fold improved L-arginine
production, 37-fold improved
L-lysine production and 17 mM
L-Histidine (no production from
WT)

(Schendzielorz
et al., 2014)

C. glutamicum L-methionine,
L-valine,
L-leucine,
L-isoleucine

MNNG whole-cell
library

Up to 8 mM L-valine, 2 mM
L-isoleucine, 1 mM L-leucine
from C. glutamicum (no
production from WT strain)

(Mustafi et al.,
2012)

M. extorquens Mevalonate epPCR library 2.8-fold improved yield (Liang et al., 2017)
S. cerevisiae Malonyl-CoA cDNA library 120% increased production relative

to WT
(Li et al., 2015)

C. glutamicum L-serine ARTP whole-cell
library

35.9% increased titer compared to
the parent strain

(Xin Zhang et al.,
2018)

E. coli Ectoine epPCR enzyme
library

4.1-fold improved EctB kcat/Km (Chen et al., 2015)

C. glutamicum L-Histidine MNNG-generated
whole-cell
library

Up to 0.7 mM production (over
0 mM from base strain)

(Della Corte
et al., 2020)



4 | Journal of Industrial Microbiology and Biotechnology, 2021, Vol. 48, kuab049

Table 1. Continued

Screen
method Organism Target molecule Library type Highlighted improvements Ref.

E. coli L-phenylalanine MNNG-generated
whole-cell
library

4.3-fold improved production
compared to WT

(Mahr et al., 2016)

E. coli trans-cinnamic acid
(CA)

epPCR enzyme
library

10 to 60% more CA or p-coumaric
acid from L-phenylalanine or
L-tyrosine, respectively

(Flachbart et al.,
2019)

FADS E. coli 3-dehydroshikimic
acid

ARTP whole-cell
library

21% improved DHS relative to
previous mutant (Liu et al., 2018)

(Tu et al., 2020)

Selection-
based
(agar
plate)

C. crenatum L-arginine ARTP whole-cell
library

13.5% increased production
relative to an engineered C.
crenatum strain (Man et al., 2016)

(Xu et al., 2020)

E. coli L-phenylalanine ARTP whole-cell
library

160.2% improved L-phenylalanine
from parental stain

(Liu et al., 2017)

Selection-
based
(liquid
culture)

E. coli 1-butanol RBS library 35% increased production relative
to original pathway

(Dietrich et al.,
2013)

E. coli 3-hydroxypropionic
acid

Assembly
PCR-generated
enzyme library

25% increased production relative
to original pathway

(Seok et al., 2018)

S. cerevisiae cis, cis-muconic acid
(CCM)

Multicopy gene
insertion
library

Over 2 g/l in bioreactor from a
parental strain that previously
showed no quantifiable
produciton

(Snoek et al.,
2018)

E. coli L-tryptophan epPCR enzyme
library, ARTP
whole-cell
library, site
saturation
mutagenesis
library

65% increased production relative
to WT

(Liu et al., 2017)

E.coli Glucaric acid MAGE library 22-fold improved production
relative to parent strain

(Raman et al.,
2014)

E. coli Naringenin MAGE library 36-fold improved production
relative to parent strain

(Raman et al.,
2014)

Auxotrophic
screens—
microtiter
plate

E.coli Isobutanol NTG whole-cell
library

5-fold improved production relative
to parent strain

(Saleski et al.,
2019)

Auxotrophic
screens—
droplet
based

E. coli Isobutanol Transposon-
mediated
insertion
library

Chromosomal expression on order
of plasmid-based expression in
top performing library member

(Saleski et al.,
2021)

ARTP: atmospheric and room-temperature plasma; MNNG: N’-methyl-N’-nitro-N-nitrosoguanidine; MAGE: multiplex automated genomic engineering; NTG: N-
methyl-N’-nitro-N-nitrosoguanidine.

pair a bacterial EryD-based sensor with an ARTP-derived genomic
library in Yarrowia lipolytica to screen for improved erythritol pro-
duction from yeast.

The use of awell plate-based screen is useful if a lower through-
put can discover improved variants or if the lower throughput
can be maximized with the use of robotic systems designed for
handling large numbers of samples. Further, it may be necessary
to use this type of screen if the product is known to freely dif-
fuse into nonproducing cells or if it is preferred that the biosen-
sor and the production strain be cultured separately from one
another.

Agar Plate-Based Biosensor Screens
In agar plate-based screens, the biosensor output is typically flu-
orescent or colorimetric, and the library containing the biosensor
is plated and visually inspected to identify high producers. Agar
plate screens are less laborious and slightly higher throughput
compared to well plate screens. A challenge in implementing
this method is the careful tuning of the sensitivity and output
range of the biosensor that is required to facilitate the detection
of higher producers. With inspection being done by eye, high-
producing colonies must show a clearly distinguishable output
in response to product. This obstacle comes with the benefit
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of a relatively straightforward screening procedure that does
not require specialized equipment. Agar plate-based screening
by Wu et al. used a modified form of LacI that was sensitive
to lactulose, an analog of lactose (Wu et al., 2017). This work
relied on a biosensor with GFP as the signal output to discover
high-producing enzymes from a library of cellobiose 2-epimerase
mutants. The top performingmutant was found to exhibit 22-fold
higher lactulose titer and 32-fold increased expression.

Though many biosensors used in screening campaigns are
based on fluorescence, an alternative is the use of blue-white
screen with lacZ replacing gfp as a reporter gene. In this config-
uration, LacZ production is controlled by a metabolite-inducible
promoter and colonies turn blue in the presence of 5-bromo-4-
chloro-3-indolyl-β-D-galactopyranoside (X-gal) as long as there
are sufficient levels of metabolite. This screen has been used
in combination with biosensors based on mutated forms of
the TF AraC. AraC naturally responds to L-arabinose, but was
evolved to create the biosensors AraC-mev (Tang & Cirino, 2011),
AraC-TAL (Tang et al., 2013), and AraC-SA (Qian et al., 2019) to
screen enzymatic and whole-cell libraries producing the small
molecules mevalonate, triacetic acid lactone (TAL), and salicylate,
respectively. The blue-white screen was also employed to screen
an error-prone PCR library of p-coumarate: CoA ligase (4CL)
variants for improved resveratrol production (Xiong et al., 2017).

While agar plate-based library screening can be less labori-
ous than a well plate-based assay, this method is unlikely to be
suitable for all biosensors and libraries as significant differences
in biosensor signal are generally necessary for visual detection.
Determining the operable range to achieve this may not be pos-
sible or could require extensive evolution and/or modification
of the biosensor itself. Nevertheless, this method can be useful
when screening on solidmedia ismore beneficial or when special-
ized equipment (i.e., microplate detectors and cell sorters) is not
accessible.

FACS-Based Biosensor Screens
Currently, FACS is the most frequently utilized method for
biosensor-mediated HTS. Fluorescence-activated cell sorting an-
alyzes large libraries of variants at the single-cell level, separat-
ing cells that exhibit the highest fluorescence from a bulk culture.
Sorted cells are then subjected to a secondary, lower throughput
screen to verify that the subset that passed the screen are true im-
proved variants. Using FACS, it is possible to screen libraries that
reach sizes of ∼106 in the search for improved variants. As this
method is commonly used and the equipment for FACS is well de-
fined, there is a fairly standard screening procedure including: di-
versity generation, FACS screening, and “hit” verification through
secondary screening (Binder et al., 2012). Challenges in applying
this screen can arise due to variation at the single-cell level and
the diffusion of products from one cell to the next, both of which
can lead to false positives within the screen. Even with these ob-
stacles, there are a number of reports of successful use of such
biosensors in combination with FACS to discover enzyme variants
and whole-cell mutants that yield improved production in both
bacterial (Chen et al., 2015; Della Corte et al., 2020; Han et al., 2020;
Kortmann et al., 2019; Li et al., 2019; Liu et al., 2018; Mustafi et al.,
2012; Raghavan et al., 2019; Schendzielorz et al., 2014) and yeast
(Dabirian et al., 2019; Li et al., 2015; Wang et al., 2020) hosts.

Biosynthetic pathway enzymes are obvious targets for muta-
tion and screening to improve the production of targetmetabolite;
however, mutations in the broader host genome—affecting both
metabolism and resource allocation—can also prove beneficial.

One such example involved the generation of a QscR library for
improved mevalonate production from methanol in Methylobac-
terium extorquens AM1 (Liang et al., 2017). QscR is a regulatory ele-
ment known to act upon the serine cycle to control carbon flux to
enable growth onmethanol. Bymutating this enzyme and screen-
ing for high producers in a single round of directed evolution, a
regulator variant that led to a 60% increase in mevalonate titer
was identified. This study highlighted that there is much to gain
from screening targets that indirectly influence the pathway.

In FACS, false positives often arise due to cells that are larger
and more fluorescent, or due to heterogeneity in the expression
of GFP or the pathway enzymes at the single-cell level. Follow-
ing FACS screens, false positives are filtered out by a form of en-
richment. Whether this comes in the form of further rounds of
FACS screening, agar plate screening, or screening in a well plate,
this secondary screen is often necessary to find the true improved
variants. Florescence-activated cell sorting relies on gating, that
is, setting boundaries to separate cell populations based on the
plots generated from flow cytometry data for appropriate sort-
ing, and these boundaries have an impact on the screen. To ad-
dress whether the gating strategy employed impacts the rate of
false positives or the titer produced from the final improved vari-
ants, Kortmann et al. compared two different techniques in FACS
(Kortmann et al., 2019). The first gate was chosen to maximize the
exclusion of the base strain based on a diagonal between forward
scatter (a proxy for size) and fluorescence. By following this diago-
nal, size was considered to avoid sorting cells that were large and
thus more fluorescent. The other gating technique did not con-
sider the size, but only sorted cells based on their fluorescence,
choosing the top percentage based on a histogram of fluorescence.
While the second gate would have a bias toward larger cells, both
gates led to the discovery of improvedmutants,with similar num-
bers of false positives resulting from both sorts. Overall, one mu-
tant from each sort was chosen to test via plasmid-based expres-
sion and chromosomal integration, both showing similarly im-
proved titers, indicating that the chosen gating method had no
significant impact on the outcome of the screen.

The secondary screen will only ensure that the selected vari-
ants are true positives, and will not address the decrease in
biosensor effectiveness due to false positives. When biosensors
are characterizedwithin a clonal population, they very often show
a clear and dose-dependent average fluorescent response to the
target as there is inherent averaging across the population. How-
ever, suchwell-performing sensors based on their average fluores-
cence value in a population may not always translate to a biosen-
sor that is effective at the single-cell level where heterogeneity in
cell size and heterologous protein production have a larger effect.
Diffusion of product between cells also allows for the emergence
of “cheaters” as product freely enters lower-producing cells from
higher-producing cells in culture prior to cell sorting (Dietrich et
al., 2010). These challenges may be part of the reason that there
is a great wealth of literature detailing the development and char-
acterization of biosensors, but relatively less when it comes to
effectively using them in library screening—particularly at the
single-cell level (Flachbart et al., 2019).

To address these issues, there has been work aimed at prevent-
ing false positives rather than just removing them fromconsidera-
tion after they occur. To address product diffusion,Woolston et al.
(2018) added glutathione—a formaldehyde scavenger—as a “sink”
for formaldehyde, their sensed molecule. This enabled the sensor
to clearly separate different populations of cells as glutathione
formed a complex with formaldehyde before it could diffuse from
producing to nonproducing cells.
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In working to decrease culture heterogeneity, Flachbart
et al. added an araE gene to their system to ensure homogenous
xalTC expression from an L-Ara-inducible promoter. This modifi-
cation ensured all or nothing gene expression, as was previously
demonstrated in decreasing single-cell variation in XalTC output
(Khlebnikov et al., 2002). To reduce diffusion within the library
prior to sorting, the inoculum density and culture time were op-
timized. Using these techniques, a biosensor was successfully ap-
plied to the discovery of an improved XalTC enzyme for trans-
cinnamic acid production (Flachbart et al., 2019).

Overall, the reports of success using FACS indicate that it is a
promising and straightforward screening method to choose for
most applications. The benefits of the high throughput and rel-
ative simplicity of this screen come at the risk of a less efficient
screen due to heterogeneity at the single-cell level or diffusion of
the product into low-producing cells. Even so, this method is still
quite useful and can generally be applied in most desired screens
where there is a clear difference in output signal for different lev-
els of product titer and when the product diffusion is not of con-
cern based on the timescale or the screen or can be counteracted
by other methods.

Droplet-Based Screening and Selection
Droplet-based screening methods encapsulate members of the li-
brary of interest within a set of droplets for HTS (Jang et al., 2016).
Depending on the composition of the droplets, screening can
take place via either fluorescence activated droplet sorting (FADS)
(Tu et al., 2020) when the external layer of the droplet is hy-
drophobic (i.e., water/oil emulsions) or through microdroplet
FACS (Siedler et al., 2017) when the external layer is not hy-
drophobic (e.g., water/oil/water emulsions). Fluorescence acti-
vated droplet sorting often utilizes specializedmicrofluidic equip-
ment for droplet sorting while FACS relies on traditional cell sort-
ing equipment. Agarose beads have also been used as droplets to
enable sorting via FACS (Ma et al., 2019), but this particular appli-
cation has yet to be applied to in vivo biosensor screens. Similarly,
many other applications of droplet-based sorting do not rely on
in vivo biosensors and instead involve encapsulation of cellular
lysates containing the enzyme to be improved and a fluorogenic
substrate (Kintses et al., 2012).

Similar to thewell plate-basedmethod, a benefit of thismethod
is the ability to combine a bacterial biosensor and a yeast pro-
duction strain within a single droplet. Transcription factor-based
biosensors often rely on prokaryotic TFs as they tend to be much
simpler than eukaryotic systems (Zhang & Shi, 2021).While there
has been some success in translating prokaryotic systems into
yeast and some systems that utilize native yeast regulation, there
is limited screening capacity for yeast libraries (Li et al., 2015).
By using separate sensing strains that are more conducive to the
transcriptional regulation machinery, a greater range of products
and production chassis can be targeted for improvements.

Droplet-based sorting has been shown to be more effective
than FACS-based sorting for finding improved librarymembers. Tu
et al. demonstrated that,when compared to FACS, their biosensor-
based FADS had an improved enrichment rate over the traditional
FACS sort (Tu et al., 2020). Though using a fluorescent product and
not a biosensor, Wagner et al. showed that droplet-based sorting
was much more useful for products that are secreted, as FACS
will preferentially sort high intracellular producers (Wagner et al.,
2018).

While the droplet-based sorting method combines the advan-
tages of FACS and microplate assays with both high throughput

and compartmentalization, it also suffers from the cell-to-cell
variability present in FACS, where heterogeneity within the cul-
tures can impact the overall screen. Beyond this disparity on the
cellular level, there is also variability in the encapsulation process
itself. In droplet-based screens, cells are encapsulated based on a
Poisson distribution and the number of cells in each droplet can-
not be directly controlled. To avoid false positives due to multiple
production cells within one droplet, encapsulation densities are
often rather low, such that it is possible for only one in 10 droplets
to have a single cell (still with one in 100 droplets having two
cells) (Abatemarco et al., 2017). Overall, there have yet to be signif-
icant applications of droplet-based sorting using in vivo biosensor
screens, but as the technology and the ability to control encap-
sulation develops, this method may be more widely adopted. If
the necessary microfluidic equipment is available, this screening
method could be beneficial when product diffusion cannot be ad-
dressed by other means but a higher throughput is still desired.

Selection-Based Biosensor Screening
One of the major advantages to using a selection-based biosensor
screen is the theoretical throughput. Using this screening modal-
ity with proper biosensor tuning, library size is only limited by the
efficiency of the transformationmethod, as nonproductive strains
should simply not grow, enabling growth of all higher producers
(Dietrich et al., 2010). In this method, the biosensor output cor-
relates target product levels to cellular fitness, often through the
expression of a selectablemarker, linking the production of incon-
spicuous metabolites to growth levels. A selection-based screen
can be carried out in a liquid culture or on solid media. However,
as with every othermethod, it exhibits drawbacks that limit its po-
tential. First, there is the risk of enriching evolutionary escapees
(Raman et al., 2014) as a result of adaptive mutation in the host
cell. These cells will gain adaptations that allow them to survive
the selective pressure without the desired productivity improve-
ments. Another challenge, though one that can be addressed with
proper biosensor tuning, is that even a slightly leaky biosensor
output level could lead to survival of low producers or even non-
producers out of the library, increasing false positive risk and de-
creasing the performance of the screen (Dietrich et al., 2010).

Selection-based biosensors exhibit significant improvement
relative to selecting variants from an unscreened control group,
as Liu et al. showed when applying their streptomycin-resistance-
based sensor to a randomly generated strain library. They found
that 69% of mutants that were selected produced significantly
higher titers of L-phenylalanine relative to only 2% that produced
higher titers in the unscreened control group. The final mutant
showed 160% increased production relative to the parental strain
(Liu et al., 2017). Further examples of successful applications of
this method include the discovery of mutants for improved pro-
duction of muconic acid (Snoek et al., 2018), 1-butanol (Dietrich
et al., 2013), and 3-hydroxypropionic acid (Seok et al., 2018).

While the sensor-selectors mentioned above are based on
antibiotic resistance, this is not the only method of selection, and
there are notable examples of using other methods. Rogers et al.
developed multiple sensors for pathway improvement based on
regulation of an outermembrane protein, TolC, that removes toxic
SDS (Raman et al., 2014). A further benefit to this system was the
ability to run iterations in which positive and negative selection
were alternated to remove evolutionary escapees. In this work,
evolutionary escapees were the cells that survived the screen
through acquisition of a mutation that enabled constitutive
expression of tolC. To remove these escapees, a toggled selection
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approach was used: the expression of tolC confers sensitivity
to Colicin E1, meaning that the application of this bacteriocin
selected against any runaway mutants present following the
SDS screen. A biosensor screen based on sensitivity to sucrose
allowed for the detection of mutants with increased L-arginine
production in C. crenatum (Xu et al., 2020). In this work, L-arginine
levels above 60 mM would repress the output of SacB—whose
expression is lethal to cells in 10% sucrose—in Corynebacterium
crenatum, linking higher levels of survival to lower outputs of SacB
caused by increased levels of L-arginine.

A different technique relied upon to the ability to utilize
maltose as the driver for selection. In this method, maltose was
provided as the sole carbon source, with a crucial step in the
maltose utilization pathway removed from the host. The gene
encoding the missing enzyme,malQ, was then expressed from an
L-tryptophan-responsive promoter which generated strains that
were directly dependent upon L-Trp concentration for growth
on maltose, directly correlating survival to L-Trp levels. This
method was shown to exhibit a significantly reduced chance of
evolutionary escape when compared to a traditional antibiotic-
resistance-based screen. TrpE mutants leading to improved titers
were discovered from both enzyme and whole-cell libraries
increased L-Trp production (Liu et al., 2017).

The principles used in selection- and droplet-based screens can
be combined when screening for high levels of survival based
on complementary feeding within a microdroplet. This approach
was successfully applied through syntrophic co-culture amplifi-
cation of production (SnoCAP),whichwas used to sort bothwhole-
cell libraries made through mutagenesis (Saleski et al., 2019) and
transposon-mediated insertion libraries (Saleski et al., 2021) for
improved isobutanol titers. The first application of SnoCAP used
NTG tomutagenize the host strain and demonstrated the applica-
tion of their novel screening method to find an optimal strain for
isobutanol production. In the follow-up publication, transposons
were used to transfer parts of the biosynthetic pathway in ran-
dom sites of the chromosome,probing the effects of genomic loca-
tion of homologous pathway enzymes on production. Syntrophic
co-culture amplification of production screening discovered a
strain that expressed all homologous enzymes in the host genome
that exhibited yields similar to those from a plasmid-based
system.

Syntrophic co-culture amplification of production relies on
a coculture method to discover improved variants through a
metabolic cross-feeding circuit enabling commensal growth of a
sensor and secretion strain. The sensor strain constitutively pro-
duces GFP and is also auxotrophic for the product from the secre-
tion strain. When there is less product, the GFP-expressing strain
grows less, leading to lower fluorescence levels. This means the
top producers will fluoresce at higher levels, enabling HTS for im-
proved library members. In the original SnoCAP publication, the
method was demonstrated using microtiter plates, agar plates,
and droplets with the microtiter and agar plates being used for
mutational library screening. In the application of SnoCAP to ran-
dom pathway insertion libraries, both droplet andmicrotiter plate
assays were used in screening.

With most library generation methods commonly resulting in
only small fractions of high producers, the use of a selection-
based screen allows for extremely large libraries to be analyzed
as, typically, only these high producers will survive. This method
is useful for applications where compartmentalization is desired
(for the agar-plate format), extremely high throughput is needed,
or equipment limitations exist. However, this comes at the haz-
ard of evolutionary escape, a need for sufficient production rates

such that any cells are able to survive the selective pressure, and
a well-tuned biosensor.

Conclusion
Biosensors have enormous potential across metabolic engi-
neering applications with widespread application to directed
evolution—a technique that could be used to discover new cata-
lysts and to improve upon existing ones. However, once a biosen-
sor has been assembled, characterized, and tuned, this does not
guarantee its successful application to a screen. There is much
work and consideration required when applying a biosensor to
the desired screen as different screening methods will be more or
less well suited for a given application. It is possible that the con-
straints of one screen may diminish the capacity of the biosensor
to screen for the metabolite of interest and that another screen
can be applied successfully or modifications can be made to the
desired screen to circumvent these hindrances.As technology and
methodology continue to develop, there is significant promise that
these pitfalls will be addressed, allowing for screening systems
with both high throughput and low false positives. With more
effective HTS technology, the ability to optimize new pathways
that continue to be discovered will allow maximum titers to be
attained with minimal cost.
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