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Abstract 

Messenger RNA-based medicines hold immense potential, as evidenced by their rapid deployment as 

COVID-19 vaccines. However, worldwide distribution of mRNA molecules has been limited by their 

thermostability, which is fundamentally limited by the intrinsic instability of RNA molecules to a 

chemical degradation reaction called in-line hydrolysis. Predicting the degradation of an RNA molecule is 

a key task in designing more stable RNA-based therapeutics. Here, we describe a crowdsourced machine 
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learning competition ("Stanford OpenVaccine") on Kaggle, involving single-nucleotide resolution 

measurements on 6043 102-130-nucleotide diverse RNA constructs that were themselves solicited 

through crowdsourcing on the RNA design platform Eterna. The entire experiment was completed in less 

than 6 months. Winning models demonstrated test set errors that were better by 50% than the previous 

state-of-the-art DegScore model. Furthermore, these models generalized to blindly predicting 

orthogonal degradation data on much longer mRNA molecules (504-1588 nucleotides) with improved 

accuracy over DegScore and other models. Top teams integrated natural language processing 

architectures and data augmentation techniques with predictions from previous dynamic programming 

models for RNA secondary structure. These results indicate that such models are capable of 

representing in-line hydrolysis with excellent accuracy, supporting their use for designing stabilized 

messenger RNAs. The integration of two crowdsourcing platforms, one for data set creation and another 

for machine learning, may be fruitful for other urgent problems that demand scientific discovery on 

rapid timescales. 

 

Introduction 

The chemical instability of RNA sets a fundamental limit on the stability of RNA-based 

therapeutics such as mRNA-based vaccines1-4. Better methods to develop thermostable RNA 

therapeutics would allow for increasing their potency, increasing the equitability of their distribution, 

and reducing their cost. A key prediction task underpinning the design of thermostable RNA 

therapeutics is the prediction of RNA hydrolysis from sequence and structure.  Previous models for RNA 

degradation have assumed that the probability of any RNA nucleotide linkage being cleaved is 

proportional to the probability of the 5' nucleotide being unpaired5. Computational studies with this 

model suggested that at least a two-fold increase in stability could be achieved through sequence 

design, while maintaining a wide diversity of sequences and features related to translatability, 
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immunogenicity, and global structure6. However, it is unlikely that degradation depends only on the 

probability of a nucleotide being unpaired: local sequence-and structure-specific contexts may vary 

widely. 

We wished to understand the maximum predictive power achievable for RNA degradation on a 

short timescale for model development. To do this, we combined two crowdsourcing platforms: Eterna, 

an RNA design platform, and Kaggle, a platform for machine learning competitions. Eterna has 

previously been able to solve near-intractable problems in RNA design7, 8, and the diversity of resulting 

structures on its platform have more recently contributed to advancing RNA secondary structure 

prediction9. We reasoned that crowdsourcing the problem of obtaining data on a wide diversity of 

sequences and structures would rapidly lead to a diverse dataset, and that crowdsourcing the second 

problem of obtaining a machine learning architecture would result in a model capable of expressing the 

resulting complexity of sequence- and structure-dependent degradation patterns. We hypothesized this 

"dual crowdsourcing" would lead to stringent and independent tests of the models developed, 

minimizing interplay between the individuals designing the constructs to test (Eterna participants) and 

the individuals building the models (Kaggle participants) and leading to better generalizability on 

independent data sets. 

The resulting models were subjected to two blind prediction challenges: the first was in the 

context of the Kaggle competition, where the data that Kaggle participants were scored on was not 

produced until after the challenge was set to the participants. The resulting models also demonstrated 

increased predictive power in a completely independent challenge of predicting the overall degradation 

of full-length mRNAs encoding the protein nanoluciferase, which were experimentally tested in a 

different wet lab pipeline. The models therefore appear immediately useful for guiding design of low 

degradation mRNA molecules. Analysis of model performance suggests that the task of predicting RNA 

degradation patterns is limited by both the amount of data available as well as the accuracy of the 
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structure prediction tools used to create input features.  Further developments in experimental data 

and secondary structure prediction, when combined with network architectures such as those 

developed here, will further advance RNA degradation prediction and therapeutic design. 

 
Results 

Dual-crowdsourced competition design and assessment. The aim of the OpenVaccine Kaggle competition 

(Fig. 1A) was to develop computational models for predicting RNA degradation patterns. We asked 

participants on the Eterna platform to submit RNA designs using a web-browser design window (Fig. 1B), 

which resulted in a diversity of sequences and structures (Fig. 1C). 150 participants in total (Table S1) 

submitted sequences. A secondary motivation was an opportunity for participants to receive feedback 

on RNA fragments they may wish to use in mRNA design challenges described in ref. 6. 3029 RNA 

designs of length 107 nt were collected in the first "Roll-Your-Own-Structure" round I (RYOS-I), which 

was opened March 26, 2020, and closed upon reaching 3029 constructs on June 19, 2020 (Fig. 1D).  

We then obtained nucleotide-level degradation profiles for the first 68 nucleotides of these 

RNAs using In-line-seq6, a novel method for characterizing in-line RNA degradation in high-throughput 

for the purposes of designing stabilized RNA therapeutics. Degradation profiles were collected in four 

different accelerated degradation conditions, and the structures of the constructs were also 

characterized via selective 2' hydroxyl acylation with primer extension (SHAPE; termed "Reactivity" 

below)10, 11, a technique to characterize RNA secondary structure. The Kaggle competition was designed 

to create models that would have predictive power for all five of these data types, given RNA sequence 

and secondary structure as input (Fig. 1E). In total, each independent construct of length 68 required 

predicting 5x68 values for the 5 data types. In addition to these experimental data, Kaggle participants 

were also provided with features related to RNA secondary structure computed from available 

biophysical models to use if they wished. These features included 107x107 base pairing probability 

matrices from EternaFold6, a recently developed package with state-of-the-art performance on RNA 
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structural ensembles; 107-character strings representing the minimum free energy (MFE) RNA 

secondary structure from the more widely used Vienna RNA package; and a six-character featurization 

of the MFE structure developed for the bpRNA database12. 

We developed training and public test datasets from the RYOS-I dataset (Fig. 2). The 3029 

constructs were filtered for those with mean signal-to-noise values greater than 1, resulting in 2218 

constructs (Fig. 2, dark blue track). These constructs were segmented into splits of 1179 in the public 

training dataset, 400 constructs in the public test set, and 639 in the private test set. The sequences that 

did not pass the signal-to-noise filter were also provided to Kaggle participants with the according 

description. The RYOS-I data contained some "clusters" of sequences where Eterna players included 

many small variations on a single sequence (clusters visible in Fig. 1C). To mitigate the possibility of 

sequence motifs in these clusters biasing evaluation, we segmented the RYOS-I data into a public 

training, public test, and private test sets by clustering the sequences and including only sequences that 

were singly, doubly, or triply-clustered in the private test set. This strategy was described to Kaggle 

participants.  

To ensure that the majority of the data used for the private test set was fully blind, we initiated 

a second "Roll-your-own-structure" challenge that was launched for Eterna design collection on August 

18, 2020. Design collection was closed on September 7th, three days before the launch of the Kaggle 

challenge on September 10th. The RYOS-II wet-lab experiments were conducted concurrently with the 

Kaggle challenge, enabling a completely blind test for the models developed on Kaggle. The Kaggle 

competition was closed on October 6th. The RYOS-II was similarly clustered and filtered to ensure that 

the test set used for scoring consisted primarily of singly- and double-clustered constructs.  Models were 

scored on the mean column RMSE (MCRMSE) across three data types. While the submission format 

required that all 5 be predicted, only three data types were collected in the testing wet-lab experiments 

(SHAPE; 10 mM Mg2+, pH 10, 1 day, 24 ˚C; and no Mg2+, pH 10, 1 day, 50 ˚C) and only these data types 
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were scored: Reactivity, deg_Mg_pH10, and deg_Mg_50C. Given that useful models for degradation 

should be agnostic to RNA length, we designed the constructs in RYOS-II to be 34 nucleotides longer 

(102 vs. 68 nts) than the constructs in RYOS-I to discourage modelling methods that would overfit to 

constructs of length 68.  

 
Performance of Kaggle teams and common attributes of top-performing models. During the 

three week competition period, 1,636 teams submitted 35,806 solutions. Overall performance of teams 

vs. baseline models for RNA degradation are depicted in Figure 3A. Kaggle entries significantly 

outperformed the "DegScore" linear regression model for RNA degradation reported in ref. 6, by more 

than 50% in MCRMSE (Fig. 3A). Kaggle participants developed feature encodings beyond what was 

provided. One of the most widely-used community-developed featurizations was a graph-based distance 

embedding depicted in Fig. 3B. Many architectures used a combined autoencoder/GNN/GRU model, 

including the architectures of the top two solutions (Fig. 3C and Fig. 3D, respectively). Many teams cited 

pseudolabeling and generating additional mock data as being integral to their solutions. The machine 

learning practice of pseudolabeling involves using predictions from one model as "mock ground truth" 

labels for another model. Effective pseudolabeling usually requires a high level of accuracy of the 

primary model and is most frequently used with classification problems. To generate additional mock 

data, participants generated random RNAs as well as structure featurizations using 5 different secondary 

structure prediction algorithms using the package Arnie (https://github.com/DasLab/arnie) and 

iteratively scored based on these predictions for their model as well (see Supplement for more detailed 

descriptions of solutions from Kaggle teams).  

Ensembling models. Motivated by applications to design of stabilized mRNA, we explored 

whether increased accuracy in modeling might be achieved by combining models. A common feature of 

Kaggle competitions is that winning solutions are dissimilar enough that ensembled models frequently 

improve predictive ability. We used a genetic algorithm to ensemble maximally 10 of the top 100 
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models. The score on the public dataset was used to optimize, with the final ensembled model 

evaluated on the private dataset. With this method, ensembling achieved a Public score of 0.2237 

(compared to the best Public LB score of 0.2276) and a Private score of 0.3397 (compared to the best 

Private test set score of 0.3420). In comparison, averaging the outputs of the top two models gave a 

result of 0.2244 Public, 0.33788 Private. Blending the top two solutions with the 3rd solution did not 

improve the result. An estimated bound of ensembling can be found by optimizing directly to the Private 

ensemble score. With this method, it was possible to achieve a Private ensemble score of 0.3382 (again, 

vs LB 0.3420). The improvement of 0.0038 over the leaderboard for this last approach is about the 

distance between the 1st place and 10th place teams, and the "correct" way gives an improvement that 

is the distance between the 1st and 5th place teams. All these experiments suggest that most of the 

signal has been captured by the top two models, and that the use of further ensembling provides, at 

best, modest improvements. The seemingly puzzling result that the simple ensemble of the top two 

models outperforms the genetic algorithm blend of the top 10 (on the private test set) can be attributed 

to increase of the search space. The search space for the 10 different blending weights is substantially 

larger than for just a single weight, and it is very likely that the algorithm found a local, rather than 

global, minimum.  

 
Top models are capable of deep representation of RNA experimental motifs. We analyzed predictions 

from the first-place model ("Nullrecurrent") in depth to better understand its performance. Across all 

nucleotides in the private test set, 41% of nucleotide-level predictions for SHAPE reactivity agreed with 

experimental measurements within an error that was lower than experimental uncertainty; for 

comparison, if experimental errors are distributed as normal distributions, a perfect predictor would 

agree with experimental values over 68% of data points. For Deg_Mg_pH10, 28% of predictions were 

within error, and for Deg_Mg_50C, 42% of predictions were. The nucleotides with the largest root mean 

squared error (RMSE) in the Deg_Mg_pH10 data type were any nucleotide type in bulges, and U's in any 
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unpaired context. Fig. 4A depicts representative constructs with the lowest RMSE for the Deg_Mg_pH10 

data type out of the private test data, demonstrating that a diverse set of structures and structure 

motifs were capable of being predicted correctly. Aggregating the predictions from the Nullrecurrent 

model over secondary structure motifs (Fig. 4B) demonstrates that the Nullrecurrent predictions by 

motif captured patterns observed in the experimental signal in human expert analysis -- e.g., 

asymmetric loops exhibited higher degradation than symmetric loops. Constructs with the highest RMSE 

demonstrate indicators that the provided structure features were incorrect. Fig. 4C depicts two 

constructs with the highest RMSE for the SHAPE modification prediction. The SHAPE data for the first 

construct, "2204Sept042020", has high reactivity in predicted stem areas, indicating the stems were 

unfolded in solution. In contrast, construct "Triple UUUU Tetraloops" has experimentally low reactivity 

in the exterior loop, suggesting that a stem was present. However, we found no correlation between the 

EternaScore, an indicator of how closely the experimental reactivity signal matches the predicted 

structure, and RMSE summed per construct for the private test constructs, suggesting that in general, 

quality of the input structure features was not a limitation in model training. 

 
Kaggle models show improved performance in independent mRNA degradation prediction. As an 

independent test for the top two Kaggle models, we ran predictions for a dataset of full-length 

messenger RNAs (mRNAs) from ref. 6. These data were not publicly available at the time of the Kaggle 

competition. The lengths of these mRNAs ranged from 504 to 1588 with a median length of 928, nearly 

10-fold times longer than the longest RNA fragments used in the OpenVaccine Kaggle challenge (full 

dataset, attributes, and calculations in Table S2). The PERSIST-seq method was developed to determine 

the degradation rate of the coding sequence of an mRNA. To compare the Kaggle predictors, which 

make predictions per nucleotide, to this single value for degradation, we made predictions for all 

nucleotides in the full mRNA constructs and summed the predictions from the region that was captured 

in the PERSIST-seq method by reverse-transcription PCR which, in most cases, included the mRNA's 5' 
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untranslated region (UTR) and coding sequence (CDS) (Fig. 5A). Carrying out predictions on the full RNA 

sequence and then summing over the probed window allows to account for interactions between the 

untranslated regions and CDS, as can be seen for two example constructs in Fig. 5B -- nucleotides in the 

5' and 3' UTRs are predicted to pair with the CDS.  We made predictions for 188 mRNAs in 4 classes: a 

short multi-epitope vaccine (MEV), the model protein Nanoluciferase, with one class consisting of varied 

UTRs and a second consisting of varied CDSs, and enhanced Green Fluorescent Protein (eGFP).  We 

found that the Kaggle second-place "Kazuki2" model exhibited the highest correlation to fit half-lives, 

followed by the Kaggle 1st-place "Nullrecurrent" model (Fig. 5C), with Spearman correlation coefficients 

of -0.48 and -0.41, respectively. Both Kaggle models outperformed unpaired probability values from 

EternaFold (R=-0.31), the same kind of inputs provided to participants in the competition, the DegScore 

linear regression model (R=-0.36), and an additional benchmark model prepared after the Kaggle 

competition exploring the use of XGBoost13 training with the DegScore featurization (R=-0.42). An 

ensemble of the Nullrecurrent and Kazuki2 models did not outperform the Kazuki2 model (R=-0.45), 

again suggesting that the models themselves had reached their predictive potential. In comparison, 

resampling the measured degradation rates from within error and calculating this correlation 

coefficient, as a measure of the upper limit of experimental noise, resulted in a Spearman correlation of 

-0.95 (Table 1). 

 
 
Discussion 

The OpenVaccine competition uniquely leveraged resources from two complementary crowd-sourcing 

platforms: Kaggle and Eterna. The participants in the Kaggle competition were tasked with predicting 

stability measurements of individual RNA nucleotides. The urgency of timely development of a stable 

COVID-19 mRNA vaccine necessitated that the competition be run on a relatively short timeframe of 

three weeks, as opposed to three months, which is more common with the Kaggle competitions. Kaggle 
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competitions with relatively small datasets can be subject to serious overfitting to the public 

leaderboard, which often leads to a major "shake up" of the leaderboard when the results on the 

unseen test set are announced. In this competition the shakeup was minimal - most of the top teams 

were ranked close to the same position on the private leaderboard as they were on the public 

leaderboard. As the private leaderboard was determined on data that had not been collected at the 

time of the competition launch, this result suggests that the models that were developed are robust and 

generalizable. Furthermore, the models generalized to the task of predicting degradation for full-length 

mRNA molecules that were ten-fold longer than the constructs used for training. We speculate that the 

use of a separate, independently collected data set for the private leaderboard tests -- a true blind 

prediction challenge -- was important for ensuring generalizability. The winning solutions all used neural 

network architectures that are commonly used with modeling of 1D sequential data: recurrent NNs 

(LSTMs and GRUs) and 1D CNNs. The effectiveness of pseudolabeling suggests two things: more data will 

likely benefit any future modeling efforts, and the simple neural networks that were used have enough 

capacity to benefit from more data. Future directions for model development includes training such 

models on larger chemical mapping datasets from more diverse experimental sources9, and integrating 

into inference frameworks for RNA structure prediction9, 14. 
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Methods 
 

Initial feature generation.  As a starting point for Kaggle teams, we supplied a collection of 

features for each RNA sequence, including the minimum free energy (MFE) structure according to the 

ViennaRNA 2 energy model15, loop type assignments generated with bpRNA12 (S=Stem, E=External Loop, 

I=Internal loop, B=Bulge, H=Hairpin, M=Multiloop, X=Dangle) and the base pair probability matrix 

according to the EternaFold9 energy model. These features were generated using Arnie 

(https://github.com/DasLab/arnie).   

Experimental data generation. The first experimental dataset used in this work, for the public 

training and test set, resulted from the "Roll-Your-Own-Structure" Round I lab on Eterna, and had been 

generated previously in ref. 6.  

The second experimental dataset used in this work, for the private test set, was generated for 

this work specifically. To produce these data, and for precise consistency with the public training and 

test set, In-line-seq was carried out as described in ref. 6), Methods section "High-throughput in-line and 

SHAPE probing on Eterna-designed RNA fragments (In-line-seq)." Chemical mapping protocols were 

taken from ref. 10.  

As a high-level summary of that method, DNA templates were ordered via custom 

oligonucleotide pool from Custom Array/Genscript, prepended by the T7 RNA polymerase promoter. 

Templates were amplified via PCR, transcribed to RNA via the TranscriptAid T7 High Yield Transcription 
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Kit (Thermofisher, K0441), and the purified RNA was subjected to degradation conditions: 1) 50 mM Na-

CHES buffer (pH 10.0) at room temperature without added MgCl2; 2) 50 mM Na-CHES buffer (pH 10.0) 

at room temperature with 10 mM MgCl2; 3) phosphate buffered saline (PBS, pH 7.2; Thermo Fisher 

Scientific-Gibco 20012027) at 50¡C without added MgCl2; and 4) PBS (pH 7.2) at 50¡C with 10 mM 

MgCl2. Reactions were quenched for data collection at 0 and 24 hour time points (+MgCl2) or 0 and 7 

day time points (-MgCl2). In parallel, purified RNA was subjected to SHAPE structure probing conditions, 

and one sample was subjected to the SHAPE protocol absent addition of the 1-methyl-7-nitroisatoic 

anhydride reagent. 

cDNA was prepared from the six RNA samples (SHAPE probed, control reaction, and four 

degradation conditions). We pooled 1.5 μL of each cDNA sample together, ligated with an Illumina 

adapter, washed, and resuspended the ligated product, which was quantified by qPCR, sequenced using 

an Illumina Miseq, and analyzed using MAPseeker (https://ribokit.github.io/MAPseeker) following the 

recommended steps for sequence assignment, peak fitting, background subtraction of the no-

modification control, correction for signal attenuation, and reactivity profile normalization. 

The third experimental dataset used in this work, for an independent test of the top models, 

was a PERSIST-seq data set for in solution stabilities of full-length mRNAs taken from ref. 6. 

Data availability. All datasets are downloadable in raw RDAT format from rmdb.stanford.edu at 

the following accession numbers: SHAPE_RYOS_0620, RYOS1_NMD_0000, RYOS1_PH10_0000, 

RYOS1_MGPH_0000, RYOS1_50C_0000, RYOS1_MG50_0000, RYOS2_1M7_0000, RYOS2_MGPH_0000, 

RYOS2_MG50_0000. Kaggle-formatted train and test sets are downloadable from 

https://www.kaggle.com/c/stanford-covid-vaccine.  

Model availability. Code to run the Nullrecurrent model and the DegScore-XGBoost model is 

available at www.github.com/eternagame/KaggleOpenVaccine.  Code to use and reproduce the linear 

regression DegScore model is available at www.github.com/eternagame/DegScore. 
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Figures and Figure captions 

 
Figure 1. Dual-crowdsourcing setup for creating predictive models of RNA degradation. A. Screenshot of 
the OpenVaccine Kaggle competition, public leaderboard. B. Screenshot of an example construct 
designed by an Eterna participant in the "Roll Your Own Structure" challenge ("rainbow tetraloops 7" by 
Omei). C. tSNE16 projection of training sequences of "Roll-Your-Own-Structure" Round I, marker style 
and colors indicating 150 Eterna participants. Lines indicate example short 68 nt RNA fragments. D. 
Timelines of dual crowdsourced challenges. Eterna participants designed datasets that were used for 
training and blind test data for Kaggle machine learning competition to predict RNA chemical mapping 
signal and degradation.  E. Kaggle participants were given RNA sequence and structure information and 
asked to predict RNA degradation profiles and SHAPE reactivity.  
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Figure 2. Signal-noise filtering and hierarchical clustering was used to filter the constructs designed by 
Eterna participants to create a test set of constructs that were maximally distant from other test 
constructs. Heatmaps of datatype "deg_Mg_pH10". 
 
 

 
 
Figure 3. Deep learning strategies used in competition. (A) Public test vs. private test performance of all 
teams in Kaggle challenge. Black star: experimental error. Red star: DegScore baseline model (Leppek, 
2021)6. (B) Distance embedding used to represent nucleotide proximity to other nucleotides in 
secondary structure. (C) Schematic of the single neural net (NN) architecture used by the first place 
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solution. This solution combined two sets of features into a single NN architecture, which combined 
elements of classic RNNs and CNNs. (D) Schematic of the full solution pipeline for the second place 
solution. This solution combined single model neural networks, similar to the ones used for the first 
place solution, with more complex 2nd and 3rd level stacking using XGBoost13 as the higher level 
learner.  
 

 
Figure 4. Deep-learning models can represent RNA-structure-based observables. (A) Experimental error 
for private dataset vs. RMSE from winning Nullrecurrent model. (B) Representative structures from the 
best-predicted constructs from SHAPE modification (top row) and degradation at 10 mM Mg2+, pH 10, 1 
day, 24 ˚C (Deg_Mg_pH10, bottom row). (B) Nullrecurrent model predictions and experimental signal, 
averaged over secondary structure motifs. (C) One failure mode for prediction came from constructs 
whose input secondary structure features were incorrectly predicted. 
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Figure 5. Kaggle models demonstrate improved performance in independent test of degradation of full-
length mRNAs. (A) Kaggle models were tested against predictors in ref. 6 in their ability to predict net 
degradation measurements from the PERSIST-seq technique. The PERSIST-seq technique measures the 
degradation of the CDS region. Predictions were made for the full constructs, and values from the CDS 
region summed to compare to PERSIST-seq measurements of CDS region degradation. (B) 
Representative structures from ref. 6 of a destabilized mRNA ("Yellowstone", left) and a stabilized mRNA 
("LinearDesign-1", right). (C) Four mRNA types were part of the test dataset: a short Multi-Epitope 
Vaccine (MEV), Nanoluciferase with varied UTRs, Nanoluciferase with varied CDS regions, and enhanced 
Green Fluorescent Protein (eGFP). (D) Length-normalized predictions from the Kaggle 1st place 
"Nullrecurrent" model and Kaggle 2nd place "Kazuki2" model show improved prediction over unpaired 
probabilities, the DegScore linear regression model6, and a version of the DegScore featurization with 
XGBoost13 training. 
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 Public test set 
(400 
constructs, 
27200 
nucleotides) 

Private test set (1801 
constructs, 162316 
 nucleotides) 

mRNA degradation 
prediction from ref. 6 
(188 constructs)  

Metric MCRMSE MCRMSE Spearman Correlation 

Experimental error 0.12491 0.10571 -0.951 

Single Model (blind prediction)    

DegScore 0.48724 0.52772 
 

-0.36 

Nullrecurrent 0.22758 0.34198 -0.41 

Kazuki2 0.22756 0.34266 -0.48 

Ensembled models (post hoc)    

Genetic algorithm (10 of top 100 
selected) 

0.2237 0.3397       

Ensemble top 2 models 0.2244 0.33788 -0.45 

Genetic algorithm on private test 
set 

 0.3382 -- 

 
Table 1. Results from models tested in this work on Kaggle OpenVaccine public leaderboard, private test 
set, and orthogonal mRNA degradation results. 1Bootstrapped Spearman correlation of degradation rate 
(resampled from experimental error) to half-life.      
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Supporting information: Solution descriptions from Kaggle teams 
 
1st Place - Jiayang Gao (also called "Nullrecurrent" model) 
My final submission is a simple ensemble of 4 models, each starts with an auto-encoder pretrained GNN 
architecture, followed by LSTM, GRU or Wavenet layers. My model takes in two kinds of features,  (1) 1D 
features with length n (the length of the mRNA sequence), representing features at each location of the 
sequence; (2) 2D features with size n^2, representing "distance" or "relationship" concepts between 
each pair. The strongest 1D features are the distance to the closest paired position, as well as the 
distance to the closest unpaired position - reactivity increases as the distance to the closest paired 
position becomes larger. The strongest 2D feature is the distance between each pair in the primary 
pairing based graph - this allows the model to capture the "neighbors" caused by pairing. One major 
difficulty of this problem is generalizing the model to different sequence lengths, and I use a semi-
supervised approach to make my model more generalizable. In particular, I randomly generate 
sequences of different length, calculate their BPP matrix and pairing structure using the Arnie library, 
pseudo label their targets, and train them together with the original train dataset. This semi-supervised 
learning approach is particularly useful in this problem, for which sample size is small and labeled data is 
expensive to obtain. 
https://www.kaggle.com/c/stanford-covid-vaccine/discussion/189620 
 
 
2nd Place - Kazuki ** 2 (also called "Kazuki2" model) 
The mRNA sequence is not just a linear series of data, but also constitutes a loop by pairing between 
specific bases. Therefore, we thought of constructing LSTM/GRU and GNN independently, and 
integrating the prediction results with XGBoost. The base pair probabilities (bpps) are calculated by 
prediction, and the calculation results differ depending on the algorithm used. Therefore, we used 
several algorithms in Arnie to predict base pairs, and used these algorithms as data augmentation and 
input multiple bpps simultaneously to improve the performance. We prepared 38 LSTM/GRU-based and 
49 GNN-based bpps by changing the types of bpps and their architectures, and integrated them with 
XGBoost to help improve the stability of prediction. Also, since the sequences in the test set tended to 
be longer than those in the training data, we confirmed in preliminary experiments that the model 
trained by shortening the sequences in the training data (107 to 88) was applicable to sequences of the 
original length (107). 
https://www.kaggle.com/c/stanford-covid-vaccine/discussion/189709 
 
3rd Place - Striderl 
My solution is an ensemble of various models of different structures and different training techniques. I 
added various LSTM/GRU/wavenet layers at the end of the AE pretrained GNN structure, in which 2 x 
128 units of LSTM or GRU layers work the best for me. Besides the common features used by other 
teams like structure adjacency matrix and neighbor adjacency matrix, I used RNAComposer to generate 
3D structures for each sample in the competition, and used predicted 3D distance to form the distance 
matrix. I used Arnie to predict other possible base pairs as data augmentation. Besides, another 
augmentation I used was to reverse the sequence and targets. The two augmentations quadruple the 
size of the original data. I also used pseudo labeling technique to iteratively improve my best single 
model. 
 
4th Place - FromTheWheel & Dyed & StoneShop 
The 4th place solution is a blend of 4 different models, in which the RNN layers were varied 
(LSTM+LSTM, LSTM+GRU, GRU+LSTM and GRU+GRU). We represent the RNA sequences as graphs 
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where each base corresponds to a node. The network then learns a representation for each of these 
graphs and passes this representation through bi-directional RNN layers to obtain a sequence of 
predicted targets. Both the edge and node features were derived from the given sequence and provided 
Base Pairing Probability (BPP) matrix. One-hot-encoded bases (A, G, C, or U), one-hot-encoded positional 
feature (the remainder of the base index divided by 3), one-hot-encoded loop types, loop type 
probabilities (CapR) and BPP sum and number of zero's were beneficial node features. The distances 
(manhattan) between bases, normalized by sequence length and whether there is a base-pairing 
indicated in the structure were used as edge features. All these features were also inferred for newly 
generated BPP matrices, generated with 6 libraries available within the ARNIE software package. The 
new information derived from the CONTRAfold library was the most useful for this task, followed by 
RNAsoft, RNAstructure and Vienna. We also tried to use 3D angle information (binned and then 
categorically encoded) extracted with AMIGOS: this boosted our simple LSTM architecture used to fast 
check the feature importance but deteriorated the performance of our final model.  
 
5th Place - tito 
My solution is a simple ensemble of GNN-based model and GRU/LSTM-based model.  The features are 
not significantly different from those used by the other teams.  I focused mainly on augmentation.  (1) I 
used eternafold, vienna, nupack, contrafold and rnasoft to extract structure and loop_type. These 
backend engines are used to extract additional bpps too.  Especially eternafold and contrafold worked 
well.  (2) In this competition, the sequence length of the test data was longer than that of the training 
data, so we added a dummy sequence to the training data.  (3) I added reversed sequence to training 
data.  I think augmentation was important in this competition. 
 
6th Place - nyanp 
The data in this competition is very unique in two ways: 1) the sequence length is different between the 
training data and the private test data, and 2) the sequence has long-term dependencies via pairing. My 
NN model is constructed by stacking 1D SE-ResNet Layer and Graph Convolution Layer in order to make 
the model invariant to sequence length and to capture the long-term dependency. The Graph 
Convolution Layer is computed by a simple sum of products of the BPP matrix or adjacency matrix and 
the sequence feature vector. The best single model was ranked 42nd (0.35045) on the private 
leaderboard, while it was 513th (0.24371) on the public leaderboard. This indicates that my model is 
more robust to changes in sequence length compared to the other participants. Best ensemble achieved 
MSRMSE's of 0.23069/0.34538 on the public/private leaderboard by combining 4 different 
architectures. 
https://www.kaggle.com/c/stanford-covid-vaccine/discussion/189241 
https://www.kaggle.com/nyanpn/6th-place-cnn-gcn 
 
7th Place - One architecture 
Main features for my solution used were base pairing probability matrix, nucleotide sequence, structure, 
and loop type. Additionally, an inverse distance matrix (nucleotides at position i and j have distance |i-j| 
between them) was added to the base pairing probability matrix before inputting it as a bias for the self-
attention matrix. The conventional type of positional encoding as detailed in the original transformer or 
learnable positional encoding were not used; instead, position was encoded by the inverse distance 
matrix. Further, 5 secondary structure packages were used to generate pairing probability matrix, 
structure, and loop type at 37 and 50 C, resulting in 10 sets of features for each sequence. The 
architecture used was almost identical to bert aside from the 1D/2D convolution/deconvolution layers 
(without padding). The core module (ConvTransformerEncoder) was constructed as follows: (1) 1D 
convolution on the sequence of encodings and 2D convolution on the bpp feature map. (2) self-
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attention with bpp feature map as additive bias (3) position wise feedforward network. (4) 1D 
deconvolution on the sequence of encodings and 2D deconvolution on the bpp feature map. All 
available sequences were used to pretrain (unsupervised) models on randomly mutated or masked (with 
NULL token) sequence retrieval loss (basically just softmax to retrieve correct 
nucleotide/structure/loop). For convenience, two linear decoders were initialized before pretraining, 
one for sequence retrieval, and another for degradation predictions later on. The Ranger optimizer was 
used with a flat and anneal schedule. Some sequences were excluded during training on degradation 
targets based on signal to noise threshold (0.25, 0.5, or 1). My biggest discovery from this competition is 
that the vanilla positional encoding used in the original transformer paper does not generalize well to 
this task at least. It seems that the type of positional encoding used in most transformers does not 
adequately describe the concept of position, which is fine for NLP because I believe order and position 
of words are not as important as for RNA. The vanilla positional encoding is more of an absolute 
positional encoding, whereas the inverse distance basically encoders relative position in a very simple 
way that generalized better to longer sequences. Best ensemble achieved MSRMSE's of 
0.23056/0.34550 on the public/private leaderboard.  
 
8th Place - ishikei 
My solution is an ensemble of GRU/LSTM and GNN. Each model is AE pretrained with all data. For 
features, bpps was augmented with different temperature parameters (T=37, 50) using the ARNIE 
package (vienna, nupack, rnastructure, rnasoft, eternafold, contrafold). I also added the shannon 
entropy at each base position. Because all of the data in this competition are predicted values except for 
the sequence, I think it would have been effective to use an ensemble of bpps predictions from various 
algorithms. At high temperature: Since the secondary structure of RNA is temperature-dependent, I 
think it was effective to use bpps with T changed as input. At high pH: Alkaline hydrolysis of RNA can 
occur at any position in the sequence (probably) as well, so I think the prediction itself is difficult. 
https://www.kaggle.com/c/stanford-covid-vaccine/discussion/190314 
 
9th Place - Keep going to be GM 
The big issue of this contest is that the train and test RNA sequence lengths are different, and the data 
contains noise. The RNA sequence length used for training was 107, and the final ranking was obtained 
for 130 sequences. Different models with fluent feature engineering to enhance the generalization of 
predictions. Because RNA can have both graph and sequence, traditional recurrent neural networks 
(LSTM, GRU), transformer and graph-neural networks were applied. For feature engineering, (A, G, C, or 
U) were represented by embedding layers. And, various (N, N) adjacency matrices called bpps, which are 
probabilities of being linked between nucleotides are calculated with various softwares, such as 
CONTRAFold, RNAFold. The statistical features such as ratio of (A, G, C, or U) in sequence are added.  has 
are also included.I created the (N, N) matrix for fixed attention in various ways. Bpps was created using 
several packages. The distance matrix was augmented using gaussian. With these features,  dozens of 
models were created by differing hyperparameters of sequential blocks and graph convolution layers. 
https://www.kaggle.com/c/stanford-covid-vaccine/discussion/189845 
 
11th Place - Social Distancing Please 
Our solution is an ensemble of multiple models. There are mainly 2 types of models. The first type is a 
combination of 1D Convolution Layers, Graph Convolution Layers, and RNN Layers. The second type is a 
combination of WaveNet layers and RNN Layers. The most powerful features are the adjacency matrices 
constructed by the given structure sequence and the given base-pair probabilities. The adjacency 
matrices are used for the Graph Convolution Layers. Another useful trick we have used is to apply a 
lower training weight to the top 6 sequence position, it is because the sequence start is similar across 
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the different sequences. We also used 2 different Linear Regression models to ensemble the predictions 
in different sequence positions that are seqpos[:6] and seqpos[6:].  
 
13th Place - The Machine 
The main idea behind our approach is generating bpp matrices from all the libraries included in Arnie, 
training a model from the output structures of each library and finally creating an ensemble of all the 
trained models. Although each library provides sub optimal bpp, their consensus provides a better 
solution. We also included several architectures in the ensemble and the best of them consisted of 1D 
convolution, static graph convolution and bi-directional LSTM layers. A static graph convolution layer 
processes each two connected nucleotides in the predicted secondary structure (zeros added when a 
nucleotide isn't connected). All our models were trained on all the data using self supervised learning 
then fine-tuned on the training data only using supervised learning. 
 
 


