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ABSTRACT Here, we report the complete and linear genome sequence of Streptomyces
sp. strain GQFP, isolated from the soil microbiome of the root of pharmaceutical plant
Elaeagnus pungens. The strain contained one 8,306,813-bp chromosome, with a GC con-
tent of 69.8%.

Microorganisms often play diverse and vital roles in the growth of pharmaceutical
plant hosts, such as stress tolerance, resistance to pathogens, promotion of plant

growth, and uptake of a diversity nutrient substances (1–4). The genomic information
of individual members of microorganisms facilitated our understanding toward coasso-
ciations between individual symbiotic microorganisms and pharmaceutical plant hosts.

Here, we have isolated the microbes from the soil sticking to the root of Elaeagnus
pungens, whose leaf is one of the antiasthmatic traditional Chinese medicines (5). A
strain of the genus Streptomyces was isolated from the soil sample. The strain was cul-
tured in ISP2 agar plates at 30°C for 7 days. The ISP2 agar plates contained 4 g/L yeast
extract, 10 g/L malt extract, 4 g/L glucose (pH 7.5), and 20 g/L agar. The strain was
then transferred into trypticase soy broth with yeast (TSBY) liquid medium in 250-mL
flasks at 30°C and 220 rpm for 5 days. The TSBY liquid medium contained 30 g/L tryp-
tone soya broth, 5 g/L yeast extract, and 103 g/L sucrose (pH 7.5). The mycelia were
harvested through centrifugation and washed twice in distilled H2O. After centrifuga-
tion, the mycelia were stored in 280°C for genome sequencing.

Genomic DNA was extracted from the mycelia using the cetyltrimethylammonium
bromide method (6). Sequencing of genomic DNA was conducted at Personalbio
(Shanghai Personal Biotechnology Co., Ltd., Shanghai, China). To construct libraries
with DNA fragments of different lengths, a whole-genome shotgun strategy was per-
formed first. Genomic sequencing was conducted using both the Pacific Biosciences
(PacBio) and Illumina HiSeq platforms. The PacBio sequencing platform produced
104,162 sequences and 905,073,920 bp of high-quality bases. PacBio sequences were
assembled with HGAP4 (7) and CANU v. 1.6 (8). For Illumina sequencing, the genomic
DNA was randomly fragmented to 400 bp. Through end polishing, A-tailing, and liga-
tion with adapters, the library was sequenced on an Illumina HiSeq platform, generating
2 � 150-bp paired-end reads. Raw data were further trimmed using AdapterRemoval v.
2.1.7 (9) to remove adapters and polished using SOAPec v. 2.0 (10). The Illumina HiSeq
platform generated 24,032,166 high-quality reads. Subsequently, the high-quality reads
from the Illumina HiSeq platform were used to polish the assembly generated by the
PacBio platform with Pilon v. 1.22 (11). The total genome was determined to comprise
8,306,813 bp with a GC content of 69.8%.

To obtain more information of the genome, further analysis was performed. A total
of 62 tRNAs were predicted by tRNAscan-SE v. 1.3.1 (12). The protein-coding gene pre-
diction was conducted using GeneMarkS v. 4.32 (13), thereby resulting in a total of
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7,479 protein-coding genes with the average length of 969.24 bp. Further functional
analyses of these genes were performed based on different databases, including the
NCBI nonredundant (NR) database (14), Nonsupervised Orthologous Groups (NOG)
(15), Kyoto Encyclopedia of Genes and Genomes (KEGG) (16), Swiss-Prot, and Gene
Ontology (GO) (17). To gain insight into the secondary metabolism of the strain,
antiSMASH v. 6.0 (18) was used to analyze the secondary metabolite biosynthetic gene
clusters with the “bacterial taxon” option. The analyses revealed a total of 24 putative
secondary metabolite biosynthetic gene clusters, which could generate siderophores
(19–21), lanthipeptides (22, 23), and terpenes (24–26). Default parameters were used
for all software.

The complete genome sequence revealed biological activities and potential sec-
ondary metabolites of the strain, which could provide valuable understanding toward
the coassociation between the strain with the plant host.

Data availability. The genome sequence has been deposited in GenBank under
the accession number CP089312, BioSample accession number SAMN24594572, and
BioProject accession number PRJNA794000. The raw sequencing data were deposited
in the SRA database under the accession number SRR18249970 and SRR18249971. The
features of the genome are summarized in Table 1.
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