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The ataxia-telangiectasia mutated (ATM) protein kinase has been extensively studied 
for its role in the DNA damage response and its association with the disease ataxia 
telangiectasia. There is increasing evidence that ATM also plays an important role in 
other cellular processes, including carbon metabolism. Carbon metabolism is highly 
dysregulated in cancer due to the increased need for cellular biomass. A number of 
recent studies report a non-canonical role for ATM in the regulation of carbon meta-
bolism. This review highlights what is currently known about ATM’s regulation of carbon 
metabolism, the implication of these pathways in cancer, and the development of ATM 
inhibitors as therapeutic strategies for cancer.
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inTRODUCTiOn

Ataxia-Telangiectasia Mutated (ATM)
Ataxia-telangiectasia mutated is a serine/threonine kinase that is recruited to sites of DNA double-
strand breaks and signals to various downstream targets to initiate cell cycle arrest and DNA repair 
(1). Although mainly nuclear, ATM is also found in the cytoplasm and mitochondria (2, 3). In the 
phosphatidylinositol kinase-related family, ATM consists of many conserved domains and is a 
tumor suppressor (4). Its kinase domain is flanked by a FAT (FRAT, ATM, and TRRAP) and FATC 
(C-terminus) domain (5, 6). The function of the FAT domain has yet to be elucidated; however, 
the FATC domain is essential for kinase activity (7, 8). In addition, ATM has a leucine zipper 
domain, which is important for its kinase function but not required for dimerization (9). Finally, 
the N-terminus of ATM encompasses HEAT (huntingtin, elongation factor 3, A subunit of protein 
phosphatase 2A, and TOR1) repeats, which form helices that interact with various macromolecules 
and play a role in ATM’s kinase function (10, 11).

The activity of ATM in response to DNA damage has been extensively studied as ATM is known as 
the central regulator of the DNA damage response (DDR). During induction of DNA double-strand 
breaks, the MRN complex, containing Mre11, Rad50, and Nbs1, binds to the damage site (1). ATM 
is then activated and autophosphorylates its inactive dimer at serine 1981 (12). Monomeric, active 
ATM is then recruited to the damage site, where it phosphorylates downstream targets including 
SMC1, Nbs1, Chk2, BRCA1, and histone H2AX (13, 14). In addition, ATM phosphorylates p53 
at serine 15 (15, 16). Activation and repression of ATM’s downstream targets ultimately leads to 
senescence, genome repair, or apoptosis (17).

ATM is the primary gene mutation in ataxia telangiectasia (A-T) (18, 19). A-T is primarily docu-
mented as an immunodeficiency and neuronal degeneration disorder affecting 1:40,000–1:100,000 
people worldwide (18, 20). Inherited in an autosomal recessive manner, patients typically produce 
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symptoms of delayed development due to neurodegeneration, 
deficient immune response, and predisposition to cancer. 
Approximately 10–15% of ATM null A-T patients develop child-
hood leukemia and lymphoma, specifically T-cell prolympho-
cytic leukemia (21, 22). In addition, patients are predisposed to 
breast cancer, pancreatic cancer, and melanoma (23). Renwick 
et  al. conducted an unbiased screen in familial breast cancer 
patients and identified a number of premature truncations and 
missense variants in ATM that predispose patients to cancer (24). 
Furthermore, immunohistochemical staining of ATM and p53 in 
pancreatic tumor samples reveal that tumoral loss of ATM with 
wild-type p53 correlates with a decrease in patient survival, espe-
cially in families with a history of pancreatic cancer (25). Finally, 
somatic ATM mutations are implicated in increased melanoma 
risk (26). Moreover, ATM repairs mitochondrial genome defects, 
and loss of ATM leads to mitochondrial dysregulation (27). A-T 
patients have alterations in metabolism, including fluctuations 
in glucose metabolism (28). In addition, low NAD+ and SIRT1 
levels are observed in rat models of A-T (29). These observations 
lead to the investigation of the role of ATM in metabolism.

Carbon Metabolism in Cancer
Carbon metabolism is defined as the breakdown of carbon 
sources, such as glucose and amino acids, to be utilized for 
cellular energy. Alteration in carbon metabolism is a hallmark 
of cancer (30). Highly proliferative cancer cells predominantly 
proceed through aerobic glycolysis rather than the TCA cycle, 
termed the Warburg effect, requiring high intake of glucose and 
glutamine (31). This allows cancer cells to compete in a nutrient 
depleted environment to reduce reactive oxygen species (ROS), 
generate ATP, and produce dNTPs for proliferation (32, 33). This 
emphasizes the importance in studying carbon metabolism in 
cancer and using this knowledge to discover novel, metabolic-
based therapeutics.

MeTABOLiC ROLeS OF ATM

ATM and ROS
Apart from its role in the DDR, ATM has more recently been 
implicated in sensing ROS. The role of ATM in ROS sensing has 
been extensively reviewed (34, 35). Here, we will focus on the 
coupling of ATM-mediated ROS sensing in cellular metabolism.

In 2011, Cosentino et  al. published a pivotal paper linking 
ROS and the pentose phosphate pathway (PPP) (36). The PPP 
acts as the de novo pathway for deoxyribonucleotide (dNTP) 
synthesis, important for proliferation and DDR of cancer cells. 
ATM activates glucose-6-phosphate dehydrogenase (G6PD) 
through phosphorylation of heat shock protein 27 (Hsp27), 
which promotes shunting of glycolytic intermediates into the PPP 
to increase nucleotide synthesis. Furthermore, stimulation of the 
PPP increases NADPH production, which acts as a cofactor for 
antioxidants. Together, these data suggest the important role of 
ATM in the production of dNTPs and NADPH in the prolifera-
tion of cancer cells and protection against ROS.

Loss of ATM increases mitochondrial dysregulation, mito-
chondrial number, and ROS (3). A fraction of ATM localizes to 

the mitochondria, suggesting that A-T should be further classified 
as a mitochondrial disorder. Interestingly, this study suggested 
that the tumor predisposition of A-T patients may be in part due 
to the mitochondrial dysfunction observed.

Overall, ATM plays a key role in ROS prevention and sens-
ing. The ability of cancer cells to sense ROS through ATM and 
reprogram metabolism by increasing PPP activity allows for 
cancer cell survival and resistance to therapy. Cells lacking wild-
type ATM are prone to ROS accumulation and oxidative stress. 
However, the full mechanistic pathway for ATM activation after 
ROS accumulation is currently unclear.

ATM and insulin Signaling
Although beyond the scope of this review, it is important to rec-
ognize the evident role of ATM in insulin signaling. The purpose 
of insulin is to reduce the amount of glucose circulating in the 
blood and promote cellular uptake of glucose (37). Insulin binds 
to its respective receptor and recruits GLUT4, a central regulator 
in glucose homeostasis, to the membrane. GLUT4 transports 
glucose into the cell where it is used for various processes includ-
ing glycolysis. A-T patients have an increased risk of developing 
insulin resistance and type 2 diabetes. Early studies found that 
A-T patient monocytes have a decreased binding affinity for 
insulin when compared to unaffected controls (38). Furthermore, 
ATM signaling through p53 is vital to glucose homeostasis and 
insulin resistance. Together, these data suggest that ATM regulates 
glucose homeostasis in part through insulin signaling. Additional 
information on ATM and insulin signaling can be obtained in 
several excellent reviews (39–42).

ATM and Glycolysis
Glycolysis is the main carbon metabolism pathway occurring in 
the cytosol in which glucose is catabolized into pyruvate through 
a series of biochemical reactions. Importantly, glycolysis does 
not require oxygen to proceed and produces a net gain of two 
ATP molecules and two NADH molecules. Subsequently, in the 
presence of oxygen, pyruvate enters the mitochondria in the 
form of acetyl CoA and proceeds through the TCA cycle and 
oxidative phosphorylation. Conversely, pyruvate is converted 
to lactic acid in the absence of oxygen or in highly prolifera-
tive cancer cells as described above as the Warburg effect (31). 
ATM phosphorylates and activates the tumor suppressor p53 to 
regulate cell cycle arrest, apoptosis, senescence, and metabolism 
(43). p53 suppresses glycolysis through a number of pathways. 
Interestingly, p53 transcriptionally regulates metabolic genes, 
including glucose transporters SLC2A and SLC2A4 (encoding for 
GLUT1 and GLUT4, respectively) (44). p53 also inhibits kinase 
IKK and targets NFκB, effectively suppressing glycolysis (45). In 
addition, p53 targets TIGAR, which reduces glycolysis by acting 
as a fructose-2,6-bisphosphotase (46). It is tempting to speculate 
that ATM activates p53 to modulate glycolysis through these 
pathways. Indeed, various DDR proteins are connected to mito-
chondrial signaling, as discussed in a recent excellent review (47).

ATM and the PPP
Metabolism is altered in cancer mainly due to the need for 
nutrients and essential macromolecules in a competing and 
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proliferative environment (32). The PPP is a key pathway in the 
breakdown of glucose and diverges from glycolysis at glucose-
6-phosphate (G6P) (48). Indeed, the increase in proliferation of 
cancer cells requires the biosynthesis of dNTPs in order to faith-
fully replicate the genome and repair DNA damage (49, 50). The 
PPP is essential for de novo dNTP synthesis. The PPP produces 
ribose-5-phosphate, the sugar backbone precursor for purine and 
pyrimidine synthesis (51). The PPP is divided into the oxidative 
and non-oxidative pathways. The first irreversible step of the PPP 
converts NAD+ to NADPH during the conversion of G6P to 
6-phosphate-gluconolactone (6PG). The production of NADPH 
acts as an antioxidant cofactor, protecting the cell from ROS and 
oxidative stress (52). Together these data suggest an important 
role of the PPP in the proliferation and reduction of ROS for 
cancer cell survival.

In response to DNA double-strand breaks, ATM activates 
Hsp27 and G6PD (36). This interaction increases the flux of 
G6P to enter the PPP, which increases dNTPs and NADPH to 
aid DNA repair and reduce ROS, respectively. Conversely, other 
groups found that ATM negatively regulates the PPP through p53  
(52, 53). It is interesting to speculate that there is a balance 
between positive and negative regulation of the PPP downstream 
of ATM. It is possible that the amount of DNA damage dif-
ferentially modulates PPP activity. Under low amounts of DNA 
damage, Hsp27 is activated to increase dNTP synthesis for DNA 
repair; however, significant DNA damage accumulation may 
hyperactivate p53 to inhibit the PPP to fully shut down biosyn-
thetic pathways. Nevertheless, these data support the notion that 
ATM regulates the PPP to affect dNTP synthesis and NADPH 
production in cancer cells.

ATM AnD CAnCeR

Tumor Suppressive Role of ATM in 
Senescence
Cellular senescence is defined as a stable cell cycle arrest (54) and 
is, therefore, a potent inhibitor of transformation (55). Senescence 
also plays a role in aging and is increased in age-related patholo-
gies (56, 57). Senescence occurs due to multiple cellular insults, 
including telomere shortening, oncogene activation, termed 
oncogene-induced senescence (OIS), oxidative stress, and DNA 
damage (54). Senescence is characterized in part by alterations 
in metabolism (58). Senescence is now considered a reversible 
process (49, 53, 59–62). Therefore, dissecting how cells escape 
senescence is critical for understanding the earliest events in 
tumorigenesis.

One of the underlying mechanisms of OIS is increased replica-
tion stress, leading to DNA damage accumulation and cell cycle 
arrest (63, 64). Replication stress is due to a decrease in dNTP 
production via suppression of ribonucleotide reductase subunit 
2 (RRM2), the rate-limiting enzyme in de novo dNTP synthesis 
(49). Replication stress due to decreased dNTPs activates ATM, 
correlating with senescence induction (53). Loss of ATM rescues 
senescence through restoration of dNTP levels. This is mediated 
by a p53-dependent modulation of PPP activity and increased 
c-myc stability to increase glucose and glutamine consumption. 

Consistently, a recent study found that pharmacological inhibi-
tion of ATM suppresses senescence (65). In this study, pharma-
cological ATM inhibition also modulated glucose consumption. 
Together, these data suggest that ATM functions in metabolic 
regulation and reprogramming in senescent cells.

Oxidative stress induced by ROS can also cause premature 
senescence in part through DNA damage accumulation. As 
discussed above, ATM senses and is activated by DNA damage 
(66). ATM signals through the AKT/p53/p21 pathway to induce 
senescence in human umbilical vein endothelial cells after 
oxidative stress (67). In addition, ATM activation is necessary 
for senescence due to nitric oxide (68). Finally, recent evidence 
suggests that loss of ATM in A-T mice increases NADPH oxidase 
4 (NOX4) expression, leading to increased ROS and senescence 
(69). Together, these data demonstrate the importance of ATM 
signaling to induce senescence and suggest that ATM’s role in 
modulating senescence status offers the possibility of a future 
therapeutic target in the fields of both aging and cancer.

ATM Suppresses c-myc
Many cancers upregulate oncogenes that modulate metabolism, 
including the well-known transcription factor c-myc (70, 71). 
Specifically, c-myc transcriptionally regulates various enzymes 
related to metabolic pathways (70, 71). In relation to cancer, 
c-myc increases the Warburg Effect through upregulation of 
lactate dehydrogenase, glucose transporters, and pyruvate dehy-
drogenase kinase. The regulation of c-myc by ATM has just begun 
to be elucidated. Loss of ATM increases c-myc protein stability, 
which in turn increases glucose and glutamine consumption (53). 
Consistently, ATM partially suppresses c-myc-induced lympho-
magenesis in mouse models (72, 73). It is interesting to speculate 
whether this is due to suppression of pro-tumorigenic metabo-
lism. Loss of ATM and c-myc amplification/overexpression are 
often mutually exclusive in multiple cancer types, suggesting a 
redundancy in the pathway. Altogether, this suggests an interplay 
between ATM and c-myc in cancer metabolism.

ATM Activates AKT
AKT is a well-known serine/threonine kinase that is activated by 
phosphatidylinositol-3-kinase (PI3K) and regulates many cellular 
processes related to cancer, including survival, cellular metabo-
lism, and DNA repair (74, 75). ATM activates AKT in response 
to DNA damage (76–78). Activated AKT then promotes DNA 
repair (79) and inhibition of AKT decreases DNA repair (80, 81). 
Consistently, pharmacological inhibition of ATM inhibits AKT 
phosphorylation and survival in multiple cancer types (82–84). 
These findings suggest a vital role for AKT in the maintenance of 
genome integrity, and inhibition of this DNA repair function may 
result in accumulation of DNA damage and cell death.

AKT also modulates cancer metabolism (85–89). Active AKT 
increases glucose uptake by recruiting GLUT4 to the plasma 
membrane (90). In addition, pharmacological inhibition of AKT 
in primary effusion lymphoma decreases the rate of aerobic gly-
colysis (91). This suggests that ATM-mediated regulation of AKT 
activity in cancer reprograms metabolism by increasing glucose 
uptake and potentially shifting metabolism from aerobic glyco-
lysis to oxidative phosphorylation. It is particularly interesting 
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that ATM-mediated AKT activation may be a double-edged 
sword, both increasing DNA repair to promote genomic integrity 
while at the same time increasing pro-tumorigenic metabolism. 
These data suggest that ATM inhibitors may both alleviate the 
metabolic changes induced by activated AKT and lead to DNA 
damage-induced death of cancer cells.

ATM Regulates p53
p53 is defined as the “guardian of the genome” as it serves to 
regulate genome stability as a tumor suppressor (92). TP53 is one 
of the most mutated genes among all cancers. p53 is a transcription 
factor that can be activated by ATM (10). Activation of p53 by 
ATM was originally shown to be important for the regulation of 
genes essential in apoptosis and DNA repair (93). Further inves-
tigation into the interplay between ATM and p53 has revealed its 
importance in cancer metabolism. p53 regulates many pathways in 
cellular metabolism, including GLUT recruitment, glycolysis, and 
oxidative phosphorylation (94). Mutations in p53 lead to metabolic 

reprogramming in a cancer cells, allowing increased glucose intake 
through GLUT recruitment to the cell membrane, increased aero-
bic glycolysis, and decreased oxidative phosphorylation (94, 95). 
In addition, ATM directly impacts p53-mediated PPP metabolism 
as discussed above (53). Moreover, ATM loss and p53 mutation are 
often mutually exclusive in cancer, suggesting that these proteins 
act in the same pathway to promote cancer cell survival.

ATM inhibitors for Cancer Therapy
A variety of ATM inhibitors are currently in pre-clinical and 
clinical trials for multiple cancer types. ATM inhibitors sensitize 
various cancer cell lines and tumors in vitro and in vivo to radia-
tion treatment (83, 96–98). In addition, a phase I clinical trial is 
currently ongoing with an ATM inhibitor in combination with a 
PARP inhibitor in advanced cancer patients who are resistant to 
the standard-of-care (99). Together, these studies have found that 
cancer cells may be sensitized to DNA damage through inhibition 
of ATM.

FiGURe 1 | Ataxia-telangiectasia mutated (ATM) modulates cellular metabolism. DNA damage activates ATM to phosphorylate multiple downstream proteins 
regulate cell cycle arrest, DNA repair, and apoptosis pathways. A non-canonical function of ATM is the regulation of cellular metabolism. Mitochondrial ATM acts  
to regulate mitochondrial homeostasis by repairing mitochondrial genome defects. ATM activates the tumor suppressor p53, which inhibits GLUT recruitment, 
glycolysis, and dNTP production. Consistently, p53 targets the oncogene c-myc, inhibiting the TCA cycle and increasing the Warburg effect. In addition, ATM 
activates AKT to increase GLUT recruitment to the membrane.
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As discussed throughout this review, ATM modulates 
metabolism through various pathways, proteins, and enzymes 
(Figure 1). Thus, ATM inhibitors may offer a promising way to 
reprogram the metabolism of cancer cells to make them more 
vulnerable to anti-metabolic strategies. It will be important to 
dissect the role of metabolism in pre-clinical and clinical trials 
using ATM inhibitors.

COnCLUSiOn

Proliferation of cancer cells requires a metabolic shift allow-
ing for an increase in cellular biomass in a highly competitive 
and nutrient-deprived environment. Although extensively 
studied for its role in the DDR, non-canonical roles of ATM 
in metabolic reprogramming have recently been elucidated. 
ATM modulates carbon metabolism through many pathways 
that are essential for cancer development, survival, and thera-
peutic response. Due to their radio- and chemo-sensitizing 

effects, ATM inhibitors are in pre-clinical and clinical trials as 
anti-cancer therapeutics. We suggest that ATM inhibitors may 
also be used to identify metabolic vulnerabilities that could be 
therapeutically exploited.
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