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Recent clinical developments in antitumor immunotherapy involving T-cell related

therapeutics have led to a renewed interest for human leukocyte antigen class I

(HLA-I) binding peptides, given their potential use as peptide vaccines. Databases

of HLA-I binding peptides hold therefore information on therapeutic targets essential

for understanding immunity. In this work, we use in depth and accurate HLA-I

peptidomics datasets determined by mass-spectrometry (MS) and analyze properties

of the HLA-I binding peptides with structure-based computational approaches. HLA-I

binding peptides are studied grouping all alleles together or in allotype-specific contexts.

We capitalize on the increasing number of structurally determined proteins to (1) map

the 3D structure of HLA-I binding peptides into the source proteins for analyzing their

secondary structure and solvent accessibility in the protein context, and (2) search

for potential differences between these properties in HLA-I binding peptides and in

a reference dataset of HLA-I motif-like peptides. This is performed by an in-house

developed heuristic search that considers peptides across all the human proteome and

converges to a collection of peptides that exhibit exactly the same motif as the HLA-I

peptides. Our results, based on 9-mers matched to protein 3D structures, clearly show

enriched sampling for HLA-I presentation of helical fragments in the source proteins.

This enrichment is significant, as compared to 9-mer HLA-I motif-like peptides, and is

not entirely explained by the helical propensity of the preferred residues in the HLA-I

motifs. We give possible hypothesis for the secondary structure biases observed in HLA-I

peptides. This contribution is of potential interest for researchers working in the field of

antigen presentation and proteolysis. This knowledge refines the understanding of the

rules governing antigen presentation and could be added to the parameters of the current

peptide-MHC class I binding predictors to increase their antigen predictive ability.

Keywords: human leukocyte antigen, HLA-I ligand presentation, computational immunology, 3D structure,
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INTRODUCTION

The surface presentation of peptides by major histocompatibility
complex (MHC) class I molecules is critical to all CD8+ T-
cell adaptive immune responses, including those targeting tumor
cells. For the majority of the peptides, the generation and loading
on MHC class I molecules is a well-described antigen-processing
multi-step pathway, dependent on the ubiquitin-proteasome
pathway (1–4). In the first step, the ubiquitinated-proteasome
(5) degrades intracellular proteins into small peptides that are
released to cytosol. Peptides typically have 8–12 residues long
(6), though they can range from 4 to 25 residues, depending
on the organism and substrate. Afterwards, these peptides are
transported into the endoplasmic reticulum (ER) by transporter
associated with antigen processing (TAP) proteins. Peptides
produced in the cytosol are further trimmed by peptidases,
such as the endoplasmic reticulum-resident aminopeptidases
ERAP1 and ERAP2, within the ER (7–10). In the end, after
being transferred to the cell surface, the peptides bound
to human leukocyte antigen class I (HLA-I) molecules may
be recognized by CD8 T-cells. Intracellular proteins can
also be cleaved in proteasome-TAP alternative pathways (11,
12), whose contribution to form HLA-I peptides may be
indeed underestimated (13). Alternative pathways include the
cleavage by proteases such as tripeptidyl peptidase II that
can act independently or in cooperation with proteasome (11,
14), metallopeptidase insulin-degrading enzyme (15), and the
intermembrane cleavage by the signal peptide peptidase (16, 17).
Proteasome-TAP alternative pathways include also processes like
the ER-associated degradation (18, 19) and autophagy associated
vesicular pathways (20). Peptides produced in the lysozyme
pathway can reach HLA-I by cross penetration (21). The present
knowledge of how antigen presenting cells can self- and cross-
present proteins is scarcer for integral membrane proteins when
compared to solution proteins (22).

Human cells usually express three HLA-I genes, A, B, and
C, but very specialized cell types can also express E, F, or
G genes. HLA-A, HLA-B, and HLA-C genes are the most
polymorphic of the human genome and more than 12’000
distinct alleles are documented in the human population.
Humans usually have different combinations of HLA-I alleles
and express up to six different HLA-I proteins (two for each
one of the A, B, and C genes) (23). The majority of the HLA-
I peptides are nine residues in length, but many studies have
demonstrated high heterogeneity of peptide length distributions
between different alleles. For example, some alleles such as
HLA-B∗51:01 show a high frequency of 8-mers, comparable
to that of 9-mers, and very few longer peptides. Other alleles,
such as HLA-A∗01:01 show high frequency of peptides longer
than 12-mers, which can be recognized by T-cells (24–29).
Structurally, the majority of the alleles accommodate peptides
with anchor residues at the second and last position. Whereas,
9-mers display a linear binding mode, longer peptides exhibit
a bulge of their central portion protruding outside the HLA-
I binding site. More rarely, alleles such as HLA-B∗08:01 (30)
bind 9-mers presenting anchor residues at middle positions
and alleles such as HLA-B∗57:01 and HLA-A∗03:01 bind long

peptides accommodating them with N- (31) and C- (32) terminal
extensions, respectively.

Two main classes of experimental assays have been
developed to identify HLA peptides: (1) in vitro assays
[refolding assays (33), peptide-rescuing assays (34), competitive
assays (35), dissociation assays (36), and surface plasmon
resonance techniques (37)] and (2) mass-spectrometry (MS)
based measurements (25, 38–40). Human cancer cell lines,
tumors, healthy tissues and body fluids have been subject
to immunopeptidomics analysis aimed at identifying cancer
associated antigens among the endogenously presented
HLA peptides (39, 41–49). Early MS immunopeptidomic
measurements were severely limited by technical sensitivity
and manual spectra interpretation. The technological progress
with development of orbitrap mass analyzers and enhanced
chromatographic performance led to vast improvements in
mass accuracy, sensitivity, resolution, and speed (24, 39).
Concomitantly, bioinformatic tools were developed to process
MS data and integrate sequencing results (50, 51). This enabled
the immense advancement of tumor immunopeptidomics, and
the number of unique HLA-I peptides currently available from
MS-based measurements is 10 times higher than 4 years ago
(52). The best-established MS based measurement is based on
immunoaffinity purification of HLA complexes from detergent
solubilized lysates followed by extraction and purification of
the peptides. The extracted peptides are then separated by
high-pressure liquid chromatography and directly injected into
a mass spectrometer. The resulting spectra obtained from the
fragmentation of the peptides is in the end compared with in
silico generated spectra of peptides (53). Despite great advances,
MS data still suffers from some problems and several attempts
are ongoing to correct them. First, only peptides that are part of
the database used for spectral searches can be detected in HLA
peptidomics’ data, or else, the less accurate de novo method may
be applied. Cysteine can be chemically modified by oxidation
and such modifications are not included in standard MS spectra
therefore identification of cysteine containing peptides is limited
(25, 40). Second, peptides that are too hydrophobic or too
hydrophilic might be missed applying the common purification
methods that rely on retaining peptides through hydrophobic
interactions with the solid phase. Some peptides might be lost
because they have features that make them incompatible with
ionization or lead to poor fragmentation (54). Notwithstanding
the mentioned limitations, MS based methods represent the best
methodology to comprehensively interrogate the repertoire of
HLA peptides presented naturally in vivo (25, 38–40).

Recently, a large scale collection of MS-determined HLA-I
(and HLA-II) binding peptides showed that sampling of peptides
for HLA presentation linked to some well-determined biological
processes (55). The sampling presentation of the self-proteome
presented in HLA-I complexes is not random and correlates with
the level of translation, expression and turnover rate (31, 39).
Likewise, the cellular localization of proteins, possibly also related
to the mechanism of their degradation, has an impact (55).

Pearson et al. (56) showed that the primary and secondary
structure of proteins regulate the generation of HLA-I peptides.
Among other findings, they have observed that source proteins,
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when compared to non-source, present lower hydropathy scores,
greater acidic composition and a sheet conspicuous enrichment.
Lower frequency of certain amino acids such as Proline in
flanking regions of naturally presented HLA-I peptides has also
been demonstrated (25). While binding to HLA appears to be
the most important step of class I antigen presentation, the
accuracy of the predictions of HLA-I peptides can be further
improved by considering other factors such as protein cleavage,
gene expression, source protein localization, and sequence
features (25). Larsen et al. improved epitope prediction by
combining binding affinity to HLA with antigen processing
transport efficiency and proteasomal cleavage (57, 58). In their
search for better HLA-binding predictors, Abelin et al. observed
incidentally a larger representation of helices in HLA-I binding
peptides than in peptides randomly chosen in the same proteins
(25). This un-discussed preliminary observation is in line with
the work of Bianchi et al., which found that there is an over-
representation of transmembrane helices among strong HLA-I
binders and therefore transmembrane helices are an overlooked
source of HLA-I peptides (22).

In this work, we provide a larger-scale structural view of the
HLA-I peptidomics in the source proteins. We use in-depth and
accurate HLA-I peptidomics datasets, and analyze properties of
the HLA-I peptides in the source proteins with structure-based
computational approaches. HLA-I peptides are studied grouping
all alleles together or in allotype-specific contexts. In detail,
(1) we map the 3D structure of HLA-I peptides in the source
proteins for which 3D structures are available in the protein data
bank [PDB (59, 60)] and analyze their secondary structure and
solvent accessibility, and (2) we search for differences between
HLA-I peptides and several reference controls, namely reference
datasets of HLA motif-like peptides. The reference datasets of
motif-like peptides are created via heuristic search. The later
are performed by a tailor-made algorithm able to explore the
entire proteome (or just particular proteins with representation
in the immunopeptidome) and converges to a collection of
peptides, excluded from known HLA peptidome, which exhibit
the exact same motif (matrix) as the HLA-I binding peptides.
Our results clearly show that 9-mer HLA-I peptides exhibit a
preference for helices in the source proteins. A comparison to
HLA motif-like peptides proves that the localization bias to
helical fragments in the source proteins is significant and is
not entirely explained by the helical propensity of the preferred
residues in the HLA-I motifs. We give possible hypothesis for
the secondary structure biases observed in HLA-I peptides in
the Results and Discussion section. This knowledge refines the
understanding of the rules governing antigen presentation and
could be added to the parameters of the current peptide-MHC
class I binding predictors to increase their predictive ability.

METHODS

HLA-I Dataset
We combined our previously published MS based HLA-
I immunopeptidomics datasets into the HLA-I-MS peptide
database, comprising 154’818 individual peptides purified from
different human cell lines and tissues, across numerous HLA

allotypes (24, 39, 40, 55, 61). The peptides length ranges from 8
to 25 amino acids.

Mapping HLA-I Peptides Into the 3D
Structure of the Source Proteins
The HLA-I-MS peptides were located in the 3D structures of
the source proteins, using a Perl script developed in house. The
latter locates each individual sequence taken from the HLA-I-
MS peptide database one by one in a multi-FASTA file compiling
all human protein sequences for which an experimental 3D
structure exists in the Protein Data Bank (www.rcsb.org) (59,
60). 52’352 Homo sapiens PDB structures were considered as
of March 18, 2018. HLA-I-MS peptides from proteins/regions
of proteins with unknown three-dimensional structure were
not mapped (62). 41,204 individual HLA-I-MS peptides were
effectively mapped on 32,883 PDB structures. The latter were
downloaded from PDB and standardized. For structures with
residues on alternate conformations, only the first geometry
was taken. For NMR structures with several models, only
the first model was used. Large structures only available in
TAR archives and structures with resolution higher than 6 Å
were withdrawn for technical reasons. These 168 structures
represent 0.5% of the total number of structures. Therefore,
their contribution is expected to be negligible. We note that one
single peptide can be located multiple times within the same
3D structure and/or in different structures with high sequence
similarity and/or in dissimilar proteins, as seen in the example
of the HLAPAEFTPAVH peptide in hemoglobin alpha-chain:
PDBid 1O1M (Figure 1). After location in the source proteins,
all matched HLA-I-MS peptides were subjected to secondary
structure (SS) and solvent accessibility analysis. To prevent
a possible overrepresentation of certain peptides in the 3D
structures, data were normalized per individual peptide, i.e., for
each individual peptide with several PDB matches the measured
properties were averaged over the number ofmatches. HLA-I-MS
peptides with PDB representation are a representative subset of
the entire database with nearly equal peptide length distribution,
amino acid frequencies and motifs per allele, as it will be shown
throughout the results section.

Secondary Structure and Solvent
Accessibility Calculation
The secondary structure (SS) and solvent accessibility of the
mapped HLA-I-MS peptide sequences, were calculated using the
UCSF chimera (40) package. The general scheme used in our
approach was (1) to loop through all the PDB files to calculate SS
and solvent accessibility for each amino acid of each protein, (2)
to list SS assignments and solvent accessibility values per amino
acid per PDB file, (3) to gather SS and solvent accessibility per
matched peptide and ultimately (4) to average SS and solvent
accessibility per HLA-I-MS peptide if several locations could
be found.

SS assignments are described in HELIX and SHEET records in
the PDB format. However, when the assignments were missing
we invoked KSDSSP, an implementation of Kabsch and Sander
algorithm for defining the secondary structure of proteins (63).
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FIGURE 1 | Workflow to locate peptides in the 3D structure of the source proteins. The HLA-I-MS peptide HLPAEFTPAVH is taken as example and it was matched

(among others) twice in the hemoglobin alpha chain, PDBid 1O1M.

KSDSSP generated helix and sheet assignments by reading
the position of the backbone atoms N, Cα, C, O, and the
amide hydrogen. When the amide hydrogen was missing in the
structure, its position was determined by KSDSSP that placed
it 1.01 Å from N along the bisector of (I) the vector opposite
the bisector of C-N-CA, and (II) the vector opposite the C-O
vector from the previous amino acid. The best two H-bonds
for each atom were then used to determine the most likely
class of secondary structure for each residue in the protein.
Each candidate hydrogen bond interaction was estimated and
classified as hydrogen bond if the energy was at least as favorable
as −0.5 kcal/mol. Helices and strands are at least three residues
long. SS calculations relied only on the backbone positions. This
means that a protein 3D structure with complete side chains
is not mandatory. SS was proficiently determined for 41,204
structures. Peptide residues can be in alpha-helix (H), 310 –helix
(G), helix-5 (I), beta-bridge (B), extended strand (E), turn (T),
bend (S), and coil (C). For simplicity, we organize the SS in three
main groups: helix (that comprises H, G, and I), strand (that
comprises E and B), and coil (that comprises T, S, and C).

Residues solvent accessibility was defined as relative solvent
excluded surface area (SESA) computed with the MSMS package
as implemented in Sanner MF and Olson AJ (64). Chimera
calculates solvent-excluded molecular surfaces composed of
probe contact, toroidal, and reentrant surface, which differ from
solvent-accessible surfaces that are traced out by a probe center.
SESA was computed per residue in each PDB using MSMS, with
Chimera default radii for atoms and surface probe. The relative
SESA were calculated by normalizing the surface area of the

peptide of interest in its protein of origin, by the surface area of
the same isolated peptide in a reference state, as

SESA =

∑

Residue.area.SES
∑

Residue.area.SES.gxg
(1)

where Residue.area.SES corresponds to the surface area
of the individual residue in the protein of origin and
Residue.area.SES.gxg corresponds to the surface area values
per residue in a GLY-X-GLY tri-peptide, where X is the residue
of interest. Residue.area.SES.gxg were calculated with UCSF
chimera as described in Bendell (65). Peptides mapped in
proteins where residues have truncated side chains were
removed from our analysis since they did not allow an accurate
estimation of SESA. We successfully calculated solvent exposure
for 34,778 peptides of the HLA-I-MS database.

Fraction of coil/helix/strand and solvent accessibility were
individually computed not only for each HLA-I-MS peptide with
PDB representation as described above, but also for all human
PDB structures and for all 9-mer peptides that could be found
in human PDB structures (sliding windows of nine residues
across all the human proteome with available 3D structure). The
fraction of coil/helix/strand is computed as the average number
of residues in coil/helix/strand divided by the total number
of residues.

Comparison With IEDB
To rule out a possible bias for a given SS/SESA distribution within
the HLA-I-MS database, we extended our analysis to HLA-I
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peptides existing in the free epitope database (http://www.iedb.
org) (66). 224,289 peptides restricted to HLA-I and prevenient
from all assays were retrieved (HLA-I-IE). From these peptides,
69,218 HLA-I-IE peptides were mapped on PDB structures, of
which 28,992 are also present on HLA-I-MS peptides set. SS
and SESA were determined for HLA-I-IE peptides, including and
excluding theMS determined peptides from the set, as previously
described for HLA-I-MS.

Fractions of coil, helix, strand were also determined for HLA-
I peptides in IEDB with half maximal inhibitory concentration
(IC50)< 500 nM (strong binders). The strong binders were taken
from http://tools.iedb.org/main/datasets/, a dataset frequently
used to train binding affinity predictors.

To understand if the SS bias we observe for HLA-I binding
peptides also holds for HLA-II, we additionally analyzed SS for
HLA-II peptides from IEDB. 89’175 peptides restricted to HLA-
II and prevenient from all assays were retrieved (HLA-II-IE).
From these peptides, 24,998 HLA-II-IE peptides were mapped
on PDB structures (HLA-II-IE-PDB). SS were determined for
HLA-II-IE-PDB peptides.

Amino Acid Frequencies
For comparative purposes, amino acid frequencies were
computed for (a) human PDB structures used in this study,
including only one single PDB structure per UniProt identifier
(67)–the one with best resolution–to avoid overrepresentations
of certain protein families and therefore of certain amino acids,

(b) HLA-I-MS and HLA-I-MS with PDB representation, (c)
HLA-I-IE and HLA-I-IE with PDB representation, and (d)
all human proteins listed in UniProtKB, Human-UniProt (67).
Amino acid frequencies were obtained by computing the number
of occurrences of a given amino acid and dividing by the total
number of amino acids in the respective set.

Searching for Bias Between HLA-I
Peptides and Motif-Like Peptides
We designed a heuristic algorithm that searches for 9-mer
peptides across the human proteome with available 3D structures
and converges to a collection of peptides, called HLA-I motif-like
peptides, which exhibit exactly the same motif (matrix) as the 9-
mer HLA-I-MS peptides for a given allele. A representation of
the designed heuristic algorithm is present in Figure 2. We have
chosen length 9 since it is the dominant length in the dataset.
HLA-I motif-like peptides do not include HLA-I-MS and HLA-I-
IE peptides, ensuring that the motif-like peptides are not known
HLA-I ligands (or not experimentally detected yet).

Quantification of the Distance Between HLA-I-MS

Peptides and HLA-I-MS Peptides With PDB Match

Our reference sets correspond to 5 individual groups of pre-
aligned 9-mer HLA-I-MS peptides that are known to bind HLA-
A∗01:01, HLA-A∗02:01, HLA-A∗03:01, HLA-B∗07:02, and HLA-
B∗08:01 as determined in (40).

FIGURE 2 | A representation of the designed heuristic search to converge to a set of motif-like peptides that exhibit the same matrix as the HLA-I binding peptides.

Here HLA-B*07:02 is taken as example.
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For each of the five groups, the 9-mer ligands were
characterized using a position weight matrix, PWMallele
(PWMA01 : 01, PWMA02 : 01, PWMA03 : 01, PWMB07 : 02, and
PWMB08 : 02), that exhibits the frequency with which each amino
acid is observed at each position. Formally, given a set of N
aligned sequences X of length 9, the entries of the PWMallele are
calculated as

Akj =
1

N

N
∑

i=1

I
(

Xij = k
)

(2)

where i ǫ(1, . . . ,N), j ǫ(1, . . . , 9), k is the set of amino acid symbols,
I(Xij = k) is 1 if Xij = k and 0 otherwise.

Distinct PWMallele are observed for each allele. Shannon
sequence logos representing the motifs were generated with
seq2logo using the clustering method Hobohm1, 0.63 as
threshold for clustering and information content in bits (66).

PWMallele were recalculated considering only the peptides
with PDB match. We labeled these matrices as PWMPDB−allele
(PWMPDB−A01 : 01, PWMPDB−A02 : 01, PWMPDB−A03 : 01,
PWMPDB−A07 : 02, and PWMPDB−A08 : 02) and their elements
as B. PWMallele and PWMPDB−allele were compared by a
function d that measures the matrices distances d(PWMallele,
PWMPDB−allele) averaged over the number of entries (20∗9):

d =
1

20∗9

∑

k

∑

j

∣

∣Akj − Bkj
∣

∣ (3)

A small value of d indicates that, for the corresponding allele, the
HLA-I peptides with PDB match constitute a relevant subset of
HLA-I-MS, with similar amino-acid preferences for the different
residue positions.

Creation of Reference Sets of Motif-Like Peptides

For each HLA-I allele, the heuristic search for motif-like peptides
(Figure 2) consists in the following steps:

1. A pool of 597,995 individual 9-mer peptides, constructed
from sliding windows of nine residues from all the human
proteins with existing experimental structure in the PDB, and
excluding all peptides present in HLA-I-MS and HLA-I-IE,
is used as a set of possible candidates. These peptides are
ranked based on a score obtained by summing the relevant
probabilities at each position in PWMallele A. Considering
a sequence S = (α1,. . . , α9) the conformity score cf will be
given by

cf =
∑9

j=1 Aαj, where α is the amino acid in the sequence
of the peptide and j ǫ (1,..., 9).

To accelerate the convergence, a sub-pool with 10,000
peptides is constructed, containing the 6,000 top-scored
peptides together with 4,000 peptides randomly taken from
lower scores. Subsequent populations were constructed by
selecting elements of this sub-pool. Obviously, the higher the
conformity score cf, the more chances the peptide has to be a
member of the final optimized population. However, peptides
with lower scores are also needed to construct sets of motif-
like peptides that reproduce exactly the PWMallele matrix.

2. The initial population size is 100 and each populationmember
(p) contains X peptide candidates randomly taken from the
pre-selected pool. X is equal to the number of peptides that
the reference allele contains in HLA-I-MS with PDB-match,
to guarantee that we are comparing samples of the same size.
The population size was adjusted to 100, a rational value
considering that the sample space explored is restricted to a
pre-selection of the pool.

3. PWM is calculated for each p (PWMallele−motif−like) and
afterwards compared with PWMallele via a scoring function, f :

f =
1

20∗9

∑

k

∑

j

∣

∣Akj − Ckj

∣

∣ +max .

∣

∣Akj − Ckj

∣

∣

100
(4)

Here Akj is the frequency of the amino acid k in position j in
the reference matrix and Ckj is the frequency of the amino acid
k in position j in the matrix of p.

The left-hand term of score function f represents the
average of the module of the distance between the position
weight matrices. The right-hand term characterizes the
module of the maximum deviation possible between Akj-
Ckj. This term avoids under- and over- representation of a
certain amino acid in each individual position, compared to
the reference matrix, while the left-hand term ensures a global
similarity between the two matrices.

Initially, we worked with d as a fitness function in
our heuristic search but under- and over-representation of
certain amino acids at a given position were observed in the
converged sets. To escape this problem, we introduced an
extra term in f that includes the module of the maximum
possible deviation between the matrices. Use of f led to
improved convergence and accuracy in our search.

4. Population sets and their fitness values are stored.
5. The best 4% of the previous generation (4% of the members

with lowest f ) are transferred to the next generation to
guarantee convergence through elitism.

6. Crossover operations are applied to the population members
between generations: the best 40% members of the previous
generation are crossed over with a rate of 60–80% with
members of randomly chosen parents. If the created child
contains duplicate peptides, the latter are eliminated and
replaced by new peptides randomly taken fom the parents and
submitted to crossover.

7. This procedure loops iteratively until convergence to optimal
combination of peptides. We reach convergence when the
value of f between PWMallele and PWMallele−motif−like is of
the same order than the f value between PWMallele and
PWMPDB−allele, which is considered an acceptable deviation.
Therefore, independently of the allele under study, we reach
convergence if f is lower than 0.9.

Best probabilistic values for selection and
crossover were benchmarked and are presented in
Supplementary Data Sheet 2.

The 3D structures of the converged motif-like peptides
weremapped from their source protein, and SS and SESAwere
calculated as previously described for HLA-I-MS. Fractions
of coil/helix/strand and solvent accessibility were compared
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with those of HLA-I-MS. All the converged motif-like sets
that exhibit similar amino acid background distribution are
present in SI for all the 5 groups (Supplementary Tables 1–5)
and the best set, with the lowest f value, is presented and
discussed in the main manuscript. Motif-like sets that do
not present the same distribution of the cf conformity score
as the reference set were discarded. Probability distribution
is described by the fitting of a Gaussian function to the
histograms of the score cf of the peptides in the set. See
Supplementary Data Sheet 3 for accepted and rejected sets.
We also analyzed adjacent residues in peptides and motif-
like peptides to study if high order effects could justify
the differences observed in terms of secondary structure.
Statistical analyses show that adjacent residues (dipeptides)
in motif-like peptides are comparable to adjacent residues in
the HLA-I peptides and therefore the differences do not come
from this effect. See Supplementary Data Sheet 6.

We’ve searched for HLA-I motif-like peptides across all
human proteins. Nevertheless, not all the human proteins
are presented in the immunopeptidome. Therefore, we also
performed the analysis of HLA-I motif-like peptides using
only the 35,598 proteins with representation on MS database
(55), and excluding all peptides present in HLA-I-MS and
HLA-I-IE.

For two alleles studied, HLA-B∗44:02 and HLA-C∗07:02,
the f values between PWMallele and PWMallele−motif−like
and between PWMallele and PWMPDB−allele are higher
than 0.9 and therefore we did not reach convergence.
The data for these two alleles is presented and discussed
in Supplementary Data Sheet 7.

RESULTS AND DISCUSSION

In this section, we consider HLA-I peptides as local fragments
in the 3D structure of the source proteins and determine
their SS in them. Afterwards, we compare SS in HLA-I
with different reference controls: (a) we investigate whether
there is an enrichment in SS in HLA-I-MS-PDB peptides
when compared with human PDB structures; (b) we also
analyze the distribution of SS elements on a per peptide
basis, and compared the results obtained for HLA-I-MS-PDB
and PDB; (c) we analyze the AA composition in HLA-I
peptides and PDB and; (d) we search for bias between SS
in HLA-I peptides and HLA-I motif-like peptides, considering
that they have the same AA composition. Finally, we give
possible explanations for the biases in SS observed in HLA-I
binding peptides.

HLA-I Peptides in the Source Proteins
HLA-I-MS represents an in-depth repertoire of peptides that are
naturally displayed by HLA-I molecules and cover many HLA
allotypes. HLA-I-MS holds 154,818 unique peptides of which
41,204 are found in at least one experimentally determined 3D
structure of a human protein, available in the PDB. We call this
set of 41,204 peptides HLA-I-MS-PDB. The peptides in HLA-
I-MS range from 8 to 25 amino acids long. The most frequent

length is 9 with a relative abundance of 55%. It is followed
by lengths 10 and 11 with relative abundances of 16 and 12%,
respectively. The relative abundance per length of the HLA-I-
MS-PDB peptides is nearly identical to HLA-I-MS as can be seen
in Figure 3.

Secondary structure elements (SS) in the source proteins were
determined with KSDSSP for each HLA-I-MS-PDB peptide as
described in the methods section. Figure 4 summarizes the SS
determination for the HLA-I-MS-PDB peptide AAAGLHSNV,
taken as an example. AAAGLHSNV can be found in 10
PDB structures with PDBid 3FFL, 4UI9, 5A31, 5G04, 5G05,
5KHR, 5KHU, 5L9T, 5L9U, and 5LCW. The source protein
of AAAGLHSNV is the anaphase-promoting complexes or
cyclosome (APC/C), a cell cycle-regulated E3 ubiquitin ligase that
controls progression through mitosis and the G1 phase of the cell
cycle (68). AAAGLHSNV is located on chains A, B, C, and D of
3FFL and on chains X and Y of 4UI9, 5A31, 5G04, 5G05, 5KHR,
5KHU, 5L9T, 5L9U, and 5LCW. The peptide locations on 5L9T
and 5L9U were overlooked due to SS assignments failure caused
by the low resolution of the structures, 6.4 Å. 3FFL corresponds
to the structure of the N-terminal domain of anaphase promoting
complex subunit 7 and analyzing AAAGLHSNV as a local
fragment in chains A (residues 31–39) and C (residues 31–
39) we can observe that in chain A, the peptide presents three
residues in coil and six residues in helix, while in chain C,
the peptide presents two residues in coil and seven residues in
helix (see Figure 4). The secondary structure of AAAGLHSNV
is normalized by averaging SS over all the matches in all the
structures, signifying 23.5% of the residues in coil, 76.5% in helix
and 0% in strand.

SS: Bias Between HLA-I Peptides and
Human Proteome
SS frequencies are analyzed for the HLA-I-MS-PDB dataset,
taken globally or separated by peptide length, as well as for

FIGURE 3 | The length distribution of the HLA-I-MS peptides, in black, and of

the HLA-I-MS-PDB peptides, in red. In the x-axis peptide length and in the

y-axis relative abundance in %.
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FIGURE 4 | Workflow used to determine SS of the HLA-I-MS-PDB peptides, taking AAAGLHSNV as an example. AAAGLHSNV is located on chains A, B, C, and D of

the structure with PDBid 3FFL and on chains X and Y of the structures with PDBid 4UI9, 5A31, 5G04, 5G05, 5KHR, 5KHU, 5L9T, 5L9U, and 5LCW. Fragments are

pictured in ribbon with coil residues in orange and helical residues in magenta. AAAGLHSNV exhibits 23.5% of residues in coil and 76.5% of the residues in helix and

0% of the residues in strand.

all human proteins with experimental structures in the PDB.
Results are summarized in Figure 5. For simplicity, from here
on, PDB refers to the human PDB structures used. In Figure 5,
we can observe that PDB contain 42% of the residues in
coil, 36% in helix, and 22% in strand. These values are in
concordance with previous studies on the SS profile of the
human proteins (69). Differently, the HLA-I-MS-PDB dataset,
contains 38% of the residues in coil, 43% in helix and 19%
in strand, showing a significant increase in helix of 7% (p
< 0.0001) and a decrease in coil and strand of 4% (p <

0.0001) and 3% (p < 0.0001), respectively. When analyzing SS
variations in HLA-I-MS-PDB, we observe that the amount of
helix decreases and reversely the amount of coil and strand
increase when the peptide length increases (29). For 13-mer
peptides the amount of helix decreases to 37%, just 1% higher
than the amount of helix in PDB. For peptides longer than
13 amino acids the amount of helix becomes smaller than
in the PDB. It should be noted, however, that these peptides
represent <5% of the overall peptides in the database. Moreover,
for peptides longer than 13 amino acids, the amount of helix
decreases at a cost of an increase in strand. The ratio of
structured/unstructured residues is thus equivalent to that of
the PDB. The enrichment in helix is significant considering all
the HLA-I-MS-PDB dataset and for HLA-I-MS-PDB peptides
of length of 8, 9, 10, 11, 12, and 13 taken separately. This bias
is particularly pronounced for 9-mer HLA-I-MS-PDB peptides,
which represents the majority of the peptides in the database. 9-
mer HLA-I-MS peptides contain 46% of the residues in helix, 8%
higher than in PDB.

SS: Bias Between HLA-I Peptides and
HLA-II Peptides
SS frequencies are analyzed for theHLA-II-IE-PDB dataset, taken
globally or separated by peptide length. HLA-II-IE-PDB dataset,
contains 41% of the residues in coil, 33% in helix, and 26% in
strand, showing a decrease in helix of 3% when compared to
PDB and a significant decrease of 10% in helix when compared to
HLA-I-MS-PDB. In parallel, we observed an increase in coil of 4
and 7% when compared PDB and HLA-I-MS-PDB, respectively.
When analyzing SS variations in HLA-II-IE-PDB, we observed
that the amount of coil is higher than 40% for all the length ranges
studied, fluctuating around 40–43% for peptide lenghts between
8 and 18 mer and being higher than 43% for peptides 18 mers
and higher. The highest relative frequency of peptides for HLA-
II is observed at 15 amino acids length and for them the amount
of helix is 35% and the amount of strand is 25%. The SS profile
observed for longer HLA-I peptides is in line with the profile
observed for HLA-II peptides, since peptides in the latter set are
longer in length.

SS and SESA: BIAS Between 9-Mer HLA-I
and 9-Mer Peptides in Human Proteome
In this section, we considered all 9-mer peptides that are possible
to construct from PDB (called PDB-9mer) and compared their SS
composition to those of 9-mer peptides from HLA-I-MS-PDB.
We have chosen length 9 since it is the dominant length in the
dataset, representing 55% of the peptides. In Figure 6 we present
individual graphs for helix, coil and strand distribution as a
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FIGURE 5 | Frequency of coil, helix and strand in all human proteins with experimental structures (PDB), in HLA-I-MS-PDB taken globally (called HLA in this graph), or

grouped per length (from 9- to 13-mer and > 13-mer). In the histogram, the bars are in green for coil, red for helix and yellow for strand. Levels of significance were

determined by a two-tailed student’s t-test and samples with p < 0.0001 are highlighted with an *, showing that the null hypotheses must be rejected and assuring

that the values are significantly different from the PDB set. The black lines correspond to the standard deviation of the measure.

Frequency of coil/helix/strand =

∑

residues in coil/helix/strand
∑

residues in the reference set
.

function of the fraction of the SS elements in the peptide. Figure 6
shows that 9-mer peptides from HLA-I-MS-PDB contain 11%
less peptides with no residue in helix and 8% more peptides
totally folded as helix, compared to PDB-9mer. Also, 9-mer HLA-
I-MS-PDB present lower relative frequencies of peptides with 4–9
residues in coil and lower relative frequencies of peptides with
2–9 residues in strand. Regarding helix distribution, we observe
that 21% of the 9-mer HLA-I peptides are fully helical (i.e., all
the nine-residues are in helix in the source protein). Globally,
9-mers having at least 70% of residues in a helix in the source
proteins are more frequent in HLA-I peptides than in the PDB.
We conclude that not all regions of proteins are equally accessible
for presentation on HLA-I and that HLA-I clearly displays more
peptide residues that are in helix, notably peptides totally folded
as helix in the source proteins.

Regarding solvent accessibility, we did not observe a strong
preference for buried or solvent accessible peptides in HLA-
I-MS-PDB when in the source proteins. The average relative
SESA are similar, i.e., 47% for 9-mer PDB and 49% for 9-
mer HLA-I-MS-PDB. HLA-I-MS-PDB peptides can be totally
buried in the source protein, as it is the case of VFAGVFNTF
mapped on 1GGT, with SESA value 0.4% or fully solvent
exposed. Further details about solvent accessibility can be seen in
Supplementary Data Sheet 4, in heat maps that combine solvent
accessibility with fraction of secondary structure for 9-mer PDB
and for 9-mer HLA-I-MS.

The results described above show a clear preference for HLA-
I presentation for helical residues in their source protein. The

origin of the bias could be explained by the fact that HLA-I
display peptides with preferred amino-acids in specific positions
(e.g., the anchor residues). Given that amino-acids have different
propensities for being part of given secondary structure elements,
HLA-I binding peptides, if enriched in amino acids with high
helical propensities, could consequently exhibit preferred helical
conformation in their source proteins. The following two sections
intend to quantify the role of this scenario.

Amino Acid Frequencies and SS
Propensities: Bias Between HLA-I Peptides
and Human Proteome
To understand if the helix enrichment in HLA-I peptides can
be explained by different amino acid frequencies, we analyzed
amino acid (AA) composition. To avoid potential bias coming
from experiments, we analyzed AA composition not only for
HLA-I-MS-PDB but also for HLA-I-IE-PDB, i.e., peptides from
IEDB with PDB match. Results are shown in Figure 7, which
also provides the helix propensity scale of Pace et al. (70).
We observe that HLA-I-MS-PDB and HLA-I-IE-PDB exhibit
different AA frequencies, but despite these differences, HLA-I-
IE-PDB exhibits a SS distribution similar to HLA-I-MS-PDB:
it contains 38% of the residues in coil, 42% in helix, and
20% in strand, and once again displays an enrichment in helix
(6% higher when compared to PDB). The amount of helix in
HLA-I-IE-PDB excluding the MS-determined peptides increases
to 44% (8% higher when compared to PDB). These findings
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FIGURE 6 | Individual graphs for helix, coil, and strand distribution as a function of the amount of the separate SS in the peptide. 9-mer HLA-I-MS in gray bars and

PDB9-mer in black lines.

illustrate that the observed helix enrichment is database and
experiment independent.

HLA-I-MS-PDB, HLA-I-IE-PDB, and PDB exhibit a strong
decrease in the frequencies of proline P and serine S when
compared with human proteins in UniProt (Human-UniProt),
HLA-I-MS, and HLA-I-IE (see Figure 7). Proline and Serine are
“disordered-promoting amino-acids.” As such they are expected
to be frequently found in un-resolved, i.e., disordered, regions of
the experimental structures, and consequently partially excluded
from the PDB analysis. We could therefore argue that HLA-I
peptides in disordered regions are underrepresented in HLA-
I-MS-PDB and in HLA-I-IE-PDB, potentially leading to the
bias for helix peptides. Nevertheless, HLA-I-MS and HLA-
IE simultaneously exhibit enrichments in amino acids with
high helical propensities when compared to Human-UniProt,
which could compensate the Pro/Ser effect and reverse the bias.
Notably, HLA-I-IE exhibits an enrichment in leucine L andHLA-
I-MS in lysine K. This analysis is inconclusive of whether there
exists an enrichment of AA with high helical propensities in
HLA-I peptides that can justify the helical preference in the
source proteins.

To circumvent this problem, we decided to perform the
analysis in an allotype specific context, using motif-like peptides.
Motif-like peptides are clusters of peptides taken from PDB
that were not reported to be displayed by a given HLA-I (as
far as we know) although they contain exactly the same AA
frequencies and display the same motif than peptides binding
experimentally to the reference allele. Under these conditions,
an enrichment in helix for HLA-I binding peptides, but not
for motif-like peptides, would indicate that this enrichment is
independent from AA propensities.

SS and SESA: Bias Between HLA-I
Peptides and HLA-I Motif-Like Peptides in
Allotype Specific Context
We analyzed allele specific HLA-I-MS peptides, searching for
bias between HLA-I peptides and HLA-I motif-like peptides.
We used 5 individual sets of HLA-I-MS peptides that are
known to bind HLA-A∗01:01, HLA-A∗02:01, HLA-A∗03:01,
HLA-B∗07:02, and HLA-B∗08:01. These alleles exhibit different
amino acid coverages, with different helical propensities and
are therefore meaningful references. HLA-A∗01:01 exhibits
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FIGURE 7 | Amino acid frequencies of the human PDB structures (in gray), human proteins on UniProt (in pink), HLA-I-MS-PDB (in red), HLA-I-IE-PDB (in green),

HLA-I-MS (in purple), and of the HLA-I-IE (in cyan). Amino acids in the x-axis of the graph are ordered from the lower to the higher frequencies in the PDB. Hierarchy of

amino acid propensities to form helices is also shown on the right panel. All amino acids are present in the inverted pyramid except proline P, which is known to be a

helix-breaker introducing a destabilizing kink in helices.

a preference for the negatively charged residues aspartate
D and glutamate E on position 3 and for tyrosine Y on
position 9. HLA-A∗02:01 exhibits a preference for apolar
residues on positions 2 and 9, predominantly leucine L in
both. HLA-A∗03:01 displays a strong preference for positively
charged residues on position 9, namely lysine K. HLA-B∗07:02
presents a distinct preference for proline P, the helix-breaker,
on position 2. The latter was particularly interesting, since
the presence of a proline is expected to display low helix
frequencies. HLA-B∗08:01 prefers positively charged residues on
position 5, a region where the previous alleles do not show a
clear preference.

Distinct PWMallele are observed for each allele. Their Shannon
sequence logos are shown in the left column of Figure 8.
Shannon sequence logos representing the motifs with PDBmatch
(belonging to HLA-I-MS-PDB) are shown in the middle column.
Great similarities between the matrices are observed, proving
that the peptides with PDB representation are a representative
subset of the original dataset. The d values that measure the
distances between PWMallele and PWMPDB−allele ranges from
0.61 to 0.84. The smallest d, 0.61, is observed for HLA-
B∗08:01 and the highest d, 0.84, is obtained for HLA-B∗07:02.
f values are ranging from 0.66 to 0.90. The lowest values are
found for HLA-B∗08:01 and HLA-A∗03:01, and the highest
value is observed for HLA-B∗07:02. The peptides with PDB
matches therefore provide subsets that accurately reproduce
the motif of the reference set as can be visually inspected by
the sequence logos in Figure 8, 1st and 2nd columns. The
data of PWMallele for each one of the alleles can be seen in
Supplementary Data Sheet 1.

To answer the above questions, we decided to create
populations of 9-mer peptides with PDB matches throughout
the entire human proteome. These peptides are selected to show
the same PWM than HLA-I-MS peptides binding a given allele,
although they do not belong to HLA-I-MS themselves. Therefore,
these peptides show the same residue distributions, in each
peptide position, as the experimentally-determinedHLA binders.
As a consequence, if these peptides exhibit a lower propensity to
be helical in their source protein than those belonging to HLA-
I-MS, this would indicate that the increase in helical peptides in
HLA-I-MS is not simply due to a higher frequency of amino acids
with superior helix propensities, but that other mechanisms are
playing a role.

Searching for 9-mer peptides through the entire human
proteome with PDB matches implies the sampling of 597,995
sequences. The repetitive creation of subsets adding sequences
one by one until reproducing the PWMallele would be
unfeasible. For example, for HLA-A∗03:01, an infinite number
of combinations of 989 peptides (size of the reference set) could
be constructed from the ∼600,000 9-mer peptides. Then, these
combinations would require an individual PWMallele−motif−like
calculation, to be finally compared with PWMA03 : 01 via f.
The large search space obviously prevents any systematic
enumeration. Therefore, we decided to opt for a heuristic
search, which is generally efficient for the search through high
dimensional spaces. Here, we used an in-house developed
heuristic exploration that searched for 9-mer peptides across the
PDB and converged to a collection of peptides that exhibited the
same matrix (PWMallele) as the 9-mer HLA-I-MS peptides for a
given allele. HLA-I motif-like peptides do not include HLA-I-MS
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FIGURE 8 | Sequence logo comparison for each of the five alleles studied: HLA-A*01:01, HLA-A*02:01, HLA-A*03:01, HLA-B*07:02, and HLA-B*08:01. Left:

sequence logos for all known 9-mer peptide binders. Middle: sequence logos for known 9-mer peptide binders with PDB matches. Right: sequence logos for the

motif-like peptides chosen by our algorithm.
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and HLA-I-IE, ensuring that the motif-like peptides are not
known HLA-I ligands. However, we cannot exclude that they
could be HLA-I ligands, but so far they were not experimentally
detected (or not publicly available). Our heuristic search based
on a genetic algorithm, described in the Methods, was carefully
designed for this purpose. The initial population is randomly
created from the pre-selection of the human proteome and
each population member is defined as a set of X peptides. X is
the number of peptides that the reference allele contains with
PDB match to guarantee comparing samples of the same size.
The number of peptides in HLA-A∗01:01, HLA-A∗02:01, HLA-
A∗03:01, HLA-B∗07:02, and HLA-B∗08:02 are 467, 846, 989, 736,
and 709, respectively. A PWMwas calculated for each population
member. This PWMallele−motif−like, was compared to the
experimental reference via the fitness function f (see Methods).
Numerous trials were performed to fine-tune crossover and
selection probabilities. The resulting convergence trials can
be seen in Supplementary Data Sheet 2. After adjustment of
these probabilities, 1,000 generations (i.e., 1,000∗100 members
evaluated) were sufficient to find near-optimal solutions. All
converged motif-like sets that exhibit similar amino acid
background distribution are present in SI for all five groups
(Supplementary Tables 1–5) and the best set is presented and
discussed in Table 1. The best motif-like sets correspond to
peptides from the human proteome that converged to the lowest
f. Generated motif-like peptides have the same amino acid
background distribution, the same distribution of the conformity
score cf and strictly follow HLA-I-MS motifs, with f values
ranging from 0.54 to 0.79 and d values ranging from 0.50 to 0.73.
These values are similar to the distance between PWMallele and

PWMallele−PDB, supporting the relevance of the sets of motif-like
peptides. Shannon logos of the best motif-like sets are shown
in the right column of Figure 8. The analysis of the fraction of
coil/helix/strand/solvent accessibility of the converged motifs
and comparison with structural characteristics of the respective
motifs in HLA-I-MS is presented in Table 1. d and f values for
HLA-I-MS peptides and motif like peptides are also present
in the table. PWMmotiflike−A01 : 01, PWMmotif−like−A02 : 01,
PWMmotiflike−A03 : 01, PWMmotiflike−B07 : 02, and
PWMmotiflike−B08 : 01 are given in Supplementary Data Sheet 1.

Table 1 shows that the HLA-I-MS alleles present different
ratios of coil/helix/strand in the source proteins. In this study,
HLA-B∗08:01 is the allele with the largest fraction of peptide
residues in helix, 0.600 (60.0 ± 0.8%), and HLA-B∗07:02 is the
allele with the smallest amount of peptide residues in helix, 0.335
(33.5 ± 0.7%). These differences are not surprising considering
that the motifs have different amino acid preferences. HLA-
B∗08:01 presents a preference for amino acids with higher
helix propensities in different positions of the peptide, such
as leucine in positions 2 and 9 and arginine and lysine in
positions 3 and 5. HLA-B∗07:02, on the other side, presents
a strong preference for proline, a well-known helix breaker,
in position 2, justifying the smaller amount of helix observed.
Although these differences are not surprising, the fact that the
converged motif-like peptides always present a lower number
of residues in helices compared to the peptides binding the
reference allele (whatever the allele) is significant. The motif-
like peptides for HLA-B∗08:01 present 56.4 ± 0.9% of residues
in helix, 3.6% lower compared to the reference (p < 0.0001).
The motif-like peptides for HLA-B∗07:02 present 28.8 ± 0.7%

TABLE 1 | Comparison between HLA-I-MS peptides, motif-like peptides# from PDB with representation on immunopeptidome and motif-like peptides from _PDB with

representation on proteome for five different alleles: HLA-A*01:01, HLA-A*02:01, HLA-A*03:01, HLA-B*07:02, and HLA-B*08:01.

Allele d f Coil Helix Strand SESA

AVG STDEV AVG STDEV AVG STDEV AVG STDEV

HLA-A*01:01 HLA-1-MS peptides 0.62 0.67 0.376 0.007 0.455 0.010 0.168 0.006 0.480 0.003

motif-like peptides# 0.87 0.99 0.406* 0.007 0.403* 0.009 0.190* 0.006 – –

motif-like peptides 0.66 0.73 0.412* 0.006 0.393* 0.009 0.195* 0.006 0.468 0.004

HLA-A*02:01 HLA-1-MS peptides 0.64 0.68 0.279 0.004 0.560 0.007 0.160 0.004 0.456 0.002

motif-like peptides# 0.63 0.69 0.300* 0.005 0.544* 0.007 0.153 0.004 – –

motif-like peptides 0.50 0.54 0.300* 0.004 0.544* 0.006 0.160 0.004 0.443 0.003

HLA-A*03:01 HLA-1-MS peptides 0.62 0.66 0.355 0.004 0.468 0.006 0.177 0.004 0.500 0.002

motif-like peptides# 0.92 0.99 0.350 0.004 0.474 0.006 0.174 0.004 – –

motif-like peptides 0.73 0.79 0.353 0.005 0.461 0.005 0.186* 0.004 0.485 0.003

HLA-B*07:02 HLA-1-MS peptides 0.84 0.90 0.474 0.006 0.335 0.007 0.189 0.004 0.492 0.003

motif-like peptides# 0.84 0.95 0.484 0.005 0.319* 0.006 0.196 0.004 – –

motif-like peptides 0.66 0.72 0.510* 0.006 0.288* 0.007 0.202* 0.004 0.500 0.003

HLA-B*08:01 HLA-1-MS peptides 0.61 0.66 0.260 0.005 0.600 0.008 0.140 0.005 0.480 0.003

motif-like peptides# 0.75 0.85 0.271 0.005 0.572* 0.008 0.155 0.004 – –

motif-like peptides 0.62 0.67 0.290* 0.007 0.564* 0.009 0.146 0.006 0.480 0.003

Values for the fitness functions d and f compare (I) HLA-I-MS (known binders) and HLA-I-MS-PDB (known binders with PDB match), (II) motif-like (non-binders, yet with similar PWM)

and HLA-I-MS peptides. Average (AVG) of the amount of coil, helix, strand, and SESA and respective standard deviation (STDEV) is present for each allele.

STDEV is the standard deviation of the mean calculated considering 100 times 80% of the peptides randomly taken.
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of residues in helix, 4% lower compared to the reference (p <

0.0001). HLA-I-MS-PDB peptides binding to HLA-A∗01:01 and
HLA-A∗02:01 present 45.5 ± 1.0 and 56.0 ± 0.7% of helices,
respectively. These values decrease to 39.3 ± 0.9 and 54.4 ±

0.6%, respectively, in the motif-like peptides. Only HLA-A∗03:01
present almost equivalent amounts of helix in HLA-I-MS and
in the motif-like, i.e., 46.8 ± 0.6 and 46.1 ± 0.5%, respectively.
Averaging over all 64 converged motif-like sets for HLA-A∗03,
Table HLA-A∗03:01 in Supplementary Table 3, we find again a
similar amount of helix (46.1 ± 0.9%). To sum up, for four
alleles we see a decrease in helix in the motif-like peptides, always
compensated by an increase in coil, sometimes with an increase
in strand. Analysis of motif-like peptides from proteins with
representation on immunopeptidome (motif-like peptides# in
Table 1) shows again a significant decrease in helix for the same
four for alleles but to a smaller extent. The limited decreases in the
% helix for motif-like peptide# when compared to the decreases
observed for motif-like peptide correlates with the fact that
the PDB structures with representation in immunopeptidome
have 2% more residues in helix than the PDB structures with
representation on proteome. The latter observation is in line with
our findings showing that HLA-binding peptides are enriched in
helices in the source protein.

These results support the fact that 9-mer HLA-I binding
peptides prefer helical secondary structures in their proteins of
origin, and that this preference is not because there is a higher
frequency of amino acids with high helical propensities in HLA-
I motifs. The helical enrichment holds for 8-mers and possibly
also for 10-mers, to a lower extent (Figure 5). Nevertheless,
we have 18 times and 4 times less data for 8-mers and 10-
mers, respectively, than for 9-mers, which prevents a thorough
analysis as performed for 9-mers. In total, covering 8- to 10-
mers, the helical enrichment could be observed for more than
74% of the peptidome identified experimentally in our datasets.
Interestingly, the enrichment in helices is not present in long
peptides, which exhibit less helical fragments compared to PDB.
The enrichment in helix also does not hold for HLA-II peptides,
since peptides in this set are longer in length. This result is
in line with a previously published analysis (29), showing an
increased frequency of glycines in long MHC-binding peptides.
The latter was hypothesized to enable long peptides to adopt
bulging conformations more easily.

Possible Hypothesis for the Bias in SS
Observed for HLA-I Binding Peptides
Many different proteolytic systems may generate antigenic
peptides and the proteasome could be responsible for the release
of the majority of them. Non-proteasomal proteolytic pathways
also generate antigenic peptides and their contribution is most
probably underestimated (13). It has been found that the largest
frequency of proteolytic cleavages, by proteasome or other
proteases, occur in coil regions (5, 71, 72). Proteasome and other
proteases differ in the mode of action: while proteasome degrades
proteins in highly successive manner (73), other proteases
perform single cuts leaving the protein afterwards. If the source

protein in the cell is cleaved following a proteasome pathway,
the protein regions more prone to unfold will be ubiquitinated
(5) and afterwards will suffer multiple sequential cuts, converting
the protein into oligopeptides. Additional trimmings by other
proteases will be done preferentially in the coil portion of the
oligopeptide products, leaving more helical residues together.

If the source proteins follow a non-proteasomal pathway,
they will experience independent cleavages preferentially at coil
positions, leaving more helicoidal peptides to be displayed. To
sum up, prior to loading on the HLA complexes, the peptides
must be cleaved or trimmed in N-term and C-term to be
available, but at the same time must be stable enough to survive
destruction and to be displayed by HLA. The higher resistance of
helices to proteolysis could explain the higher frequency of helical
regions among HLA-I binding molecules. Residues adjacent to
the 9-merHLA-I peptides presented in the ligandome also exhibit
an enrichment in helical residues in the source proteins. Indeed,
47% of the residues immediately before the N-term of the 9-mer
and 44% of residues immediately after the C-term are helical
residues in the source proteins, i.e., 11 and 8% more than the
average of the PDB. This does not mean that these residues are
still in helix when in oligopeptide products in the cytosol but
indicates that the residues adjacent to HLA-I peptides in the
source proteins are an extension of the helix which promotes
the peptide stability. Figure 4 represents an example where the
residues adjacent to the peptide are in helix in the source protein.
We also observe a decrease in strand for 9-mer suggesting that
during the processing of the peptides in the cell, more peptides
that were in such secondary structures in the source proteins were
broken. Peptides in helix can also be unstable. Nevertheless, the
amount of helix in the human structures is roughly the double
of the amount of strand and, during the processing, more helical
9-mer peptides are escaping destruction.

Additional studies could be useful to verify this hypothesis,
by investigating experimentally the role of proteasome and
other proteases like ERAP1 on the generation of the peptidome,
following for example the work of Admon et al. (10, 49, 74).
A very recent publication on ERAP1 inhibition showed that
the average predicted affinity of MHC-I binding peptides was
enhanced, by reducing presentation of sub-optimal long peptides
and increasing presentation of many high-affinity 9–12-mers,
suggesting that baseline ERAP1 activity in this cell line (A375,
melanoma cells) is destructive for many potential epitopes (74).
Based on the published results we hypothesize that the edited
immunopeptidome in ERAP1 inhibited melanoma cells could
still present a helix enrichment because: (1) ERAP1 inhibition
increased the presentation of 9–12-mers peptides which were
found in our study to show higher helical content when
compared to longer peptides; (2) ERAP1 inhibition increased
the frequency of N-terminal AA such as ALA, LEU, TYR, and
MET which are all known to have a high helical propensity;
(3) the inhibition does not affect the basic sequence motifs of
the presented peptides. However, we cannot argue if ERAP1
individually can favor or disfavor the HLA-I presentation of
peptides enriched in helices in the source proteins, as many
other factors that are not related with the cleavage by this
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aminopeptidase are also responsible for the immunopeptidome
edition. Indeed, peptide processing mechanisms via proteolysis,
or at least via ERAP1, may not be the exclusive factor to produce
helix enrichment.

TAP transport, for example, is an important step in
antigen processing that precedes MHC binding in the
conventional proteasome pathway and therefore takes a
significant contribution to peptide selection. Considering that
the C-terminal portion of the peptide that binds TAP prefers
hydrophobic or basic residues (75) and that transmembrane
helices require hydrophobic residues to span membranes, we
envision an enrichment in helices in the C-terminal portion
of the peptide. We also envision a preference to helices in the
N-terminal portions of the peptide as proline is a helix breaker
and have a deleterious effect in TAP binding affinity specially if
located on position P1 and P2 (76).

Among various processes playing a role in antigen
presentation, such as abundance of the precursor protein,
efficiency of the cleavage, the stability of the peptide in the
cytosol, the stability of the HLA-I complex and the affinity of
antigen peptides, the latest one is considered to be a major
determinant. When bound to HLA-I, peptides take an extended
or bulged conformation. Therefore, the binding of peptides
that are initially helical can be penalized from a conformational
point of view. On the contrary, peptides that have a propensity
to be unstructured are less penalized from this point of view,
although they are more likely to be disfavored from an entropic
perspective. All in all, HLA-I strong binders (IC50 < 500 nM in
IEDB) exhibit an increase in coil. Of note, these strong binders
do not include MS data for which affinity is not measured.
Further discussion can be seen in Supplementary Data Sheet 5.
This supports that the bias we observe for helical peptides
in the complete collection of HLA binders (whatever their
affinity) is more likely related to HLA-I processing than to
their affinity for HLA-I. The actual immunopeptidome results
from a combination of processes that take place in the cell.
Some of them can favor or disfavor helices, but globally, we
observe that antigen processing results in an enrichment
in helix in the HLA-I binding peptides in their source
proteins. More knowledge in the field of antigen processing
would be required to identify unambiguously the origin of
this enrichment.

Our findings can now be added to the parameters of the
current peptide-MHC class I binding predictors to increase
their antigen predictive ability. Taking as an example NetCTL
(57, 58) that identifies epitopes by combining the prediction
methods for MHC-I affinity, TAP transport efficiency and C-
terminal cleavage and has demonstrated that the integrative
approach has a predictive performance that is superior to
predictions of MHC-I affinity alone. The prediction of epitopes
in NetCTL might be improved by combining the three previous
approaches with a fourth approach that determines epitopes
SS in the source protein. NetCTL predicts cytotoxic T cells
epitopes in protein sequences (single sequences or several
fasta sequences are given as starting point). Therefore, it
could be possible to detemine the SS features for a given

sequence, for example using the protein annotation features
from UNIPROT (67, 77) or a tool that predicts secondary
structure such as JPRED (78). Then, the candidate epitopes
could be scored based on their SS composition, with peptides
with higher helical composition scoring higher. Ultimately,
the global prediction score of NetCTL could be retrained to
incorporate a weighted sum of the four individual prediction
scores from the four approaches. Large scale training and test
sets would be needed to optimize the predictive performance
including SS.

CONCLUSION

Large peptide datasets are ideal for understanding how
protein structure context contribute to peptide processing
and presentation by HLA-I. In this study we refined our
understanding of processing rules by analyzing the topology
of MS-based peptides displayed by HLA-I (i.e., the HLA-I-
MS) in the 3D structure of the source proteins. To account
for potential biases coming from MS experiments, another
dataset of HLA-I peptides taken from IEDB, excluding MS
determined ones, was used afterwards. Our analyses of HLA-
I peptides matched to protein 3D structures support the
helix enrichment in the source proteins for 9-mer HLA-
I peptides.

Our study clearly shows that 9-mer HLA-I peptides,
that represent the majority of the HLA-I peptides, exhibit
localization bias to helical fragments in the source proteins.
One possible explanation for such an enrichment comes
from the fact that prior to loading on the HLA complexes,
the peptides must be cleaved or trimmed in N-term
and C-term to be available, but at the same time has be
stable enough to be displayed to HLA. Therefore, the
higher resistance of helices to proteolysis could explain
the higher frequency of helical regions among HLA-I
binding molecules.

This knowledge provides new hints that refine our
understanding of the rules of antigen processing and
presentation. These findings could possibly be added to
the parameters of the current peptide-MHC class I binding
predictors to increase their antigen predictive ability.
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