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Sperm histone H3 lysine 4 tri-methylation serves
as a metabolic sensor of paternal obesity and is
associated with the inheritance of metabolic
dysfunction
Anne-Sophie Pepin 1, Christine Lafleur 2, Romain Lambrot 2, Vanessa Dumeaux 3, Sarah Kimmins 1,2,*
ABSTRACT

Objective: Parental environmental exposures can strongly influence descendant risks for adult disease. How paternal obesity changes the sperm
chromatin leading to the acquisition of metabolic disease in offspring remains controversial and ill-defined. The objective of this study was to
assess (1) whether obesity induced by a high-fat diet alters sperm histone methylation; (2) whether paternal obesity can induce metabolic
disturbances across generations; (3) whether there could be cumulative damage to the sperm epigenome leading to enhanced metabolic
dysfunction in descendants; and (4) whether obesity-sensitive regions associate with embryonic epigenetic and transcriptomic profiles. Using a
genetic mouse model of epigenetic inheritance, we investigated the role of histone H3 lysine 4 methylation (H3K4me3) in the paternal trans-
mission of metabolic dysfunction. This transgenic mouse overexpresses the histone demethylase enzyme KDM1A in the developing germline and
has an altered sperm epigenome at the level of histone H3K4 methylation. We hypothesized that challenging transgenic sires with a high-fat diet
would further erode the sperm epigenome and lead to enhanced metabolic disturbances in the next generations.
Methods: To assess whether paternal obesity can have inter- or transgenerational impacts, and if so to identify potential mechanisms of this
non-genetic inheritance, we used wild-type C57BL/6NCrl and transgenic males with a pre-existing altered sperm epigenome. To induce obesity,
sires were fed either a control or high-fat diet (10% or 60% kcal fat, respectively) for 10e12 weeks, then bred to wild-type C57BL/6NCrl females
fed a regular diet. F1 and F2 descendants were characterized for metabolic phenotypes by examining the effects of paternal obesity by sex, on
body weight, fat mass distribution, the liver transcriptome, intraperitoneal glucose, and insulin tolerance tests. To determine whether obesity
altered the F0 sperm chromatin, native chromatin immunoprecipitation-sequencing targeting H3K4me3 was performed. To gain insight into
mechanisms of paternal transmission, we compared our sperm H3K4me3 profiles with embryonic and placental chromatin states, histone
modification, and gene expression profiles.
Results: Obesity-induced alterations in H3K4me3 occurred in genes implicated in metabolic, inflammatory, and developmental processes.
These processes were associated with offspring metabolic dysfunction and corresponded to genes enriched for H3K4me3 in embryos and
overlapped embryonic and placenta gene expression profiles. Transgenerational susceptibility to metabolic disease was only observed when
obese F0 had a pre-existing modified sperm epigenome. This coincided with increased H3K4me3 alterations in sperm and more severe phe-
notypes affecting their offspring.
Conclusions: Our data suggest sperm H3K4me3 might serve as a metabolic sensor that connects paternal diet with offspring phenotypes via the
placenta. This non-DNA-based knowledge of inheritance has the potential to improve our understanding of how environment shapes heritability
and may lead to novel routes for the prevention of disease. This study highlights the need to further study the connection between the sperm
epigenome, placental development, and children’s health.
Summary sentence: Paternal obesity impacts sperm H3K4me3 and is associated with placenta, embryonic and metabolic outcomes in
descendants.
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1. INTRODUCTION

The prevalence of obesity and type II diabetes is growing globally at
rates indicating that environment rather than genes is the principal
driver. Exposures to high-fat diet and toxicants, as well as micro-
nutrient deficiency, can impact our health and that of future gener-
ations [1e4]. Only now are we beginning to identify mechanisms
linking these exposures to parental and offspring health. One
connection between environment and health is the epigenome. The
epigenome refers to the biochemical content associated with DNA
that impacts gene expression and chromatin organization. Uncovering
how genomic information is organized and regulated through
epigenetic processes to control gene expression and cell functions in
the next generation is still in a nascent stage. We and others have
shown that errors in epigenomic profiles in sperm can be induced by
environmental exposure to toxicants like those found in insecticides
and plastics, as well as by obesity and poor diet [5e10]. We recently
demonstrated that these epigenome changes at the level of chromatin
can be transmitted via sperm to alter embryonic gene expression,
development, and offspring health [9]. Historically, parental health
and fertility have focused predominantly on the mother, although it is
clear a father’s health and lifestyle can also impact his children’s
health. How epimutations in sperm functionally impact the embryo
urgently requires elucidation to prevent transmission of disease from
father to offspring.
Metabolic disease including obesity and type II diabetes can in part be
attributed to genetic factors with a 5e10% increased risk [11]. The
remaining risk is attributable to environmentaleepigenetic in-
teractions, potentially including those of our ancestors. This possibility
is supported by epidemiological and animal studies. Transgenerational
effects are suggested by studies in humans that linked the food supply
of grandfathers to obesity and cardiovascular disease in their grand-
children [12e14]. However, the ability for diet to induce trans-
generational effects in animal models remains controversial and
requires more in-depth studies addressing the underlying molecular
mechanisms [15e17]. To date, studies using mice to assess the
impact of diet and obesity in relation to the sperm epigenome have
focused on the DNA methylome and noncoding RNA (ncRNA) as the
potential sperm-borne mediators of metabolic disease [6,18e23]. The
role of sperm chromatin in the non-genetic inheritance of metabolic
disorders remains unknown. In human and mouse sperm, histone H3
lysine 4 trimethylation (H3K4me3) localizes to genes involved in
metabolism and development [9,24,25]. Moreover, sperm H3K4me3
can be altered by folate deficiency and influences embryonic devel-
opment and gene expression [15,26]. This association of histone
modifications in sperm with offspring phenotypes has since been
confirmed in other mouse models [27,28]. Based on these observa-
tions, we hypothesized that sperm H3K4me3 may serve as a metabolic
sensor that is implicated in the paternal transmission of obesity-
associated disease in offspring.
One focus of this study was to identify whether paternal obesity im-
pacts the F1eF2, and if so to identify potential mechanisms of this non-
genetic inheritance. In our transgenic (TG) mouse model of epigenetic
inheritance, male mice overexpress the histone demethylase KDM1A,
specifically in spermatogenesis, resulting in sperm with alterations in
H3K4me2 and me3. Notably, only H3K4me3 has been implicated in
transgenerational inheritance in this mouse model [26]; therefore, as
sperm H3K4me3 is responsive to paternal folate deficiency [9] and has
been implicated in transgenerational inheritance [26], we targeted this
mark in sperm to probe in response to paternal obesity and as a po-
tential mediator of inheritance. In this study, we aimed accomplish the
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following: 1) assess the impact of high-fat diet (HFD) induced paternal
obesity on sperm H3K4me3 and its association with metabolic
dysfunction across generations, and 2) determine if descendants of
obese TG sires with a previously altered sperm epigenome would show
more severe metabolic dysfunction. We used wild-type (WT), or the
germline specific KDM1A-overexpressing TG mice, in combination
with a diet-induced obesity model. These TG sires have descended
from males that have an altered sperm epigenome and whose an-
cestors had compromised health (see Materials and Methods for de-
tails). This TG model is used to represent an at-risk population that
may be more susceptible to poor health when challenged with obesity.
Here, we demonstrate that a paternal high-fat diet induces F0 obesity
and metabolic dysfunction in the F1. Remarkably, transgenerational
phenotypes were only observed in descendants of obese KDM1A TG
males, and this was associated with enhanced alterations in H3K4me3
enrichment in obese TG sperm. This suggests that the risk of trans-
generational disease transmission may be greater if an ancestor has
had prior exposures that cause pre-existing damage to the sperm
epigenome. Concordant with the metabolic phenotypes observed in
offspring, obesity-induced alterations in sperm H3K4me3 occurred at
genes involved in development, placenta formation, inflammatory
processes, glucose, and lipid metabolic pathways. These sperm-
altered H3K4me3 regions persist in the embryo and placenta, sup-
porting that sperm H3K4me3 do play a role in paternal origins of adult-
onset metabolic disorders.

2. MATERIALS AND METHODS

2.1. Resource availability

2.1.1. Lead contact
Further information and requests for resources and reagents should be
directed to, and will be fulfilled by, the Lead Contact, Sarah Kimmins
(sarah.kimmins@mcgill.ca).

2.1.2. Materials availability
This study did not generate new unique reagents.

2.1.3. Data and code availability
The sperm H3K4me3 ChIP-Seq and liver RNA-Seq data generated in
this study are available at the following GEO accession number:
GSE178096.

2.2. Experimental model and subject details

2.2.1. Animals
All animal procedures were carried out in accordance with the
guidelines of the Faculty Animal Care Committee of McGill University,
Montreal. For the wild-type line (WT), C57BL/6NCrl 8-week-old males
and 6-week-old females were purchased from Charles River Labora-
tory and were allowed one week of acclimation before breeding. For
the KDM1A transgenic line (TG), mice were generated as previously
described [15], with the same genetic background as the wild-type
line. The F0 TG mice used in this study were from the 11th genera-
tion. The earlier generations of mice in this KDM1A TG had severe
developmental abnormalities, pre-implantation loss, and early post-
natal death [15]. Over time, we have selected against the severe
phenotype by breeding the mice that survive and are normal. Single
males were housed with two females to generate the F0 generation. All
animals were given access to water and food ad libitum and were
maintained on a controlled light/dark cycle.
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2.3. Methods details

2.3.1. Diet experiments and animal breeding
The low-fat control diet (CON; D12450J) and high-fat diet (HFD;
D12492) were obtained from Research Diets and selected based on
the matched amounts of sucrose, vitamin mix, and folate. The mac-
ronutrients composition of each diet is listed in Table S1. Males of the
F0 generation were generated from at least 7 different sires per group.
F0 males were weaned at 3 weeks of age and randomly assigned to
either a CON or HFD. The number of animals per group, per sex, and
per generation used for all metabolic characterization tests can be
found in Table S2. Total body weights were monitored weekly. Cu-
mulative caloric intake was recorded weekly by weighing pellets from
the food hopper and calculated as kilocalorie per animal. The diet
intervention spanned 10e12 weeks followed by 2 weeks of metabolic
testing (at 4 months of age), 1 week of rest, and 1e2 weeks of
breeding with 7-week-old C57BL/6NCrl females. Females used for
breeding were housed with males overnight (1e2 females per male)
and removed the following morning. This was repeated until a vaginal
plug was detected, 3 nights per week for a maximum of 2 consecutive
weeks. A limitation worth noting is that despite these precautions the
females were exposed for a maximum of 6 nights to the HFD pre-
pregnancy during this breeding period; however, the impacts of this
exposure are minimal as female mice require several weeks (w5e8
weeks) before significant weight gain on a HFD [29].
Litter sizes (number of pups per litter) were recorded, and sex ratios
(ratio of male pups over total number of pups) were calculated for all
litters generated and can be found in Tables S3 and S4, respectively.
The same timeline was used to generate the F1 and F2 animals. All
females used for breeding and all F1 and F2 were fed a regular chow
diet (2020X Teklad rodent diet, Envigo). All animals were sacrificed at
22 weeks (�2 weeks) by carbon dioxide asphyxiation under isoflurane
anesthesia.

2.3.2. Metabolic testing
Assessment of metabolic parameters was conducted at 4 months of
age within 2 consecutive weeks according to the standard operating
procedures of the National Institutes of Health (NIH) Mouse Metabolic
Phenotyping Center [30]. For the glucose tolerance test, animals were
fasted overnight for 15 h (�1 h), starting at 6:00PM with free access to
water. Blood glucose was measured before and 15, 30, 60, and
120 min following an intraperitoneal injection of 2 g/kg of a 20%
glucose solution (D-glucose, G7021, Sigma Aldrich), with one drop of
blood from the tail-tip using a glucometer (Accu-Chek Aviva Nano). For
the insulin tolerance test, animals were fasted for 6 h (�1 h), starting
at 9:00AM with free access to water. Blood glucose was measured
before and 15, 30, 60, and 120 min following an intraperitoneal in-
jection of 1 IU/kg insulin (Insulin solution, I9278, Sigma Aldrich), with
one drop of blood from the tail-tip using a glucometer (Accu-Chek
Aviva Nano). The area under the curves (AUCs) for the tolerance tests
were calculated using the trapezoidal rule (GraphPad Prism, version 8).
For the baseline blood glucose levels, blood glucose levels were
measured after an overnight fasting of 15 h (�1 h), with one drop of
blood from the tail-tip using a glucometer (Accu-Chek Aviva Nano).

2.3.3. Tissue collection
At necropsy, mice were dissected to collect adipose tissue (gonadal
and mesenteric white adipose depots; gWAT and mWAT, respectively)
and a liver lobe (left lateral lobe or lobus hepatis sinister lateralis for
RNA-sequencing). All tissues were weighed, transferred to a clean
tube, snap frozen in liquid nitrogen, and stored at �80 �C until
MOLECULAR METABOLISM 59 (2022) 101463 � 2022 Published by Elsevier GmbH. This is an open acce
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subsequent downstream experiments. Cauda epididymides were
weighed and immediately used for sperm isolation.

2.3.4. Sperm isolation
Spermatozoa were isolated from paired caudal epididymides [31,32].
Cauda epididymides were cut into 5 mL of freshly prepared Donners
medium (25 mM NaHCO3, 20 mg mL

�1 BSA, 1 mM sodium pyruvate,
0.53% vol/vol sodium DL-lactate in Donners stock) and gently agitated
to allow to swim out for 1 h at 37 �C. The solution was passed through
a 40-mm cell strainer (Fisher Scientific, #22363547) and washed three
times with phosphate-buffered saline (PBS). The swim out and the
cleaning steps remove 99% of contaminating somatic cells; this is
visually confirmed and has been validated in our prior studies
[9,15,24,26,31,32]. The sperm pellet was cryopreserved in freezing
medium (Irvine Scientific, cat. #90128) and kept in a �80 �C freezer
until the chromatin immunoprecipitation experiment.

2.3.5. RNA-sequencing and library preparation
RNA extraction was performed using the RNeasy Mini Kit (Qiagen, cat.
#74104) following the manufacturer’s protocol with slight modifica-
tions. In brief, 15e20 mg of liver lobes were cut on dry ice using a
sterile scalpel and Petri dish. Samples were lysed in 350 mL of a
denaturing buffer (Buffer RLT with beta-mercaptoethanol) and ho-
mogenized with homogenizer pestles. Lysates were centrifuged at
maximum speed for 3 min, and the supernatants were transferred to a
clear tube. Ethanol (50%) was added to lysates to promote selective
binding of RNA molecules to the silica-based membrane when applied
to the spin columns. To avoid genomic DNA contamination, an addi-
tional DNase digestion was performed. Finally, membranes of the spin
columns were washed twice with 500 mL of Buffer RPE, and total RNA
was eluted using 30 mL of RNase-free water. Libraries were prepared
and sequenced at the Génome Québec Innovation Centre with single-
end 50 base-pair (bp) reads on the illumina HiSeq 4000 and paired-
end 100 bp reads on the illumina NovaSeq 6000 S2 sequencing
platforms.

2.3.6. ChIP-sequencing and library preparation
Chromatin immunoprecipitation was performed as previously
described [31,32]. In brief, spermatozoa samples in freezing media
were thawed on ice and washed with 1 mL phosphate-buffered saline.
For each sample, two aliquots of 10 mL were used to count sperma-
tozoa in a hemocytometer under microscope, and 10 million sper-
matozoa were used per sample (n ¼ 5 sample per group). Sperm
chromatin was decondensed in 1 M dithiothreitol (DTT; Bio Shop,
#3483-12-3), and the reaction was quenched with N-ethylmaleimide
(NEM). Samples were lysed in lysis buffer (0.3 M sucrose, 60 mM KCl,
15 mM TriseHCl pH 7.5, 0.5 mM DTT, 5 mM McGl2, 0.1 mM EGTA, 1%
deoxycholate and 0.5% NP40). An MNase enzyme (15 units; Roche,
#10107921001) was added to aliquots containing 2 million sperma-
tozoa in an MNase buffer (0.3 M sucrose, 85 mM TriseHCl pH 7.5,
3 mM MgCl2 and 2 mM CaCl2) for exactly 5 min at 37 �C. The digestion
was stopped with 5 mM EDTA. Samples were centrifuged at maximum
speed for 10 min, and the supernatants of aliquots from each sample
were pooled. Each tube was supplemented with a protease inhibitor to
obtain an 1X solution (complete Tablets EASYpack, Roche,
#04693116001). Magnetic beads (DynaBeads, Protein A, Thermo
Fisher Scientific, #10002D) were pre-blocked in a 0.5% Bovine Serum
Albumin (BSA, Sigma Aldrich, #BP1600-100) solution for 4 h at 4 �C
and then used to pre-clear the chromatin for 1 h at 4 �C. Pulling down
of the pre-cleared chromatin was performed with the use of magnetic
beads that were previously incubated with 5 mg of antibody (Histone
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H3 Lysine 4 trimethylation; H3K4me3; Cell Signaling Technology, cat.
#9751) for 8 h at 4 �C. Immunoprecipitation of the chromatin with the
beads-antibody suspension was performed overnight at 4 �C. Beads
bound to the chromatin were subjected to a 3-step wash, one with
Washing Buffer A (50 mM TriseHCl pH 7.5, 10 mM EDTA, 75 mM
NaCl) and two with Washing Buffer B (50 mM TriseHCl pH 7.5, 10 mM
EDTA, 125 mM NaCl). The chromatin was eluted in 250 mL of Elution
Buffer (0.1 M NaHCO3, 0.2% SDS, 5 mM DTT) by incubating the beads
twice (2� 125 mL), shaking at 400 rpm for 10 min at 65 �C, vortexing
vigorously, and transferring the chromatin elute in a clean tube. The
eluted chromatin was finally treated with 5 mL of RNase A (Sigma
Aldrich, #10109169001) by shaking in a thermomixer at 400 rpm for
1 h at 37 �C then with 5 mL of Proteinase K (Sigma Aldrich, #P2308)
overnight at 55 �C. DNA was extracted and purified using the ChIP DNA
Clean and Concentrator kit (Zymo Research, #D5201) per the manu-
facturer’s protocol then eluted with 25 mL of the provided elution
buffer. Size selection of the mononucleosomes (147 bp) was per-
formed with the use of Agencourt AMPure XP beads (Beckman Coulter,
#A63880). Libraries were prepared in-house using the Ultra-low Input
Library kit (Qiagen; #180495). Libraries were sequenced with single-
end 50 bp reads on the illumina HiSeq 4000 sequencing platform
(n ¼ 5 samples per experimental group).

2.3.7. Pre-processing
2.3.7.1. Liver RNA-Sequencing data. All samples were processed
with the same parameters except those sequenced on the NovaSeq
platform to adapt for paired-end sequencing and sequencing read
length. Reads were trimmed using Trim Galore (version 0.5.0, param-
eters for HiSeq: -phred33 –length 36 -q 5 –stringency 1 -e 0.1; pa-
rameters for NovaSeq: -paired –retain_unpaired –phred33 –length 36
-q 5 –stringency 1 -e 0.1) [33]. Trimmed reads were aligned to the
EnsemblGenomeReference Consortiummouse reference 38 (GRCm38)
primary assembly using hisat2 (version 2.1.0, parameters: p 8 –dta)
[34]. Aligned files with SAM format were converted to binary SAM format
(BAM) and sorted by genomic position using SAMtools (version 1.9) [35].
Transcripts were assembled and gene abundances calculated using
Stringtie (version 2.1.2, parameters: p 8 -e -B -A) [36].

2.3.7.2. Sperm ChIP-Sequencing data. Sequencing reads were
trimmed using Trimmomatic on single-end mode to remove adapters
and filter out low-quality reads (version 0.36, parameters: 2:30:15
LEADING:30 TRAILING:30) [37]. Trimmed reads were aligned to the
Mus Musculus mm10 genome assembly using Bowtie2 (version 2.3.4)
[38]. Unmapped reads were removed using SAMtools (version 1.9)
[35], and those with 3 mismatches or more were filtered out using
Perlcode. BAM coverage files (BigWig) were generated using deep-
tools2 bamCoverage function (version 3.2.1, parameters: of bigwig -bs
25 -p 20 –normalizeUsing RPKM -e 160 –ignoreForNormalization
chrX) [39].

2.3.7.3. Other publicly available ATAC-Sequencing or ChIP-
Sequencing datasets. Raw files were downloaded from the National
Centre for Biotechnology Information (NCBI) using the Sequencing
Read Archive (SRA) Toolkit for 2-cell H3K4me3 ChIP-Seq [40] (GEO:
GSE73952), MII oocyte H3K4me3 ChIP-Seq [41] (GEO: GSE71434),
sperm ATAC-Seq [42] (GEO: GSE79230), 4-cell and morula ATAC-Seq
[43] (NCBI SRA: SRP163205), TE H3K4me3 ChIP-Seq [40] (GEO:
GSE73952), and placenta H3K4me3 ChIP-Seq [44] (GEO: GSE29184).
Files were pre-processed as described above for the sperm H3K4me3
4 MOLECULAR METABOLISM 59 (2022) 101463 � 2022 Published by Elsevier GmbH. This is
ChIP-Sequencing, with slight modifications to adapt for datasets with
paired-end reads and for different sequencing read lengths.

2.3.7.4. Other publicly available RNA-Sequencing data. Raw files for
4-cell and morula [43] (NCBI SRA: SRP163205), TE [40] (GEO:
GSE73952), and placenta [45] (NCBI SRA: SRP137723) RNA-Seq were
downloaded from NCBI using the SRA Toolkit. Files were pre-
processed as described above for the liver RNA-Sequencing with
slight modifications to adapt for datasets with paired-end reads and for
different sequencing read lengths.

2.3.7.5. Paternal allele 2-cell embryo ChIP-Sequencing data. Raw
files for 2-cell H3K4me3 ChIP-Seq [41] (GEO: GSE71434) were
downloaded from NCBI using the SRA Toolkit. These datasets from
mouse 2-cell embryos were generated by crossing males and females
of different strains, permitting the assignment of reads to the paternal-
specific allele. SNPsplit (version 0.3.2) was used to build a reference
genome with PWK_PhJ single nucleotide polymorphism (SNPs)
masked [46]. Reads were aligned to the generated PWK_PhJ SNPs N-
masked reference genome using Bowtie2 (parameters: p 10 -t -q eN
1 -L 25 -X 2000 –no-mixed –no-discordant). Aligned files with SAM
format were converted to binary SAM format (BAM) and sorted by
genomic position using SAMtools (version 1.9) [35]. SNPsplit (version
0.3.2) was used to assign reads to either the paternal (PWK_PhJ) or
the maternal (C57BL/6) genome based on SNPs origin. BAM coverage
files (BigWig) were generated using deeptools2 bamCoverage function
(parameters: of bigwig -bs 25 -p 20 –normalizeUsing RPKM -e 160
–ignoreForNormalization chrX).

2.4. Quantification and statistical analysis

2.4.1. Visualization and statistical analyses for metabolic
characterization
Visualization of the metabolic characterization data was performed
using Jupyter Notebook (version 6.0.1) with Python (version 3.7.4),
with the use of the following packages: seaborn (version 0.9.0) [47],
numpy (version 1.17.2) [48], and panda (version 0.25.2) [49]. The
pyplot and patches modules were loaded from the matplotlib library
(version 3.4.2) [50]. Statistical analyses were conducted using
GraphPad Prism 8. For all tests, a p-value less than 0.05 was
considered significant. Three-way ANOVA with Geisser-Greenhouse
correction was used to assess main effects of time, diet, or geno-
type and dietegenotype interactions, for the blood glucose curves of
the glucose and insulin tolerance tests, and for cumulative energy
intake and growth trajectories during the diet intervention. Significance
for individual time points was tested using multiple t-test with a Holm-
Sidak correction. For total body weight, mesenteric and gonadal white
adipose tissue weight, baseline blood glucose, and the area under the
curve for the glucose and insulin tolerance tests, main effects of diet,
genotype, and dietegenotype interactions were assessed using 2-way
ANOVA. To assess significance for pairwise comparisons of interest,
normality was assessed by D’Agostino and Pearson’s test to determine
whether parametric or nonparametric statistics should be conducted.
For parametric tests, we used an F-test to determine whether equal
variance can be assumed. The unpaired t-test or the Welch’s t-test
was used accordingly. For nonparametric tests, the ManneWhitney
test was used. Litter sizes and sex ratios were analyzed by 2-way
ANOVA to assess main effects of genotype, diet, and interaction, fol-
lowed by Tukey’s multiple comparisons test.
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2.4.2. Bioinformatics analysis
All bioinformatics analyses were conducted using R version 4.0.2 [51].

2.4.3. Liver RNA-Sequencing data
Transcripts with a mean count below 10 were filtered out, conferring a
total of 27,907 and 45,992 detected expressed transcripts in samples
sequenced on the illumina HiSeq and NovaSeq platforms, respectively.
The samples tended to cluster by RNA Integrity Number (RIN), which was
corrected for in the differential analysis (Fig. S3B). Differential expression
analysis was conducted using DESeq2 (version 1.28.1) [52] by including
the sample’s RIN value and group in the design formula. Independent
hypothesis weighting (IHW, version 1.16.0) was used to correct for
multiple testing and prioritization of hypothesis testing based on covar-
iate (i.e., the means of normalized counts) [53]. IHW calculates weight for
each individual p-value and then applies the Benjamini-Hochberg (BH)
procedure to adjust weighted p-values [54]. Finally, we used the Lan-
caster method to perform a gene-level analysis at single transcript
resolution (aggregation package, version 1.0.1) [55]. Lancaster applies
aggregation of individual transcripts p-values to obtain differentially
expressed genes while capturing changes at the transcript level. Genes
with a Lancaster p-value below 0.05 were considered significant.
For data visualization, transcript counts were normalized using vari-
ance stabilizing transformation without the use of blind dispersion
estimation (i.e., with parameter blind ¼ FALSE) [52]. This trans-
formation approach translates data on a log2 scale, allows correction
for library size, and removes the dependence of the variance on the
mean (heteroscedasticity). Variance-stabilized transcript counts were
corrected for RIN values using limma’s removeBatchEffect function
(version 3.44.3) [56]. Pearson correlation heatmaps were generated
using the corrplot package (version 0.88) [57], with samples ordered
by hierarchical clustering. Principal component analysis was per-
formed using DEseq’s plotPCA function, with RIN values and sexes
labeled. Heatmaps of differentially expressed genes were generated
with the Pheatmap package (version 1.0.12) [58], with transcripts
ordered by k-means clustering (n kmeans ¼ 2) and samples ordered
by hierarchical clustering using complete-linkage clustering based on
Euclidean distance. Alluvial plots were generated with ggplot2 (version
3.3.3) [59], and overlap of differentially expressed genes across ge-
notypes, generations, and sexes was determined by the GeneOverlap
package (version 1.24.0) [60], which uses a Fisher’s exact test to
compute p-values.

2.4.4. Visualization, semantic similarity, and enrichment analysis
of gene ontology (ViSEAGO)
Gene ontology (GO) analysis was performed using the ViSEAGO
package (version 1.2.0) [61]. Gene symbols and EntrezGene IDs from
the org.Mm.eg.db database were retrieved using the AnnotationDbi
package. GO annotations were retrieved from EntrezGene for the Mus
Musculus species (ID ¼ “10,09000) using the ViSEAGO EntrezGene2GO
followed by annotate functions. ViSEAGO uses topGO to perform GO
terms enrichment tests on the sets of genes of interest (differentially
expressed genes). We used the Biological Process (BP) ontology
category with Fisher’s exact test (classic algorithm), and a p-value
below 0.01 was considered significant. Results of enrichment tests for
each set of genes of interest were then merged, and hierarchical
clustering was performed based on Wang’s semantic similarity dis-
tance and ward.D2 aggregation criterion. Results are visualized on a
heatmap where GO terms are ordered by hierarchical clustering based
on their functional similarity, and GO terms enrichment significance is
shown as a color gradient (-log10 p-value) in each set of differentially
expressed genes of interest.
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2.4.5. Sperm ChIP-Sequencing data
To detect genomic regions enriched with H3K4me3 in sperm, we used
csaw (version 1.22.1) [62] to scan the genome into windows of 150 bp.
Windows with a fold-change enrichment of 4 over bins of 2,000 bp
(background) were considered enriched. Enriched regions less than
100 bp apart were merged for a maximum width of 5,000 bp,
conferring a total of 30,745 merged enriched regions. Counts in
enriched regions were normalized using TMM normalization followed
by ComBat’s correction for batch effects (sva package, version 3.36.0)
[63,64]. Spearman correlation heatmaps and MA-plots were generated
using raw and normalized counts at enriched regions using corrplot
(version 0.88) [57] and graphics packages, respectively.
Principal component analysis was conducted on normalized counts in
enriched regions by comparing WT HFD vs WT CON (effect of diet in
WT), TG HFD vs TG CON (effect of diet in TG), and WT CON vs TG HFD
(combined effects of genotype and HFD). Based on visual assessment
of the separation of samples according to dietary or genotype groups
along Principal Component 1 (PC1; x axis) or 2 (PC2; y axis), the top
5% regions contributing to the PC of interest were selected.
Permutational multivariate analysis of variance (PERMANOVA) was
conducted to determine whether variation is attributed to dietary/
genotype group using the adonis function (vegan package, version
2.5e7) [65]. Euclidean distances were used as a metric, 999 per-
mutations were performed, and a p < 0.05 was considered signif-
icant. The directionality change in enrichment was identified based
on the positive (up-regulated regions) and negative (down-regulated
regions) log2 fold change values of the median of normalized counts
using gtools’ foldchange2logratio function. Regions with increased
and decreased enrichment for each comparison of interest were
visualized using Pheatmap (version 1.0.12) [58]. Regions’ distance
relative to the transcription start site (TSS) w annotated and visual-
ized using the package chipenrich (version 2.12.0) [66]. Gene
ontology analysis was performed using topGO (version 2.40.0) for
genes with increased or decreased H3K4me3 enrichment at the
promoter region for each comparison of interest. We used the Bio-
logical Process (BP) ontology category with Fisher’s exact test
weight01Fisher algorithm [67], and a p-value less than 0.05 was
considered significant. Genomic regions with deH3K4me3 were an-
notated using annotatr (version 1.14.0) [68] including CpG annota-
tions and basic genes genomic features. Upset plots were generated
using UpsetR (version 1.4.0) [69] by ordering each set by frequency
and displaying 12 sets. Z-scores were calculated using regioneR’s
overlapPermTest (version 1.20.1) which performs a permutation test
(n ¼ 1,000 permutations) to assess whether a set of regions is
significantly enriched to a specific genomic feature compared to
genomic regions from the whole genome [70]. Genome browser
snapshots were generated using trackplot [71].
To assess linear trends associated with the cumulative exposure of
KDM1A overexpression and high-fat feeding in sperm, we ran DESeq2
(version 1.28.1) on the top 5% regions contributing to Principal
Component 2 (PC2; n ¼ 1,538 regions) associated with sample sep-
aration when comparing WT CON and TG HFD normalized counts. In
the design formula, we included each sample’s batch information and
assigned a numerical value for each sample based on their group
category (WT CON ¼ 1, WT HFD ¼ 2, TG CON ¼ 2, TG HFD ¼ 3).
Independent hypothesis weighting (IHW) was used to correct for
multiple testing and prioritization of hypothesis testing based on co-
variate (i.e., the means of normalized counts) [53]. The median of
normalized counts were used to depict the increased and decreased
trend of significant regions (adjusted p-value less than 0.2) across
groups recoded on a numerical scale as defined above.
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3. RESULTS

3.1. Paternal obesity induces metabolic phenotypes in a sex-
specific manner that are enhanced in KDM1A F1 and F2 transgenic
descendants

3.1.1. Impact of paternal obesity on offspring bodyweight and fat
accruement
Beginning at weaning until 20 weeks, inbred C57BL/6NCrl control mice
(WT) or KDM1A heterozygous transgenics (TG) were fed either a
calorie-dense, high-fat diet (HFD; 60% kcal fat) or a sucrose- and
vitamin-matched control diet (CON; 10% kcal fat) (Figure 1AeC and
Table S1). Table S2 provides the animal numbers by sex, generation,
and genotype for metabolic characterization. In the 2e4 weeks post-
weaning, F0 males on the HFD consumed more calories and gained
significantly more weight than CON males, irrespective of genotype
(Fig. S1A-B). These effects persisted throughout the diet intervention
(Figs. S1AeC), with TG HFD males weighing the most at 4 months
(Fig. S1Ci). This trend continued in the TG male F1 and F2 descendants
(fed regular chow), with weights being significantly more than the F1
and F2 of TG CON and WT HFD (Fig. S1Cii-iii). Indicating sex-specific
responses to paternal obesity, in female descendants the changes in
body weight and fat deposition differed from males (Figs. S1CeE). To
assess fat accruement, we measured visceral mesenteric and gonadal
white adipose tissue (mWAT and gWAT, respectively). All male (F0) on
the HFD accumulated more mWAT compared to CON males, with no
genotype effect (Fig. S1Di). Male and female F1 offspring sired by WT
HFD or TG HFD had increased mWAT fat mass compared with WT CON
and TG CON (Fig. S1Dii and S1Div, respectively). Strikingly, mWAT
stores were greater in TG HFD F1 and F2 males and females compared
with WT HFD descendants (Fig. S1Dii-v). Gonadal fat depots in F0 males
were not impacted by the HFD (gWAT; Fig. S1Ei), while male WT HFD
F1 showed increased gWAT and TG HFD F1 did not (gWAT; Fig. S1Eii).
Like for body weight and mWAT, male and female F2 TG on the HFD
had increased gWAT in comparison with WT HFD (Fig. S1Ev). Overall
analysis of body weight and fat accruement revealed sex-specific
responses in descendants, with transgenerational effects of paternal
obesity being detected only in the TG HFD descendants of both males
and females.

3.1.2. Impact of paternal obesity on glucose homeostasis
Next, we assessed glucose metabolism and insulin sensitivity by
glucose tolerance (GTT) and insulin tolerance tests (ITT). We followed
the standard operating procedures of the NIH Mouse Metabolic Phe-
notyping Center [30] by first assessing the effects of the HFD on fasting
blood glucose. Consumption of a HFD resulted in elevated baseline
glucose in male (F0) WT HFD and TG HFD in comparison with WT CON
and TG CON, respectively (Fig. S2Ai). Male TG HFD descendants (F1),
but not WT HFD descendants, had significantly elevated fasting blood
glucose (Fig. S2Aii). By contrast, the glycemic status of all descendant
females (F1 and F2) did not differ between groups (Fig. S2Aiv-v). The
same animals used to assess baseline glucose were then given an
intraperitoneal glucose challenge, and the rate of glucose disposal was
measured. Analysis of GTT data showed that F0 WT HFD and TG HFD
were glucose intolerant following glucose injection compared with F0
CON males (Figure 1Di). Indicating that there were intergenerational
effects of paternal obesity, elevated glucose levels persisted across the
GTT time-course for the F1 WT and TG HFD males (Figure 1Dii).
Interestingly, glycemic response impairments persisted only in the F2
generation of male descendants of TG HFD (Figure 1Diii). Although fat
measures were impacted in female F1 and F2 HFD, they did not exhibit
6 MOLECULAR METABOLISM 59 (2022) 101463 � 2022 Published by Elsevier GmbH. This is
glucose impairment (Figure 1Div-v). Analysis of the area under the
curve (AUC) for the GTT was consistent with the male and female
glycemic responses shown in the glucose curves (Fig. S2Bi-v). In line
with the observed glycemic responses, the insulin tolerance test and
the corresponding AUC demonstrated that male F0 WT HFD and TG
HFD were insulin insensitive (Figure 1Ei and S2Ci). Analysis of the AUC
indicated that F1 WT HFD and F1 TG HFD were insulin insensitive
(Fig. S2Cii). Like the glucose tolerance test, there were more pro-
nounced impairments revealed by the ITT for the F1 TG HFD in com-
parison with the F1 WT HFD, and only the F2 TG HFD showed impaired
insulin sensitivity (Figure 1Eiii and Fig. S2Cii-iii). Like the GTT, there was
no indication of insulin impairment in female HFD F1 or F2 (Fig. 1Eiv-v
and Fig. S2Civ-v).
To summarize, the effects of paternal high-fat diet on glucose ho-
meostasis were sex-specific; male descendants had impaired glucose
homeostasis, whereas females did not. Taken together, the assess-
ments of weight and metabolic testing indicate that the TG de-
scendants had enhanced responses to paternal obesity in comparison
with WT descendants.

3.2. Paternal obesity was associated with altered liver gene
expression in the F0eF1 with unique genes being differentially
expressed in KDM1A descendants (F1eF2)
Obesity contributes to pathophysiological changes in gene expression
in the liver [72]. To determine whether the altered metabolic status of
HFD sires and their descendants (F1eF2) was associated with differ-
ential gene expression in the liver, we performed RNA-sequencing on
the left lateral lobe (lobus hepatis sinister lateralis) of adult mice (F0e
F2). Sequencing quality was high with RNA profiles having a Pearson
correlation coefficient >0.8 (Fig. S3A). Interestingly, principal
component analysis of sequencing data revealed distinct hepatic
transcriptomic profiles between males and females that were inde-
pendent of experimental group and genotype (Fig. S3C). We compared
hepatic transcriptome profiles by diet, sex, genotype, and generation
using a gene-level analysis at single-transcript resolution [55]. As
expected, obesity was associated with differential liver gene expres-
sion. Liver from obese F0 WT males showed differential expression of
2,136 genes in comparison with non-obese F0 WT males (Figure 2A,
Lancaster p < 0.05). Similarly, when comparing obese F0 TG to non-
obese F0 TG, 1,476 genes were differentially expressed (Figure 2B,
Lancaster p < 0.05). Of these differentially expressed genes (DEGs),
448 were commonly altered by obesity in both the F0 WT and F0 TG
(p < 0.0001; Figure 2i). To identify which genes were altered due to
genotype, we compared WT obese with TG obese and identified 524
DEGs, suggesting that obesity had a unique effect in TG mice due to an
interaction between diet and genotype (Figure 2C, Lancaster
p < 0.05).
To determine if the effects of paternal obesity on liver function were
intergenerational, we compared the liver transcriptome of male and
female F1. In comparison with F1 WT CON and TG CON males, livers of
F1 WT HFD and TG HFD showed differential expression of 1,015 and
794 genes (Figure 2D and Figure 2E, respectively, Lancaster
p < 0.05). A total of 165 DEGs overlapped between F1 WT and TG
(p < 0.0001; Figure 2ii). Of the DEGs between the WT CON and HFD in
the F1, 139 were the same deregulated genes as identified in the F0
WT CON vs HFD males (p¼ 0.76; Figure 2iv). Similarly, there were 103
shared transcripts identified as differentially expressed between the F1
TG CON vs HFD that were also altered in the F0 TG CON vs HFD
(p ¼ 0.003; Figure 2v). This suggests that a common set of genes
maintain dysfunction due to direct exposures to obesity, and these
changes are maintained in the F1 despite being fed a regular diet.
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Figure 1: Paternal obesity induces transgenerational metabolic phenotypes in a sex-specific manner that are enhanced in KDM1A descendants. A) Experimental mouse
model depicting breeding scheme and generations studied. Male C57BL/6NCrl (WT) and KDM1Aþ/- transgenics (TG, C57BL/6NCrl) were fed either a control diet (CON) or high-fat
diet (HFD) from weaning for 10-12 weeks, then mated to 8-week-old C57BL/6NCrl females fed a regular chow diet (CD). Animals studied per experimental group: F0 (n¼15-25
males), F1 (n¼28-49 per sex) and F2 (n¼8-21 per sex). Created with BioRender.com. B) Experimental timeline for metabolic testing and downstream experiments performed for
each generation (F0-2). Metabolic profiles were measured after the diet intervention at 15 weeks of age and included: baseline blood glucose, and intraperitoneal glucose and
insulin tolerance tests (ipGTT and ipITT, respectively). Visceral adipose depots were weighed (mWAT: mesenteric white adipose tissue and gWAT: gonadal white adipose tissue) and
the left lateral lobe of the liver used for RNA-sequencing (RNA-seq). Sperm from cauda epididymides were used for chromatin immunoprecipitation followed by sequencing (ChIP-
seq), targeting histone H3 lysine 4 tri-methylation (H3K4me3). Created with BioRender.com. C) Age-matched male mice fed either a control (left) or a high-fat diet (right) for 12
weeks. D) Glucose tolerance test. Blood glucose levels before and after (shaded in grey) an intraperitoneal glucose injection, after overnight fasting (15 �1 hour) at 4 months of age
in F0 males (i), F1 males (ii), F2 males (iii), F1 females (iv) and F2 females (v). E) Insulin tolerance test. Blood glucose levels before and after (shaded in grey) an intraperitoneal insulin
injection, after a 6-hour (�1 hour) fasting at 4 months of age in F0 males (i), F1 males (ii), F2 males (iii), F1 females (iv) and F2 females (v). Results are shown as mean � SEM.
Significance for main effects of diet, genotype, time, and for diet-genotype interactions are shown above each graph. NS, not significant (P > 0.05). Significance for pairwise
comparisons are shown as the following: *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 (in blue; WT CON vs WT HFD, in green; TG CON vs TG HFD) and #P<0.05,
##P<0.01 (WT HFD vs TG HFD).
When comparing genes altered by genotype in the F1 (WT HFD vs TG
HFD), 961 were significantly altered (Figure 2F, Lancaster p < 0.05),
with 78 overlapping DEGs between the F0 and the F1 (p < 0.0001;
Figure 2vi). Demonstrating intergenerational (F0eF1) inheritance of
MOLECULAR METABOLISM 59 (2022) 101463 � 2022 Published by Elsevier GmbH. This is an open acce
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metabolic dysfunction at the level of the liver, the metabolic regulators
Btg1 [73], Cd300lg [74], FoxP4 [75], and E4f1 [76] were differentially
expressed in the livers of the obese F0 and their WT descendants. The
overlap in deregulated genes between the F0 and F1 indicates that the
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Figure 2: Paternal obesity is associated with altered gene expression in the livers of the F0-F2. A-J) Heatmaps of normalized expression values scaled by row (z-score) for
transcripts that code for differentially expressed hepatic genes (Lancaster p-value<0.05) for each comparison assessed across sex and generation. Individual transcripts (rows) are
ordered by k-means clustering and samples (columns) are arranged by hierarchical clustering, using complete-linkage clustering based on Euclidean distance. F0 WT CON vs WT
HFD males (A), F0 TG CON vs TG HFD males (B), F0 WT HFD vs TG HFD males (C), F1 WT CON vs WT HFD males (D), F1 TG CON vs TG HFD males (E), F1 WT HFD vs TG HFD males
(F), F1 WT CON vs WT HFD females (G), F1 TG CON vs TG HFD females (H), F1 WT HFD vs TG HFD females (I), and F2 WT HFD vs TG HFD males (J). i-x) Alluvial plots depicting
frequency distributions of significant (colored boxes) and non-significant (grey boxes) genes for each comparison and their overlap across genotype (i-iii), across F0 and F1 males
(iv-vi), across F1 males and females (vii-ix) and across F1 and F2 males (x). Significance of overlap between differentially expressed genes lists was calculated by Fisher’s exact
test. P-values are included for each comparison above the respective alluvial plot.

Original Article

8 MOLECULAR METABOLISM 59 (2022) 101463 � 2022 Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
www.molecularmetabolism.com

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.molecularmetabolism.com


metabolic phenotypes generated by the paternal HFD persist inter-
generationally despite the F1 being fed a regular chow diet.
The last comparisons in liver transcriptomes were between the F1 male
and female. Despite the female F1 having no metabolic phenotype
detected by our measures, there was significantly altered gene
expression in the livers of F1 female offspring of WT HFD vs WT CON
sires (830; Figure 2G, Lancaster p < 0.05). Of these, 153 were in
common with the F1 male WT HFD sired offspring (p < 0.0001; Fig
2vii). Likewise, the F1 female sired by TG HFD had 1,125 DEGs in
comparison to females sired by TG CON (Figure 2H, Lancaster
p < 0.05), with 148 in common with F1 male TG HFD sired offspring
(p < 0.0001; Fig. 2viii). Of these altered transcripts, 160 were in
common between F1 female descendants of WT HFD and TG HFD
(p < 0.0001; Fig. 2iii). Like the F1 male TG HFD offspring, there were
unique transcripts altered in F1 female TG HFD offspring (1,370;
Figure 2I, Lancaster p < 0.05), with 181 differentially expressed in
both F1 males and females (p < 0.0001; Fig. 2ix). These may reflect
genes impacted by genotype regardless of sex. That those trans-
generational metabolic effects of the HFD were only detected in the
male descendants of TG was one interesting finding from the F2
phenotyping; therefore, we only profiled F2 male livers by RNA-seq.
This analysis revealed differential expression of 2,141 genes be-
tween the F2 WT HFD and TG HFD (Figure 2J, Lancaster p < 0.05),
with 129 overlapping with the F1 WT HFD vs TG HFD males (p ¼ 0.06;
Fig 2x). We identified 12 genes that showed transgenerational
deregulated expression across the F0eF2, (WT HFD vs TG HFD),
including Eno3 which has been implicated in glycogen storage [77,78],
Med23 which regulates insulin responsiveness [79], and Prmt1, an
epigenetic regulator implicated in liver glucose metabolism [80e82].
The number of differentially expressed genes increased every gener-
ation in comparisons between the WT HFD and the TG HFD (F0 ¼ 524,
F1 ¼ 961, F2 ¼ 2,141). This sustained deregulated gene expression in
the livers of TG HFD F2, matches the enhanced metabolic phenotypes
observed in F2 TG HFD males but not in the F1 WT HFD.

3.3. Paternal diet-induced obesity disrupts gene expression in
functional processes that differ between genotypes, sexes, and
generations
To gain insight into the physiological implications of obesity-induced
altered hepatic transcriptomes, we used a gene ontology (GO)
approach combined with functional similarity clustering to compare
processes in the liver impacted by diet across genotype and sex and
those impacted by genotype across generation (Figure 3AeC, Sup-
plemental files 1e3 and Tables S5e7) [61]. Interactive heatmaps that
facilitate in-depth probing of the gene frequency and the -log10 p-value
of enriched GO terms within each cluster are found in Supplemental
files 1e3. The non-interactive heatmaps are shown in Figure 3.
Overall, there were similar processes altered by obesity in F0 WT and
TG livers, including lipid, amino acid, and small molecule metabolism
(Figure 3A, Supplemental file 1 and Table S5; clusters 1e5), ho-
meostasis and environmental responses (clusters 8e10), and cellular
differentiation and signaling (clusters 11e13). However, the gene
frequency (# of genes annotated to that process) within processes
differed by genotype.
When the altered functional pathways in F1 WT CON vs WT HFD were
compared between males and females, there were clear impacts of
paternal obesity on the liver biological pathways of offspring, and these
differed by sex (Figure 3B, Supplemental file 2 and Table S6).
Reflecting sex differences, a greater number of GO terms related to
inflammation (cluster 4) and cell cycle and differentiation and signaling
regulation (clusters 10e11) was significantly enriched in males
MOLECULAR METABOLISM 59 (2022) 101463 � 2022 Published by Elsevier GmbH. This is an open acce
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compared with females. Of note, genes involved in the regulation of
proinflammatory cytokines were particularly enriched in males but not
females (clusters 4). This aligns with the more severe phenotypes
observed in the males. Conversely, genes involved in DNA/RNA
biosynthesis, transcription factors and telomere activity (clusters 1e3),
and macromolecule and nitrogen metabolism (cluster 5) were more
enriched in females. Interestingly, pathways associated with chromatin
and cellular organization and protein metabolism (clusters 8e9) were
enriched by paternal obesity in both sexes.
Next, we compared the intergenerational and transgenerational effect
of the interaction between the KDM1A transgene with obesity in terms
of differences in process enrichment across generations (Figure 3C,
Supplemental file 3 and Table S7). When comparing F0-2 WT HFD with
F0-2 TG HFD, there was an increase in the number of significantly
enriched GO terms across generations (F0 male ¼ 79; F1 male ¼ 118;
F1 female¼ 159; F2 male¼ 206; Supplemental file 4). Fig. S1, Fig. S2
Enriched categories included functions related to inflammation and
environmental response (clusters 3e5), metabolic processes (clusters
11e14), and chromatin remodelling and transcription (clusters 17e
19). These enriched pathways in hepatic differentially expressed genes
might reflect the interaction between obesity and the KDM1A trans-
gene in the F0 sperm associated with the uniquely more severe and
transgenerational phenotypes in TG HFD descendants (Figure 3C).

3.4. Obesity in combination with germline expression of the
KDM1A transgene increases differential enrichment of sperm
H3K4me3 at genes involved in metabolism and development
We hypothesized that the sperm epigenome at the level of H3K4me3
would be altered by obesity and that this effect would be enhanced in
KDM1A TG males with pre-existing alterations in sperm H3K4me3. To
test these hypotheses, we performed native chromatin immunopre-
cipitation followed by deep sequencing (ChIP-seq) targeting histone
H3K4me3; we used sperm from individual WT or TG males fed either a
CON or HFD (N ¼ 5 per experimental group, on average 33.3 million
reads per sample with an alignment rate of 97%; Table S8). H3K4me3
localized to 30,745 genomic regions, with a Spearman correlation
coefficient of 0.98 between samples (Figure 4A and Fig. S4). Principal
component analysis of H3K4me3 profiles revealed a clear separation of
samples according to dietary treatment within genotype groups
(Figure 4BeC). WT samples separated along Principal Component 1
(PC1) with 37.41% of variance attributed to diet (Figure 4B; PERMA-
NOVA, permutation-based p ¼ 0.01). TG samples separated on PC1
with 32.68% of the variability, with diet as the second source of
variance (PC2), at 25.56% (Figure 4C; PERMANOVA, permutation-
based p ¼ 0.009).
To focus our analysis on the regions most impacted by diet, we
selected the top 5% differentially enriched H3K4me3 regions
(deH3K4me3, n ¼ 1,538) in each genotype (PC1 in WT, PC2 in TG)
(Figure 4Di-iv). The genome distribution analysis for specific annota-
tions showed that obesity-sensitive H3K4me3 regions were predom-
inantly located in CpG islands, promoters, exons, and intergenic
regions (Fig. S5). To a lesser extent, deH3K4me3 also occurred at
transposable elements (LINE, SINE and LTR), where epigenetic de-
repression is associated with the use of alternative promoters and
long- and short-range enhancers that are implicated in embryo
development and pluripotency [83] (Fig. S5). Representative genome
browser tracks (Fig. S5) showing enrichment gains and losses for
H3K4me3 at gene promoters are shown for Pde1c (phosphodiesterase
1C; affects the olfactory system), Bcdin3d (RNA methyltransferase;
highly expressed in embryonic development), Sh2d4a (Sh2 domain
containing protein 4 A; expressed during development and associated
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Figure 3: Obesity-induced hepatic transcriptome disturbances show functional similarities across genotype, sex and generation. A-C) Heatmaps of significant gene
ontology (GO) terms clustered by functional similarity, comparing enriched biological functions for each comparison of interest across genotype (A), sex (B) and generation (C).
Columns represent enriched GO terms which are ordered by hierarchical clustering based on Wang’s semantic similarity distance and ward.D2 aggregation criterion. Each row
represents a comparison of interest for which enriched GO terms were annotated based on the list of significant genes. The color gradient depicts the GO term enrichment
significance (-log10 p-value). Interactive versions of these figures can be found in Supplemental files 1e3 and the complete lists of significantly enriched GO terms can be found in
Tables S5e7.
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Figure 4: Genomic location, directionality change and functions of regions with altered H3K4me3 enrichment by obesity. A) Histogram showing frequency distributions of
read abundances in 150 bp windows throughout the genome. Windows with an abundance below log2(4) fold over background bins of 2,000 bp were filtered out as indicated by
the vertical red line. Enriched regions less than 100 bp apart were merged for a maximum width of 5,000 bp, conferring a total of 30,745 merged enriched regions. Reads were
counted in merged enriched regions and normalized counts were used for downstream analyses. (see Material and Methods) BeC) Principal component analysis on normalized
counts at merged enriched regions comparing WT CON vs WT HFD (B) and TG CON vs TG HFD (C). The top 5% regions contributing to separation of samples along Principal
Component 1 (in B; PC1; x axis) or PC2 (in C; y axis) were selected. The PERMANOVA p-values indicating significance associated with dietary treatment are included under each
PCA plot. D) Heatmaps of log2 normalized counts of deH3K4me3 regions in sperm with increased enrichment in WT HFD (i; n ¼ 1,323), decreased enrichment in WT HFD (ii;
n ¼ 215), increased enrichment in TG HFD (iii; n ¼ 1,067) and decreased enrichment in TG HFD (iv; n ¼ 471) in each group. Samples (columns) and regions (rows) are arranged
by hierarchical clustering using complete-linkage clustering based on Euclidean distance. Colored boxes indicate sample groups (light blue ¼ WT CON, dark blue ¼ WT HFD, light
green ¼ TG CON, dark green ¼ TG HFD). E-G). Venn diagrams showing the overlap of deH3K4me3 in sperm of WT HFD (blue) and in TG HFD (green), for all detected regions (E),
those gaining H3K4me3 (F) and those losing H3K4me3 (G). H) Barplots showing the distribution of altered regions based on the distance from the TSS of the nearest gene, for
regions with increased enrichment in WT HFD (i; n ¼ 1,323), decreased enrichment in WT HFD (ii; n ¼ 215), increased enrichment in TG HFD (iii; n ¼ 1,067), and decreased
enrichment in TG HFD (iv; n ¼ 471). The color gradient represents the distance of the regions to TSS in kilobase. I) Gene ontology analysis of diet-induced deH3K4me3 regions at
promoters with increased enrichment in WT HFD (i; n ¼ 381), decreased enrichment in WT HFD (ii; n ¼ 34), increased enrichment in TG HFD (iii; n ¼ 230) and decreased
enrichment in TG HFD (iv; n ¼ 150). Barplots show 8 selected significant GO terms with their respective -log2(p-value). Tables S9e12 include the complete lists of significantly
enriched GO terms.
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with endocrine and liver function), and Col15a1 (collagen Type XV
alpha 1; involved in cell differentiation and various system develop-
ment) [84].
Next, we compared the regions of H3K4me3 that were altered by
obesity, noting their genomic location, directionality change, and
functions between diets and genotype (Figure 4). As a response to
obesity, H3K4me3 enrichment gains were more predominant than
losses for both F0 WT HFD and TG HFD (Figure 4D). In the WT HFD,
1,323 regions gained and 215 lost H3K4m3 in comparison with the WT
CON (Figure 4Di-ii). Similarly, in the F0 TG HFD sperm, 1,067 regions
gained and 471 lost H3K4me3 in comparison with the F0 TG CON
(Figure 4Diii-iv). Regions with deH3K4me3 in WT HFD had an 15.6%
overlap (240/1,538 regions) with those of TG HFD (Figure 4E). Of those
common 240 regions, 162 had the same directionality change in both
WT and TG HFD, with 159 regions with a gain and 3 regions with a
reduction in H3K4me3 enrichment (Figure 4F and Figure 4G, respec-
tively). The non-overlapping regions of deH3K4me3 in WT HFD and TG
HFD sperm could be a consequence of geneticeepigenetic interactions
where the TG mice respond uniquely to obesity as was observed in the
phenotypic characterization. The proximity to the transcription start site
(TSS) of the deH3K4me3 regions in sperm altered by obesity in the F0
WT HFD and TG HFD was similar (Figure 4H).
We then performed a GO enrichment analysis on promoters to gain
functional insight into the genes with obesity-responsive changes in
sperm H3K4me3 enrichment and how they may relate to the devel-
opmental origin of offspring phenotypes. Notably, deH3K4me3 genes
were identified in processes related to metabolism, inflammatory
processes, and one-carbon cycle metabolism (Figure 4Ii-iv; Tables S7e
10). Some of the significantly enriched pathways are concordant with
disturbed metabolic phenotypes of the F0eF2, including for example,
carbohydrate metabolic processes, glycolysis, growth hormone
signaling, and insulin signaling (Figure 4I, Tables S7e10).
The metabolic phenotypes of WT HFD and TG HFD descendants were
similar, although the F1-2 TG HFD showed enhanced metabolic ab-
normalities. We hypothesized that these enhanced metabolic dis-
turbances may relate to the greater degree of H3K4me3 alteration in
F0 sperm, the directionality of the change (gain versus loss), and the
functionality of genes bearing alterations. Together these factors
could lead to increased disturbances of embryonic metabolic gene
expression and more profound adult disease. Interestingly, when
comparing WT CON with TG HFD sperm, samples separated along
PC2, with 26.69% of variance associated with genotype and diet
(Figure 5A; PERMANOVA, permutation-based p ¼ 0.006). Of the top
5% impacted regions selected (n ¼ 1,538), a greater proportion
showed a gain of enrichment for H3K4me3 in TG HFD sperm in
comparison with WT CON (Figure 5B, n ¼ 1,071 regions with gains;
Figure 5C. n ¼ 467 regions with losses). We analyzed the detected
regions impacted by genotype and diet (n ¼ 1,538) for differential
enrichment to determine whether obesity in combination with KDM1A
overexpression led to greater changes in H3K4me3 enrichment. This
analysis identified 264 regions with a significant linear trend, where
TG HFD sperm showed a greater degree of change in enrichment,
and TG CON and WT HFD showed intermediate changes in com-
parison to WT CON (Figure 5DeE, adjusted p< 0.2). There were only
9 significant regions with an additional increase in H3K4me3 in the
TG HFD (Figure 5D), whereas 255 regions showed a greater loss of
H3K4me3 enrichment in the TG HFD (Figure 5E). Consistent with the
stronger metabolic phenotypes observed in the TG HFD F1-2, the
functional analysis of the promoters showing significant linear trends
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(n ¼ 104) for H3K4me3 across experimental groups occurred in
genes implicated in metabolic and cardiovascular disease progres-
sion (Figure 5F, Table S13).

3.5. Paternal obesity impacts sperm H3K4me3 at regions that
coincide with open chromatin and gene expression in pre-
implantation embryos
We recently demonstrated that sperm H3K4me3 is transmitted to the
embryo and associated with gene expression [9]. We hypothesized that
obesity-altered sperm H3K4me3 is transmitted and associated with
chromatin accessibility in the early embryo, which in turn could in-
fluence gene expression and offspring phenotypes. To assess this
possibility, we investigated the relationship between deH3K4me3 in
sperm in relation to H3K4me3 in the embryo, the oocyte and open
chromatin, and embryonic gene expression [40e43]. In line with a
preferential paternal contribution of H3K4me3 to the 2-cell embryo,
regions enriched for H3K4me3 in sperm, including those altered by
obesity, are not enriched in the oocyte (Figure 6A). There was a strong
association between sperm H3K4me3, chromatin accessibility, and
embryonic gene expression at the 4-cell and morula stages
(Figure 6AeB and Fig. S6Ai). Strikingly, sperm H3K4me3, including
obesity-sensitive regions, are associated with open chromatin in pre-
implantation embryos (Figure 6AeB).
To determine the functional relationship between the H3K4me3
obesity-altered regions and embryonic gene expression, we compared
these with 4-cell and morula expressed genes and performed a gene
ontology analysis. Of the sperm deH3K4me3 regions overlapping
promoters (n ¼ 738), 51.8% (n ¼ 382) are expressed in the 4-cell
embryos, and 44.3% (n ¼ 327) are expressed in the morula em-
bryos (Fig. S6Aii). To gain insight into how obesity-altered H3K4me3
associated genes in sperm relate to embryonic gene expression, we
performed a GO analysis on promoters with deH3K4me3 in sperm and
the corresponding genes expressed in 4-cell and morula embryos
(Figure 6Ci-ii). Again, supporting a role for sperm H3K4me3 in paternal
transmission of metabolic disease, gene processes that are specific to
metabolism were significantly enriched (Figure 6Ci-ii and Tables S12e
13).Taken together, these findings suggest a preferential contribution
of sperm H3K4me3 in the early embryo that includes obesity-sensitive
regions that may be instructive for metabolic-associated gene
expression and a direct route for epigenetic inheritance.

3.6. HFD alters the sperm epigenome at regions instructive for
placenta development
The placenta is a key extra-embryonic organ that represents the
uterineefetal interface and plays a central role in energy allocation,
nutrient exchange, and developmental progression. Placental abnor-
malities have been linked to late onset cardiometabolic diseases,
highlighting the importance of the in utero environment for metabolic
health in adulthood [85]. Our gene ontology analysis on diet-induced
deH3K4me3 regions in sperm revealed significant enrichment of
genes involved in placenta development (Figure 4I and Tables S7e10).
Given that sperm epigenome influences placental gene expression
[86], we were interested in the prospect that diet-induced epi-
mutations in sperm affect placenta gene expression that could influ-
ence metabolic phenotypes across generations. To investigate this
possibility, we compared the enrichment profiles of H3K4me3 in sperm
with H3K4me3 signal and gene expression data from trophectoderm
(TE, the embryonic precursor of placental lineage) [40] and placenta
[44,45]. Most regions enriched with H3K4me3 in sperm showed strong
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 5: Additive effects of KDM1A overexpression and diet-induced obesity in the sperm epigenome at the level of H3K4me3. A) Principal component analysis on
normalized counts at merged enriched regions comparing WT CON vs TG HFD. The top 5% regions contributing to separation of samples along Principal Component 2 (PC2; y axis)
were selected. The PERMANOVA p-value under the plot indicates significance. BeC) Profile plots of RPKM H3K4me3 counts þ/� 1 kilobase around the center of regions with
increased H3K4me3 (B) and þ/� 2.5 kilobase around the center of regions with decreased H3K4me3 enrichment in TG HFD (C). D-E) Line plots showing the median of normalized
sperm H3K4me3 counts for each experimental group at regions showing a significant trend (n ¼ 264, adjusted p-value<0.2) with a linear increase in H3K4me3 enrichment (D;
n ¼ 9) or a linear decrease in H3K4me3 enrichment (E; n ¼ 255) from WT CON, WT HFD, TG CON to TG HFD groups. F) Gene ontology analysis on the regions associated with a
significant linear trend at promoters (n ¼ 104). Barplots show 8 selected significant GO terms with their respective -log2(p-value). Table S13 includes the complete list of
significantly enriched GO terms.
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H3K4me3 signal in TE and placenta (Figure 7A), with 65.9%
(n ¼ 8,663) and 79.4% (n ¼ 10,434) of H3K4me3-enriched sperm
promoters (n ¼ 13,142) expressed in these tissues, respectively
(Fig. S6Bi). Of the 738 deH3K4me3 regions localizing to promoters in
sperm, 56.8% (n¼ 418) were expressed in the trophectoderm, 76.8%
(n ¼ 567) were expressed in the placenta, and 54.6% (n ¼ 403) were
expressed in both (Fig. S6Bii). Notably, gene ontology analysis of the
shared H3K4me3 in sperm with TE and placenta revealed that there
was an association with placenta function, including at deH3K4me3
regions (Figure 7Bi,iii, Tables S14 and S16). The GO analysis of the
sperm H3K4me3 regions that were not common with TE, and placenta
were involved in spermatogenesis, fertilization, and sperm function
(Figure 7Bii and iv, Tables S15 and S17).
Next, we compared gene enrichment of sperm H3K4me3 with low-
and high-expressed genes in the TE and placenta. Suggesting an
influential role of sperm H3K4me3, the highly expressed genesdand
to a lesser extent the lowly expressed genesdin TE and placenta were
positively correlated with sperm H3K4me3 (Figure 7Ci-iv). Notably,
when the same comparisons were made with the deH3K4me3, there
was a significant relationship with both lowly and highly expressed
placenta genes (p ¼ 1.2e-11 and p ¼ 0.008, respectively; Figure 7Cv-
viii). These included genes implicated in altered placenta hormonal
profiles and preeclampsia such as Ldoc1, Dab2ip, and Rgs2 [87e90].
In addition, the GO analysis of TE- and placenta-expressed genes that
overlap with deH3K4me3 promoters are in line with the metabolic
phenotypes in offspring (Fig. 7Di-ii, Tables S18e19). Taken together,
this analysis raises the possibility that obesity-induced alterations in
sperm may influence embryonic and placenta gene expression to alter
metabolic function of offspring.

3.7. Obesity-induced sperm epigenomic and hepatic
transcriptomic alterations are unrelated
In a recent study, paternal low-protein diet was associated with
reduced H3K9me2 at genes in sperm and were suggested to
modulate gene expression profiles in the liver [91]. We aimed to
assess whether a similar association between obesity-induced
deH3K4me3 in sperm would relate to differential expression in the
livers of the next generation. We focused on the obesity-associated
sperm deH3K4me3 at promoters in F0 sires and their relationship
to differentially expressed genes in the liver (DEGs) of F1 males. This
analysis revealed that genes with differential expression in livers
(n ¼ 1,644) were by and large unrelated to genes bearing
deH3K4me3 in sperm. Only 9.1% (n ¼ 67) of promoters with
deH3K4me3 in sperm were differentially expressed in the liver of F1
males sired by HFD-fed sires (Figs. S7AeB). We then asked if
deH3K4me3 promoters in sperm and liver DEGs had related bio-
logical functions. Strikingly, sperm- and liver-altered genes showed
few functional similarities (Fig. S7C, Supplemental file 5 and
Table S22). Functional pathways specifically enriched in deH3K4me3
promoters in sperm involved development and differentiation pro-
cesses (clusters 12e15). As expected in a paternal obesity model,
gene processes altered in offspring livers included regulation of
transcription and RNA splicing (clusters 1e3); protein and histone
post-translational modifications (clusters 4e5); and metabolism of
lipid, nitrogen, and glucose (clusters 6e8). Pathways enriched in
both the deH3K4me3 promoters in sperm and the DEGs in liver were
involved in cell cycle, transport, and signaling (clusters 16e19), as
well as response to stress and inflammation (clusters 20e22). These
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commonly enriched pathways might reflect obesity-associated sys-
temic inflammation, which could affect multiple organs in a similar
manner. These findings indicate that paternal obesity alters the
sperm epigenome at distinct genes and functional pathways than
those differentially expressed in offspring livers; these findings also
fit with a developmental origin of adult metabolic dysfunction that
could be related to alterations in gene expression in the embryo and
placenta.

4. DISCUSSION

In mammals, spermatogenesis is a highly complex cell differentiation
process involving unique testis-specific gene expression programs that
are accompanied by dynamic remodeling of the chromatin [92e95].
During this process, most histones are replaced by protamines to
facilitate DNA compaction [92]. Interestingly, 1% of sperm histones are
retained in mice and 15% in men [96,97]. Retained histones are
conserved across species from mice to men and are found at the gene
regulatory regions implicated in spermatogenesis, sperm function,
embryo development, metabolism, and routine cellular processes
[97e99]. We have shown that in human and mouse sperm histone H3
lysine 4 dimethylation (H3K4me2) and trimethylation (H3K4me3)
localize to genes involved in metabolism and development [9,24,100].
Since this exciting discovery, we and others have suggested that
histones in sperm may directly influence embryonic gene expression
and contribute to the developmental origin of adult disease. The
findings of this study support histones serving in this mechanism of
disease inheritance.
In spermatogenesis there are dynamic changes to the sperm epi-
genome including histone methylation, which is susceptible to al-
terations induced by changes in methyl donor availability [5,9]. Diets
high in fat alter epigenetic programming, likely through the alteration
of cellular metabolism which influences the availability of methyl
donors and/or the activation or inactivation of chromatin modifying
enzymes. In overweight and obese individuals, homocysteine is
consistently elevated and associated with reduced B12 and folate
[101,102]. It follows that the obesity-induced alterations in H3K4me3
we report here could be a consequence of an altered methyl donor
pool. Intriguingly, the effects of obesity on the paternal epigenome
were linked with the metabolic dysfunction in the F1 and F2 de-
scendants; deH3K4me3 occurred at the promoters of genes involved
in fertility, metabolism, and placenta processes. Indicative of paternal
transmission of sperm altered H3K4me3 as a mediator of metabolic
dysfunction was the strong relationship between deH3K4me3, an
open chromatin state and gene expression in embryos and placenta.
However, one limitation of the study is that we did not examine
H3K4me3 in sperm from the F1, and thus whether H3K4me3 ab-
normalities in sperm persist in the subsequent generation remains
unknown. In this model of diet-induced transgenerational inheritance
and in others, offspring phenotypes are likely the consequence of a
complex interplay between chromatin, DNA methylation, and non-
coding RNA in sperm and embryos. For example, a paternal low
protein diet has been shown to alter testicular germ cells, activating
transcription factor 7 (ATF7) binding; this was associated with dif-
ferential sperm H3K9me2 and small RNA content in spermatocytes
[91]. Elucidating whether there are common molecular pathways
mediating inter- and trans-generational impacts of paternal diet re-
mains to be determined.
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Figure 6: Sperm H3K4me3 regions sensitive to obesity occur at genes with an open chromatin state and expressed in the pre-implantation embryo. A) Heatmaps of
RPKM counts signal þ/� 10 kilobase around the center of regions enriched with H3K4me3 in sperm (i; n ¼ 30,745) and regions with obesity-induced deH3K4me3 in sperm (ii;
n ¼ 2,836) for H3K4me3 enrichment levels in sperm (this study), 2-cell embryo (Liu et al., 2016), 2-cell embryo on the paternal allele and MII oocyte (Zhang et al., 2016), and for
chromatin accessibility signal in sperm (Jung et al., 2017), 4-cell embryo and morula embryo (Liu et al., 2019). B) Scatterplots showing H3K4me3 enrichment in sperm (x axis; log2
counts þ 10), chromatin accessibility signal (y axis; log2 counts þ 10; (Jung et al., 2017)) and gene expression levels (color gradient; log2 FPKM þ 10; (Liu et al., 2019)) in 4-cell
(i,ii,v,vi) or in morula (iii,iv,vii,viii) embryos, at either all genes with promoters enriched with H3K4me3 in sperm (i-iv) or at diet-sensitive genes (v-viii). The top row of scatterplots
includes lowly-expressed genes (bottom 50%) in 4-cell (i and v) or morula (iii or vii) embryos. The bottom row of scatterplots includes highly-expressed genes (top 50%) in 4-cell (ii
and iv) or morula (vi and viii) embryos. Pearson’s correlation coefficients and their associated p-values are indicated above each scatterplot, comparing H3K4me3 enrichment in
sperm versus H3K4me3 enrichment in 4-cell or morula embryos. C) Gene ontology analysis of genes expressed in the 4-cell (i) or the morula (ii) embryos, overlapping with diet-
sensitive promoters in sperm. Barplots show 8 selected significant GO terms with their respective -log2(p-value). Tables S14e15 include the complete lists of significantly enriched
GO terms.
The enhanced metabolic abnormalities observed in the descendants of
obese F0 TG revealed an increased susceptibility to metabolic disease
in the TG line. An explanation for this response is that the F0 TG were
descendants from a lineage with pre-existing alterations in the sperm
MOLECULAR METABOLISM 59 (2022) 101463 � 2022 Published by Elsevier GmbH. This is an open acce
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epigenome due to the genetic modification causing KDM1A over-
expression. This genetic stress, combined with the environmental
challenge of the HFD, resulted in a more severely altered sperm epi-
genome in comparison with the WT, with consequent enhanced
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Figure 7: Obesity-induced deH3K4me3 regions overlap with genes marked by H3K4me3 and expressed in the trophectoderm and placenta. A) Heatmaps of RPKM counts
signal þ/� 5 kilobase around the center of regions enriched with H3K4me3 in sperm (i; n ¼ 30,745) and at regions with diet-induced deH3K4me3 in sperm (n ¼ 2,836) for
H3K4me3 enrichment levels in sperm (this study), trophectoderm (TE) (Liu et al., 2016) and placenta (Shen et al., 2012). B) Gene ontology analysis of regions enriched with
H3K4me3 in sperm, TE and placenta (top 75% from A i) (i), regions enriched with H3K4me3 in sperm only (bottom 25% from A i) (ii), diet-sensitive regions enriched with H3K4me3
in sperm, TE and placenta (top 75% from A ii) (iii), and diet-sensitive regions enriched with H3K4me3 in sperm only (bottom 25% from A ii) (iv). Barplots show 8 selected significant
GO terms with their respective -log2 (p-value). Tables S16-19 include the complete lists of significantly enriched GO terms. C) Scatterplots showing H3K4me3 enrichment at
promoters in sperm (x axis; log2 counts þ 10), H3K4me3 enrichment (y axis; log2 counts þ 10) and gene expression levels (color gradient; log2 FPKM þ 10) in the trophectoderm
(i,ii,v,vi; (Liu et al., 2016)) or in the placenta (iii,iv,vii,viii; (Shen et al., 2012; Chu et al., 2019)), at either all genes with promoters enriched with H3K4me3 in sperm (i-iv) or at diet-
sensitive genes (v-viii). The top row of scatterplots includes lowly-expressed genes (bottom 50%) in trophectoderm (i and v) or placenta (iii or vii). The bottom row includes highly-
expressed genes (top 50%) in trophectoderm (ii and iv) or placenta (vi and viii). Pearson’s correlation coefficients and associated p-values are indicated above each scatterplot,
comparing H3K4me3 enrichment in sperm versus H3K4me3 enrichment in the trophectoderm or placenta. D) Gene ontology analysis of genes expressed in the trophectoderm (i) or
the placenta (ii), overlapping with diet-sensitive promoters in sperm. Barplots show 8 selected significant GO terms with their respective -log2(p-value). Tables S20e21 include the
complete lists of significantly enriched GO terms.
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offspring phenotypes. Although only speculative, these findings may
suggest that the higher incidence of poor health in at-risk populations
may be attributed to generational exposures to poor diet that lead to an
accumulation of sperm epigenome errors that escape reprogramming.
Notably, paternal obesity-induced transgenerational metabolic distur-
bances in offspring were only observed in descendants of obese TG
males. The phenomenon of transgenerational inheritance has been
most often documented in genetic mouse models of epigenetic in-
heritance and studied in relation to DNA methylation patterns. These
include the Avy agouti model [21,103,104], the kinky tail model (AxinFu

allele) [105], and in mice bearing a mutation in the Mtrr gene, a folate
metabolism enzyme [106]. In the context of environmental challenges,
paternal transgenerational inheritance has been associated with
altered sperm DNA methylation when there has been gestational
exposure to toxicants and undernutrition [107,108] and in a non-
genetic pharmacologically-induced prediabetes model begun at
weaning [109]. Taken together, this growing body of evidence in-
dicates that transgenerational inheritance occurs under genetic influ-
ence or when exposures coincide with developmental programming.
The male F0 mice in this study were exposed to the paternal HFD from
weaning and not in utero, which may account for why transgenera-
tional effects were not observed in WT HFD descendants. Another
possibility is that transgenerational responses in the WT may have
become detectable in older mice.
Our analysis indicates that the inheritedmetabolic disturbances observed
in adult descendants originated early in development. In rodent models,
paternal obesity and in utero undernutrition has been linked to altered
gene expression in offspring livers and pancreatic islets with some minor
links to concordant DNA methylation changes [108e110]. It has been
suggested that diet-associated alterations in DNA methylation in sperm
are retained through embryogenesis and maintained in adult tissues
mediating paternally induced phenotypes [108,109]. Consistent with
these studies, altered hepatic gene expression occurred in F1-2 offspring
of obese sires. By contrast, we observed minimal overlap of genes and
functional pathways between altered H3K4me3 enrichment in sperm,
with those differentially expressed in F1 livers. Instead, we demonstrate a
significant overlap of obese sperm H3K4me3 profiles with the expression
of metabolic-related genes in the embryo and placenta. Based on these
findings, we suggest that the metabolic phenotypes we observed origi-
nate in early embryogenesis and through changes in placental gene
expression.
There is a bounty of research linking maternal obesity to adverse
metabolic consequences for the offspring that coincide with altered
placental gene expression and function [111,112]. However, that the
paternal environment, including factors such as diet and age, can
influence placental development and function remains an emerging
concept. It is known that paternally expressed genes contribute to
placental growth, trophoblast invasion, and insulin resistance and
adiposity [86,113e118]. In humans, errors in epigenomic program-
ming have been associated with gestational trophoblast disease and
pre-eclampsia, but the role of the obese father in these conditions has
been unexplored [119,120]. Previous studies support a connection
between paternal diets, obesity, and placental dysfunction as a
developmental route to metabolic disease in children. For example, we
have shown that a folate-deficient paternal diet and altered sperm DNA
methylation coincided with deregulated placenta gene expression of
Cav1 and Txndc16 [5]. Moreover, paternal obesity in mice has been
attributed to defective placental development [114,121,122]. In
women, altered DNA methylation in the regulation of some genes in
MOLECULAR METABOLISM 59 (2022) 101463 � 2022 Published by Elsevier GmbH. This is an open acce
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preeclampsia has been established; however, many genes with
deregulated expression were not associated with DNA methylation,
raising the possibility of altered chromatin signatures leading to
abnormal gene expression in this placental disorder [123]. Indeed,
upregulated expression of LncRNA by increased H3K4me3 has been
observed in preeclampsia placentas [124], and the levels of H3K4me3
as detected by immunohistochemistry are decreased [125]. Until now,
the connection between sperm chromatin and placenta function has
been unexplored. Our analyses revealed that most of the obesity-
altered H3K4me3 at promoters occurred at loci involved in placental
development and inflammatory processes, with 56.6% and 76.8% of
deH3K4me3 occurring at promoters expressed in the trophectoderm
and placenta, respectively. Remarkably, deregulated expression of
genes implicated in inflammation has been implicated in hypertensive
disorders, including pre-eclampsia, in pregnancy. Of course, hyper-
tensive disorders in pregnancy are associated with increased risk for
developing cardiovascular disease [116]; this raises the possibility that
the paternal sperm epigenome may influence maternal health during
pregnancy in addition to that of the developing fetus.
As in previous studies we found that paternal obesity resulted in sex-
specific differences in metabolism and fat accruement, with males
being more impacted. The underlying mechanisms that lead to the
greater susceptibility of males may be related to sexually dimorphic
placental gene expression [126]. In support of this possibility, paternal
environment (diet) influenced placental function in a sex-specific manner
[121]. Alternatively, different metabolic responses in male and female
offspring may be due to hormonal responses where estrogen has been
shown to protect against altered glucose homeostasis [29,127].
We provide evidence that paternal obesity is associated with H3K4me3
signatures in sperm which could contribute to the inheritance of
metabolic disease. In addition, we identified links between sperm
regions bearing obesity-altered H3K4me3, with placenta and embry-
onic H3K4me3, and the regulation of gene expression in these tissues.
Important next steps to better understand disease inheritance related
to paternal obesity, sperm chromatin, and placental function will be to
explore this possibility using embryonic and placenta tissue from
pregnancies sired by obese males. The translational validation of these
findings will be important in developing intervention strategies focused
on paternal factors that could impact the health of future generations
[128].
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