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Abstract: (1) Background: Essential oils have long been used as therapeutic agents. Lavender (Lavan-
dula angustifolia) oil (LO) is an antispasmodic, anticonvulsant, relaxant, painkilling, and antimicrobial
essential oil investigated as a natural substance for biomedical therapies. Nanoparticles have shown
significant promise in improving drug delivery and efficacy. Considering these benefits, the aim
of this study was to evaluate the toxicity of LO and lavender oil niosomes (LONs) in stem cells
and myofibroblast models cultured in vitro. (2) Methods: Adipose tissue-derived stem cells and
myometrial cells were cultured with LO or LONs at different concentrations (0, 0.016%, 0.031%, and
0.063%) and toxicity was evaluated with PrestoBlue™ and live/dead assay using calcein and ethid-
ium homodimer. (3) Results: Cell viability was similar to controls in all groups, except in 0.063% LO
for myometrial cells, which showed lower viability than the control medium. (4) Conclusion: These
results suggest that both LO and LONs are safe for cell culture and may be used for pharmaceutical
and biomedical therapies in future applications in regenerative medicine.

Keywords: drug delivery systems; niosome; essential oils; regenerative medicine

1. Introduction

Essential oils extracted from herbs, plants, and flowers are often used to manage
pain, ease psychological distress, induce relaxation, and enhance well-being [1,2]. Laven-
der (Lavandula angustifolia) oil (LO) is an antispasmodic, anticonvulsant, antidepressant,
painkilling, and carminative substance used to treat various conditions [3,4]. It also acceler-
ates burn healing by modulating inflammatory reactions [5,6] and has antibacterial and
antifungal properties [7]. With so many benefits, LO has been investigated as a natural
medicinal extract to improve biomedical therapies and quality of life [5,6,8–11].

The field of nanotechnology has seen significant advances in numerous biomedical
applications, including diagnosis and effective treatment of different disorders, tissue
engineering, and regenerative medicine, using a range of nanoparticles to deliver, target,
and regulate their release rate [12,13]. Recently, nanofibers of sodium alginate containing
LO have been proved effective for treating induced skin injuries [5], whereas nanofibers
of polyacrylonitrile containing LO were developed for antibacterial and drug delivery
applications [8]. Among the different types of nanoparticles, niosomes are vesicular drug
delivery systems based on the self-association of non-ionic surfactants, which can serve
as a vehicle for both hydrophilic drugs (in their hydrophilic compartment) and lipophilic
medicines (in their lipophilic compartment). Niosomes are biocompatible, biodegradable,
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non-immunogenic, and non-toxic. They can also be used in targeted delivery applications
to uptake the drugs to specific sites. Furthermore, the ease of large-scale manufacturing
and storage, improved stability, and healthy yet low-cost components have made niosomes
an appealing alternative to conventional micro- and nano-encapsulation methods [14–19].

Adipose tissue-derived stem cells (ASCs) are characterized as mesenchymal stem
cells [20]. They are used in cell therapies and regenerative medicine because of their high
capacity for proliferation and their proangiogenic, antiapoptotic, and immunomodulatory
properties, and are studied to treat or reduce ischemic damage in tissues [20–24]. Myome-
trial cells, in turn, represent a myofibroblast cell population involved in wound healing,
extracellular matrix remodeling, and fibrosis development [25–27]. They can also be used
as a tool to investigate the mechanisms of contractile protein synthesis and its hormone
control [28].

Considering the benefits of LO and the advantages of niosomes, the aim of this study
was to evaluate the toxicity of LO and LO niosomes (LONs) on ASCs and myometrial cells
cultured in vitro as models for mesenchymal cells and myofibroblasts.

2. Materials and Methods
2.1. Niosomal Lavender Oil Preparation Method

LONs were prepared by a reverse-phase evaporation method (REV), one of the most
common methods for preparing nanovesicular systems used for the loading of various
kinds of agents, including lipids, hormones, and proteins [14,29,30]. Briefly, Span60 (S7010;
Sigma, Bornem, Belgium) and cholesterol (C8667; Sigma) in a 1:1 molar ratio (50.32 mg and
48.39 mg, respectively) were mixed into 5 mL of chloroform and methanol in a 9:1 volume
ratio. Fifty mg of essential oil (61718; Sigma) was then added to the mixture. Following that,
3 mL of phosphate-buffered saline (PBS; Gibco, Paisley, the Netherlands) was added, mixed
by vortex mixer at room temperature for one minute, and sonicated for 5 min in a Sonicator
bath (Elma®, Singen, Germany) at 10 ◦C. Elimination of organic solvent was achieved using
a rotary evaporator (BUCHI R-3, Flawil, Switzerland) with the water bath temperature
maintained at 65 ◦C, which is above the phase transition temperature of Span60 (~53 ◦C)
and boiling point of chloroform and methanol (~62 ◦C). It takes around 40 min to eliminate
all the solvents using rotary evaporation.

2.2. LON Characterization

LON vesicle size, polydispersity index and zeta potential were investigated using
the dynamic light scattering (DLS) technique through the Zetasizer Nano ZS (Malvern
Instruments Limited, Worcestershire, UK) [31].

2.3. Loading Efficiency and Loading Capacity of Lavender Oil

The loading efficiency (LE%) and loading capacity (LC%) of lavender oil in the nio-
somes were determined using a method described previously [32,33]. The final suspension
was centrifuged (12,000× g, 15 min, 4 ◦C). The LO concentration was measured using a
UV-Vis spectrophotometer at 340 nm (Thermo Fisher Scientific NanoDrop 2000/2000c,
Merelbeke, Belgium). All the characterization tests were performed in triplicate. To com-
pute the LE% and LC%, the following equations were applied (Equations (1) and (2)):

LE% =
(WT − WF)× 100%

WT
(1)

LC% =
(50 − WU.LO)× 100%

WN + 50 − WU.LO
(2)

where WF is the unloaded quantity of LO detected in the supernatant after centrifugation
and WT is the total amount of LO in the final niosomal suspensions. In the LC% equation,
50 (mg) is the initial amount of LO, WU.LO is the weight of unloaded LO, and WN is the
dried weight of the niosomes.
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2.4. LON Storage Stability Study

The LON suspension was stored at −20 ◦C and its DLS characteristics, as well as its
LE%, were analyzed after 15 months of storage and compared with the freshly synthesized
LON’s characterization. Three replicate experiments were performed. The storage stability
test was performed in duplicate.

2.5. LON Release Study

The final LON suspension was centrifuged, and the pellet was redistributed in 5 mL
culture medium, before being incubated at 37 ◦C. Released LO was measured at 0, 1,
2, 4, 24, and 48 h. Each time, 200 µL of the suspension was extracted and centrifuged
(12,000× g, 15 min, 4 ◦C), and LO concentrations in the supernatant were calculated by
spectrophotometry. The LON release study was performed in triplicate.

2.6. Cell Culture

ASCs from human donors were commercially acquired (Stempro® Human ASCs, Thermo
Fisher Scientific, Waltham, MA, USA) and characterized as previously described [21]. Myome-
trial cells were isolated from female donors after obtaining approval from the Institutional
Review Board of the Université Catholique de Louvain (IRB reference 2020/14AOU/410).
To this end, donor myometrial tissue was cut into 1 mm2 pieces using a sterile scalpel,
then immersed in Dulbecco’s modified Eagle’s medium (DMEM/F12; 11320-033; Gibco),
1 µg/mL collagenase (C2674; Sigma) and 1 IU/µL DNase (D4263, Sigma). After incubation
for 3 h in a warm bath at 37 ◦C with gentle agitation, the undigested tissue was filtered
through a 100 µm cell strainer [34,35].

ASCs and myometrial cells were cultured in a humidified incubator at 37 ◦C and 5%
CO2 in 75 cm2 flasks in a basic culture medium composed of DMEM/F12 1×, 10% heat-
inactivated fetal bovine serum (16140071; Gibco), and 1% antibiotic-antimycotic (15240-062;
Gibco). The medium was changed every other day until 80–90% confluence was reached.
All cells used were between passages 6 and 8. All the in vitro experiments were performed
in triplicate.

2.7. Cell Viability

After reaching confluence, the cells were detached using Accutase (A6964; Sigma),
centrifuged at 500× g for 5 min at 4 ◦C, and resuspended in a culture medium to achieve
a cell density of 100,000 cells/mL. A volume of 100 µL of each cell suspension type was
added to 96-well plates for cell viability tests (10,000 cells/well). The cells were incubated
on the plates in the humidified incubator (37 ◦C; 5% CO2) for 24 h to completely attach to
their surface. The medium was then removed, the wells were washed with PBS (10010-015;
Gibco), and a basic culture medium containing different concentrations of LO or LON (0,
0.016%, 0.031%, or 0.063%) [9] was added to each well. Culture medium without LO or
LON was considered the control.

After 24 h of incubation in different media, cell viability was assessed using PrestoBlueTM

HS cell viability reagent (P50200; Invitrogen) and live/dead viability/cytotoxicity as-
says (L3224; Invitrogen, Belgium) based on protocols from Tromayer et al. [36] and
Amorim et al. [37], respectively.

Briefly, after discarding the culture medium and washing the wells in PBS without
Ca2+ and Mg2+, the PrestoBlue™ reagent was diluted 1:10 in the culture medium, and
100 µL was added to each well, with or without cells. Each plate was then incubated at
37 ◦C for one hour. Subsequently, absorbance was recorded at an emission wavelength of
620 nm and an excitation wavelength of 560 nm by fluorescence spectroscopy (Multilabel
reader, Victor X4, Singapore). Data were normalized in Prism version 9.2.0 (GraphPad
Software, San Diego, CA, USA), considering the average of control values as 100% viability
and the average of PrestoBlue values with no cells as 0% viability.

Live/dead staining assays were performed after removing all culture media and wash-
ing the cells in warm PBS, before incubating them in 30 µL of ethidium homodimer-1 and
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calcein-AM solution in PBS at 37 ◦C for 30 min, protected from direct light. PBS-washed
cells and live (green) and dead (red) cells were then monitored by fluorescence microscopy
(Leica, Diegem, Belgium) using two different filters with a fluorescence excitation wave-
length of 495 nm and emission wavelengths of 515 and 635 nm. All tests were conducted
on three independent replicates.

2.8. Statistical Analysis

Data were statistically analyzed by one-way ANOVA using GraphPad Prism 9.2.0, and
quantitative data are presented as mean ± SD. Error bars in graphs indicate one sample
standard deviation.

3. Results
3.1. LON Characterization, Storage Stability, and Release Profile

DLS analysis was used to calculate LON size and the polydispersity index. Moreover,
to prove the stability of LONs in term of DLS characteristics, LE%, and LC%, the same
characterization tests were done 15 months after being stored at −20 ◦C (Table 1). There
was no significant difference in the characteristics of fresh LONs and LONs stored for
15 months stored.

Table 1. The size, polydispersity index, zeta potential, loading efficiency, and loading capacity of
freshly synthesized LON and after 15 months’ storage at −20 ◦C.

Time (Months) Size (nm) Polydispersity Index Zeta Potential (mV) LE (%) LC (%)

0 1216 ± 106 0.328 ± 0.045 −22.4 ± 0.9 78.032 ± 2.141 28.35 ± 0.56

15 1142.5 ± 47.5 0.425 ± 0.035 −24.55 ± 1.45 73.99 ± 4.35 27.26 ± 1.17

We also investigated LO release profiles from a LON vesicular system and found that
44.44 ± 0.62% of loaded LO was released after 48 h, whereas 37.34 ± 0.35% of that amount
was released in the first 4 h of incubation (Figure 1).

Nanomaterials 2022, 12, x FOR PEER REVIEW 4 of 8 
 

 

Software, San Diego, CA, USA), considering the average of control values as 100% viabil-
ity and the average of PrestoBlue values with no cells as 0% viability. 

Live/dead staining assays were performed after removing all culture media and 
washing the cells in warm PBS, before incubating them in 30 µL of ethidium homodimer-
1 and calcein-AM solution in PBS at 37 °C for 30 min, protected from direct light. PBS-
washed cells and live (green) and dead (red) cells were then monitored by fluorescence 
microscopy (Leica, Diegem, Belgium) using two different filters with a fluorescence exci-
tation wavelength of 495 nm and emission wavelengths of 515 and 635 nm. All tests were 
conducted on three independent replicates. 

2.8. Statistical Analysis 
Data were statistically analyzed by one-way ANOVA using GraphPad Prism 9.2.0, 

and quantitative data are presented as mean ± SD. Error bars in graphs indicate one sam-
ple standard deviation. 

3. Results 
3.1. LON Characterization, Storage Stability, and Release Profile 

DLS analysis was used to calculate LON size and the polydispersity index. Moreover, 
to prove the stability of LONs in term of DLS characteristics, LE%, and LC%, the same 
characterization tests were done 15 months after being stored at −20 °C (Table 1). There 
was no significant difference in the characteristics of fresh LONs and LONs stored for 15 
months stored. 

Table 1. The size, polydispersity index, zeta potential, loading efficiency, and loading capacity of 
freshly synthesized LON and after 15 months’ storage at −20 °C. 

Time 
(Months) Size (nm) 

Polydispersity 
Index 

Zeta Potential 
(mV) LE (%) LC (%) 

0 1216 ± 106 0.328 ± 0.045 −22.4 ± 0.9 78.032 ± 2.141 28.35 ± 0.56 
15 1142.5 ± 47.5 0.425 ± 0.035 −24.55 ± 1.45 73.99 ± 4.35 27.26 ± 1.17 

We also investigated LO release profiles from a LON vesicular system and found that 
44.44 ± 0.62% of loaded LO was released after 48 h, whereas 37.34 ± 0.35% of that amount 
was released in the first 4 h of incubation (Figure 1). 

 
Figure 1. In Vitro cumulative release profile of LO from LONs over a two-day period. Graphic made 
with GraphPad Prism 9.0 (n = 3). 

3.2. Cytotoxicity 
The viability of ASCs and myometrial cells in LO and LON media is shown in Figure 

2. In ASCs, viability rates ranged from 88.77 ± 2.59% to 100.03 ± 8.05% for LO concentra-
tions, and from 82.67 ± 5.08% to 100.78 ± 10% for LON. In myometrial cells, they ranged 
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with GraphPad Prism 9.0 (n = 3).

3.2. Cytotoxicity

The viability of ASCs and myometrial cells in LO and LON media is shown in Figure 2.
In ASCs, viability rates ranged from 88.77 ± 2.59% to 100.03 ± 8.05% for LO concentrations,
and from 82.67 ± 5.08% to 100.78 ± 10% for LON. In myometrial cells, they ranged from
70.6 ± 9.43% to 93.23 ± 6.34% and from 74.07 ± 4.84% to 105.97 ± 7.18% for LO and LON,
respectively.
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Values of 0.063% LO in myometrial cells were significantly lower than in controls
(p < 0.05). Live/dead assays confirmed the low number of dead cells (Figure 3).
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4. Discussion

Essential oils are volatile, hydrophobic, and viscous substances, making them difficult
to dissolve in hydrophilic media. For this reason, they are usually diluted in Tween,
dimethyl sulfoxide, or ethanol [7]. Niosomes offer a novel alternative for diluting these
substances in aqueous environments since they are non-ionic surfactant vesicles used as
carriers for hydrophilic and lipophilic substances, easily diluted in culture media, and
non-toxic to cells. Moreover, they allow controlled release of the substance, increase its
bioavailability, and enhance absorption of some drugs across cell membranes. In the present
study, LON yielded cell viability similar to controls and LO in both ASCs and myometrial
cells, which could prove advantageous for future applications.

The size of a vesicular drug delivery system is a key factor in its biodistribution,
drug encapsulation, and pharmacokinetics [38]. LON size and polydispersity index were
found to be comparable with other niosomal vesicle-loading hydrophobic agents [39].
Moreover, LON size was smaller than liposomal globulus, afra, alternifolia, and other types
of essential oils encapsulated in phospholipid-based vesicular carriers [40].
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Zeta potential is a helpful tool for estimating the magnitude of colloidal particle inter-
actions and plays an important role in nanoparticle stability and biocompatibility [14,41].
LON zeta potential was −22.4 ± 0.9, which showed that the particles were negatively
charged and more stable against aggregation and fusion [14]. LO LE% in niosomes was also
comparable with other hydrophobic agent niosomal systems loaded with the same primary
components [42]. In this study, the storage stability of LON at −20 ◦C was studied in terms
of size, polydispersity, Zeta, and LE%; the results showed the same DLS parameters as well
as no leakage of the LO. Junyaprasert et al. also studied niosomes kept at 4 ◦C for 3 months
and reported the same DLS characteristics and LE% [43]. The resulting release profile is
comparable with release rates of other hydrophobic agents loaded inside niosomes, where
more than 20% of loaded silibinin was released in the first 6 h [42].

LO has shown antispasmodic properties in the ileum and uterine smooth muscle in
animal studies, increasing vasodilation and relieving pain and discomfort after labor [7].
It also has antimicrobial properties, successfully treating bacterial infections resistant to
antibiotics [44] and inhibiting fungal sporulation and respiration [45]. These properties
can be harnessed to develop pharmaceutical products using natural products in regenera-
tive medicine.

There was no significant difference between the viability of ASCs and myometrial
cells treated with blank niosomes and untreated cells, which means the nanoparticles are
biocompatible. The in vitro biocompatibility of niosomes was proved in our previous
studies using different cell types [15,30,46]. Toxicity tests revealed that both LO and LON
have cell viability similar to the normal culture medium, making them safe for use in cell
culture. The only exception was 0.063% LO, which showed lower viability in myometrial
cells. Although the viability significantly decreased in the highest dose, it still remained
over 70% in both LO and LON treatments.

5. Conclusions

This study has demonstrated that LO and LONs are safe to use in both stem cell and
differentiated cell cultures in vitro. Although LO has various beneficial effects, it may
be limited by a number of drawbacks, such as volatility, hydrophobicity, and viscosity.
The present study shows that loading LO into niosomal formulations can overcome these
disadvantages. Indeed, this approach shows high potential for use in regenerative medicine
in future pharmaceutical and biomedical applications.
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