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Thyroid nodules are present in upto 50% of the population worldwide, and thyroid
malignancy occurs in only 5–15% of nodules. Until now, fine-needle biopsy with
cytologic evaluation remains the diagnostic choice to determine the risk of malignancy,
yet it fails to discriminate as benign or malignant in one-third of cases. In order to improve
the diagnostic accuracy and reliability, molecular testing based on transcriptomic data has
developed rapidly. However, gene signatures of thyroid nodules identified in a plenty of
transcriptomic studies are highly inconsistent and extremely difficult to be applied in clinical
application. Therefore, it is highly necessary to identify consistent signatures to
discriminate benign or malignant thyroid nodules. In this study, five independent
transcriptomic studies were combined to discover the gene signature between benign
and malignant thyroid nodules. This combined dataset comprises 150 malignant and 93
benign thyroid samples. Then, there were 279 differentially expressed genes (DEGs)
discovered by the feature selection method (Student’s t test and fold change). And the
weighted gene co-expression network analysis (WGCNA) was performed to identify the
modules of highly co-expressed genes, and 454 genes in the gray module were
discovered as the hub genes. The intersection between DEGs by the feature selection
method and hub genes in the WGCNA model was identified as the key genes for thyroid
nodules. Finally, four key genes (ST3GAL5, NRCAM, MT1F, and PROS1) participated in
the pathogenesis of malignant thyroid nodules were validated using an independent
dataset. Moreover, a high-performance classification model for discriminating thyroid
nodules was constructed using these key genes. All in all, this study might provide a
new insight into the key differentiation of benign and malignant thyroid nodules.
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INTRODUCTION

Thyroid nodules are regarded as common clinical problems
worldwide, and nearly 50% of the population harbor thyroid
nodules (Burman and Wartofsky, 2015; Jasim et al., 2020). For
benign thyroid nodules, there is no need to perform any medical
treatment if it does not keep growing or cause other problems
(Durante et al., 2015). Indeed, less than 10% of patients’ thyroid
nodules demonstrate disease progression after a median follow-
up of 6 years (Ito et al., 2014). But the thyroid malignancy
occurring in only 5–15% of thyroid nodules needed to be
treated surgically (Wong et al., 2018). Therefore, to improve
treatment efficiency, the main challenge is on how to differentiate
the malignant nodules from the majority of benign ones reliably
using the diagnostic methods (Cho et al., 2020; Singh Ospina
et al., 2020).

Until now, to determine the risk of malignancy, fine-needle
aspiration (FNA) with cytologic evaluation remains the
diagnostic choice for ≥1.0 cm nodules (Heider et al., 2020).
But one-third of thyroid nodules could not be discriminated
as benign or malignant correctly (Cibas and Ali, 2009). Over the
past decade, molecular testing has developed rapidly to improve
the diagnostic accuracy as well as minimize cost and unnecessary
testing for indeterminate cases (Roth et al., 2018). Moreover,
transcript profiling is a widely used technique to discover the
molecular changes. Transcriptomics could obtain information
simultaneously based on the abundance of multiple mRNA
transcripts for the biological sample (Knyazeva et al., 2020;
Moncada et al., 2020). So, the gene signatures based on
transcriptomic data could be used to distinguish benign from
malignant thyroid nodules efficiently.

Recently, there have been a lot of transcriptomic studies to
identify the gene signatures associated with thyroid nodules. For
example, Giordano et al. found the three genes (PPARG, AQP7,
and ENO3) implicated for the neoplastic mechanism of thyroid
follicular carcinomas (Giordano et al., 2006). Wojtas et al.
confirmed differential expression of seven genes (CPQ, PLVAP,
TFF3, ACVRL1, ZFYVE21, FAM189A2, and CLEC3B) between
malignant and benign follicular thyroid tumors (Wojtas et al.,
2017). Schulten et al. revealed 55 transcripts (GABBR2,
NRCAM, ECM1, HS6ST2, RXRG, etc.) differentially expressed
between follicular variant of papillary thyroid carcinomas and
follicular adenomas of the thyroid (Schulten et al., 2015). Hinsch
et al. detected that QPRT was a potential marker for the
immunohistochemical screening of follicular thyroid nodules
(Hinsch et al., 2009). Although there were various signatures
identified in different studies, it was reported that they were
difficult to be applied in clinical diagnosis because of the
inconsistency and unreliability (Singh Ospina et al., 2020).

The inconsistency among gene signatures from different
studies might result from many sources, such as limited
number of samples (Schwalbe et al., 2017; Osborn et al.,
2018). It is understood that these transcriptomic studies were
performed using dozens of samples of thyroid nodules. If the
multiple independent studies could be combined as one
comprehensive dataset, the sample size could be enlarged and
the stability of the gene signatures could be enhanced significantly

(Mistry et al., 2013). Moreover, weighted gene co-expression
network analysis (WGCNA) could be used to identify the
modules of co-expressed genes highly associated with the
biological mechanism (He et al., 2019). WGCNA has been
widely used to explore biomarkers and therapeutic targets of
various diseases (Niemira et al., 2019; Chen et al., 2020).
Therefore, it was highly needed to identify key genes between
malignant and benign thyroid nodules by WGCNA from a
comprehensive dataset.

In this work, five independent transcriptomic studies comprising
150 malignant and 93 benign thyroid nodule samples were
combined to discover the gene signatures of thyroid nodules.
First, 279 differentially expressed genes (DEGs) were identified
by the feature selection method (Student’s t test and fold change)
after data preprocessing and batch effect removal. And various
biological process terms (such as hormone metabolic process,
platelet degranulation, and thyroid hormone generation) were
enriched using these DEGs. Second, the WGCNA model was
constructed to identify significant modules of highly co-expressed
genes, and 454 hub genes in the gray module were identified. Third,
the intersection between DEGs identified by the feature selection
method and the hub genes using the WGCNA model was
discovered as the key genes. In order to perform the systematic
validation, four key genes participated in the pathogenesis of
malignant thyroid nodules were validated by an independent
dataset. Finally, a high-performance classification model for
discriminating benign and malignant thyroid nodules was
constructed using these key genes. All in all, this study might
provide a useful classification model for discriminating benign
and malignant thyroid nodules.

MATERIALS AND METHODS

Collection of Transcriptomic Data From
Multiple Studies
A variety of microarray studies based on thyroid tissue were
collected by searching the key word “thyroid nodules” in the Gene
Expression Omnibus (GEO) database (Barrett et al., 2013). These
collected datasets should meet the following criteria (Yang et al.,
2020b): 1) the gene expression profiling was conducted using
cDNA microarray for “Homo Sapiens”; 2) the tissues analyzed
were thyroid nodules; 3) raw data could be available for further
analysis; and 4) the collected datasets should consist of one group
of malignant samples and another group of benign ones. As a
result, five independent transcriptomic datasets were collected,
and each comprised both benign and malignant thyroid nodules.
The detailed information of these five collected datasets is
provided in Table 1, including dataset ID, number of samples,
microarray platform, and tissue indicated in the original
publication and references.

Data Preprocessing and Batch Effect
Removal
To enhance the consistency and classification capacity, all
datasets in this study (Table 1) were combined to discover the
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key genes of thyroid nodules. The combination of multiple
datasets was carried out in R environment (v3.4.3, http://www.
r-project.org) (Sepulveda, 2020). The raw data (CEL file) of all
datasets were read, log-transformed, and normalized using the
corresponding R package, and all parameters were set as
default. All probe sets were then mapped to their
corresponding gene names using Bioconductor (Tippmann,
2015). The average expression value was retained if one gene
was mapped to multiple probes (Yang et al., 2020c). To remove
batch effects among five independent datasets, Z-score
transformation was used to adjust the gene expression levels
in each dataset (Yang Q et al., 2019b; Yang et al., 2020a).
Z-score transformation for each gene could be computed by
subtracting the mean of all genes and dividing the difference by
the standard deviation of all genes in one experiment. After data

transformation, the mean value for each experiment became
zero with standard deviation equaling one.

Differentially Expressed Genes Discovered
Between Benign and Malignant Thyroid
Nodules
In this study, there were five collected datasets integrated as a
comprehensive dataset for discovering signatures. This
comprehensive dataset consisted of 150 malignant and 93 benign
samples of thyroid nodules. To the best of one’s knowledge, this
integrated dataset was the largest transcriptomic dataset in the
analysis of thyroid nodules. Based on this comprehensive dataset,
theDEGswere discovered using feature selectionmethods including
Student’s t test and fold change (FC). For Student’s t test, multtest

TABLE 1 | Datasets collected from five independent microarray studies of thyroid nodules (sorted by sample size). Each dataset contained one cohort of malignant and
another cohort of another group of benign samples.

Id No. of samples
(malignant: benign)

Platform Tissue References

GSE27155 95 (78:17) HG-U133A Thyroid tissue Clin Cancer Res
12 (7): 1983–93, 2006

GSE29315 71 (31:40) HG-U95Av2 Thyroid tissue Tomas G, et al.
unpublished, 2012

GSE82208 52 (27:25) HG-U133 Plus 2 Thyroid tissue Int J Mol Sci
18 (6): 1,184, 2017

GSE54958 13 (6:7) HuGene-1.0 ST Thyroid tissue BMC Genomics
16 (S1): S7, 2015

GSE15045 12 (8:4) ABI Human Genome Survey Microarray v.2 Thyroid tissue BMC Cancer
9: 93, 2009

FIGURE 1 | Volcanomap of differentially expressed genes in malignant samples compared with benign samples. The horizon line was the cutoff (adjusted p-value <
0.05) of Student’s t test. The vertical line was the cutoff (logFC >0.58 or logFC < -0.58) of the fold change method. The blue and red dots indicated the downregulated
and upregulated genes, respectively.
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package of R language was applied, and the adjusted p-value < 0.05
was selected as the cutoff (Yan et al., 2019). The fold changewas used
to compare the mean expression of each gene between malignant
and benign thyroid nodules (Yu et al., 2020). The cutoff level of FC
was set to logFC >0.58 (FC > 1.5) or logFC < -0.58 (FC < 0.67). The
equation of FC was shown below (as shown in Eq. (1)).

logFC � mean(log 2(Malignant Group))

−mean(log 2(Benign Group)). (Eq.1)

The volcano plot was applied to visualize and demonstrate the
DEGs using ggplot2 package. Then the analysis of gene ontology
(GO) enrichment was performed to identify the key biological
processes for thyroid nodules (Yang et al., 2019a). Moreover,
GOplot and clusterProfiler packages were used for visualizing the
biological processes (BP) of GO enrichment (Yu et al., 2012; Yang
et al., 2021). The raw p-value < 0.05 of GO terms was considered
statistically significant.

Hub Genes Identified Using Weighted Gene
Co-Expression Network Analysis
TheWGCNA package was applied to establish the scale-free weight
gene co-expression networks for thyroid nodules (Langfelder and
Horvath, 2008). The unqualified genes were screened out, and the
matrix of genes’ similarity by Pearson’s correlation analysis was
created. Appropriate soft threshold power (β) was applied to
strengthen this matrix to a scale-free co-expression network
(Yang et al., 2020b). The lowest power was chosen, so the scale-
free topology fit index curve flattened out upon reaching a high
value. The highly correlated genes were assigned into the same
module. As a result, the intersection was obtained between DEGs
identified by the feature selection method and hub genes in a key
module using the WGCNA model. These genes in the intersection
were regarded as the key genes for further validation.

Validation of the Key Genes Based on the
Independent Dataset
A systematic validation was conducted by evaluating the upregulated
and downregulated genes based on the independent dataset
(GSE34289) (Alexander et al., 2012). This validation dataset
consisted of two independent datasets from two different platforms.
The first independent dataset was detected based on GPL5175
platform (Affymetrix Human Exon 1.0 ST Array). In this dataset,
there were 23 malignant and 26 benign thyroid nodules. The second
independent dataset was detected based on GPL14961 platform
(Afirma-T Human Custom Array). There were 120 malignant and
198 benign samples in this second independent dataset. In this study,
the boxplot was used to demonstrate the differential expression of
these key genes between malignant and benign thyroid nodules.

Construction of the High-Performance
Classification Model Using the Key Genes
To construct a classification model for thyroid nodules, four
powerful classifiers, namely, support vector machine, linear
discriminate analysis, partial least squares, and random forest
algorithm, were applied in this study (Orru et al., 2012). The
key genes between malignant and benign thyroid nodules were
used to discriminate different samples. In the first step, the five-fold
cross validation of the comprehensive dataset (Table 1) was
performed to validate the performance of this classification

TABLE 2 | Top 25 up- and downregulated DEGs identified by Student’s t test and
fold change method (logFC >0.58 or logFC < -0.58 and adjusted p-value <
0.05) combining all five datasets in Table 1.

ID Entrez ID Gene symbol Adjusted p-value logFC

Table A. The top 25 upregulated genes
1 9,324 HMGN3 0.035423 1.999879
2 515 ATP5F1 0.02562 1.907751
3 5,800 PTPRO 0.010352 1.767712
4 23576 DDAH1 0.003481 1.626399
5 9,782 MATR3 0.000342 1.498593
6 11167 FSTL1 0.000987 1.408146
7 4,435 CITED1 2.04E-08 1.328755
8 301 ANXA1 5.86E-09 1.273075
9 1803 DPP4 1.81E-15 1.166173
10 55885 LMO3 9.26E-05 1.162304
11 10944 C11orf58 0.00016 1.162246
12 1,001 CDH3 4.16E-14 1.155315
13 722 C4BPA 0.000938 1.154525
14 10178 TENM1 6.51E-07 1.15377
15 439,921 MXRA7 0.001287 1.117048
16 159 ADSS 0.000106 1.113014
17 5,627 PROS1 5.72E-10 1.104001
18 6,447 SCG5 3.80E-06 1.081727
19 7,360 UGP2 7.51E-05 1.076941
20 25797 QPCT 5.05E-09 1.068464
21 1,622 DBI 0.009991 1.065552
22 5,906 RAP1A 6.06E-05 1.055333
23 7,991 TUSC3 7.96E-11 1.05345
24 7,498 XDH 1.86E-05 1.04801
25 10981 RAB32 0.000299 1.046273

Table B. The top 25 downregulated genes
26 4,703 NEB 3.90E-06 −0.8582
27 432 ASGR1 2.01E-05 −0.89599
28 1805 DPT 0.00018 −0.8994
29 4,494 MT1F 4.58E-09 −0.91087
30 219,333 USP12 0.047108 −0.9167
31 2,117 ETV3 0.000167 -0.93059
32 6,722 SRF 0.003049 −0.94275
33 1,381 CRABP1 1.48E-06 −0.95542
34 6,921 TCEB1 0.004592 -0.98698
35 2,323 FLT3LG 0.009582 −0.98782
36 1,299 COL9A3 8.03E-05 -1.00485
37 4,713 NDUFB7 0.000215 −1.00738
38 4,495 MT1G 1.39E-07 -1.05177
39 9,265 CYTH3 7.71E-05 −1.07064
40 8,458 TTF2 0.030282 −1.09564
41 968 CD68 0.007163 −1.11098
42 6,624 FSCN1 0.003741 −1.12761
43 4,920 ROR2 3.74E-05 −1.19808
44 2,167 FABP4 8.24E-10 −1.24181
45 744 MPPED2 1.02E-13 −1.25312
46 3,292 HSD17B1 1.63E-05 -1.28357
47 1,014 CDH16 3.65E-16 −1.33575
48 1,733 DIO1 8.64E-07 −1.42927
49 7,173 TPO 3.90E-15 −1.49917
50 9,351 SLC9A3R2 0.00174 −1.61953
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model. The accuracy of five-fold cross validation could reflect the
quality of the model. In the second step, the comprehensive dataset
was set as the training set, and the two independent datasets from
GSE34289 were set as the test sets. The performance of the
independent test set could accurately reflect the classification
ability of the model. This high-performance classification model
based on machine learning was constructed for discriminating
benign and malignant thyroid nodules.

RESULTS AND DISCUSSION

Collection of Multiple Transcriptomic Data
for Thyroid Nodules
A variety of microarray studies based on thyroid tissue were collected
by searching the keyword “thyroid nodules” in theGEOdatabase. As a

result, five independent transcriptomic studies were obtained, and each
comprised a cohort ofmalignant samples and another cohort of benign
samples. The detailed information of these independent datasets is
provided in Table 1. Among these studies, the five datasets including
150 malignant and 93 benign thyroid nodules were combined as a
comprehensive dataset. The boxplots of five datasets before and after
batch effect removal are shown in Supplementary Figure S1. The
intensity of all samples before batch effect removal was distributed in
the range of 4–15 and fluctuated greatly. After batch effect removal,
the intensity of all samples was roughly distributed in the range of
-1–1. The stable distribution indicated that the batch effects were
well removed in the combined dataset by Z-score transformation.
After data preprocessing and batch effect removal, the
comprehensive dataset with 7,265 genes from five independent
studies was applied to discover the key genes of thyroid nodules.

FIGURE 2 |Chord diagram of BP (biological process) of GO enrichment to explain the relationship between BP terms and DEGs in malignant versus benign thyroid
nodules.
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DEGs of Thyroid Nodules Identified Using
the Combined Dataset
Based on this comprehensive dataset, the DEGs were discovered
using feature selection methods (both Student’s t test and fold
change). The volcano plot (as shown in Figure 1) illuminated
the variation of DEGs in malignant versus benign thyroid
nodules. The horizon line was the cutoff (adjusted p-value <
0.05) of Student’s t test. The cutoff levels for the vertical line were
set to logFC >0.58 (FC > 1.5) or logFC < -0.58 (FC < 0.67) of fold
change. The blue and red dots were used to indicate the
upregulated (logFC >0.58) and downregulated (logFC < -0.58)
genes, respectively. In this study, 279DEGswere finally identified by
both Student’s t test and fold change. The total number of
upregulated genes (172 genes) was larger than that of the
downregulated ones (107 genes). The top 25 upregulated and
downregulated DEGs are shown in Table 2, including the
information of entrez ID, gene symbol, adjusted p-value, and fold
change for each gene. The information of all DEGs is shown in
Supplementary Table S1.

GO Enrichment Analysis Using DEGs of
Thyroid Nodules
GO enrichment analysis is ubiquitously used for interpreting high
throughput molecular data and underlying biological phenomena
of experiments (Tomczak et al., 2018). For a set of genes, an
enrichment analysis will find which GO terms are overrepresented
using annotations for the gene set. GO enrichment analysis for the
DEGs was performed in this study. Using the DEGs between
malignant and benign thyroid nodules, the enrichment analysis
included the BP (biological process), MF (molecular function), and
CC (cell component) terms. The detailed information of GO ID,
description, p-value, name, and the number of genes is shown in
Supplementary Table S2.

Particularly, multiple biological processes were enriched to
interpret the biological mechanism of malignant thyroid
nodules. The chord diagram of BP enrichment (as interpreted
in Figure 2) was applied to explain the relationship between DEGs
and BP terms. It was reported that these BP terms were associated
with the biological mechanism of thyroid nodules. For example,

FIGURE 3 | Weighted gene co-expression network analysis of gene expression between malignant and benign thyroid nodules. (A) Analysis of the scale-free
topology fit index and the mean connectivity for various soft threshold powers (β) for the genes, (B) dendrogram of all expressed genes clustered based on a dissimilarity
measure, (C) heatmap of module–trait relationships depicting correlations between module eigengenes and phenotypic traits (the label of malignant and benign thyroid
nodules). Numbers correspond to the correlation and the p-value in parentheses. The degree of correlation is illustrated with the color legend, and (D) identification
of hub genes using the scatterplot of module eigengenes in the gray co-expression module.
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there were 15 DEGs enriched in the hormone metabolic process,
and the association with thyroid cancer has been reported (Han
et al., 2018). The platelet degranulation enriched by 10 DEGs was
discovered in papillary thyroid carcinoma using the biomarkers
(Wu et al., 2018). The concentration of the vascular endothelial
growth factor was increased and stimulated endothelial cell
proliferation in the cyst fluid of enlarging and recurrent thyroid
nodules (Sato et al., 1997). It was reported that patients with spotty
skin pigmentation had a predisposition toward the development of
thyroid abnormalities (Courcoutsakis et al., 2009). It was found
that low thyroid hormones might have implications for
reproductive health, so the reproductive structure development
and reproductive system development might be affected in thyroid
nodules (Medda et al., 2017). The thyroid hormone generation
reported that the significant biologic process was involved in
thyroid cancers (Durante et al., 2018).

Construction of the WGCNA Network and
Identification of the Gene Co-Expression
Module
TheWGCNA network was constructed to identify the gene co-
expression module (as shown in Figure 3). The value of power

(10) was selected as the soft-threshold power to ensure scale-
free (R2 � 0.8) networks using the WGCNA package
(Figure 3A) because it reached the plateau at power 10
from the scale-free topology plot and mean connectivity
plot. Genes with similar expression patterns were clustered
into co-expression modules. Different modules were shown in
different colors, and 13 modules were identified totally
(Figure 3B). The heatmap of module–trait relationships was
applied for depicting correlations between module eigengenes
and phenotypic traits (the label of malignant and benign
thyroid nodules). As shown in Figure 3C, the numbers
correspond to the correlation, and the p-values were set in
parentheses. Moreover, the degree of correlation was
illustrated with the color legend. Here, the gray module was
the most correlated one with malignant thyroid nodules (R �
0.32, p-value � 2 × 10–5). Hence, the gray module was used for
the identification of the hub genes. Hub genes in the co-
expression network were characterized by high intra-
modular connectivity measured by the value of gene
significance and module membership. The scatterplot of
module eigengenes related to malignant thyroid nodules in
the gray co-expression module (R � 0.29, p-value � 3 × 10–10) is
shown in Figure 3D. As a result, 454 genes in the gray module

FIGURE 4 | Validation of key genes identified by both DEGs identified by the feature selectionmethod and hub genes in the graymodule usingWGCNA. The boxplots of
these key genes between malignant and benign thyroid nodules were validated in the independent dataset detected by (A) GPL5175 and (B) GPL14961 platforms.
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highly correlated with gene significance were identified as hub
genes using WGCNA.

Validation of the Key Genes Using the
Independent Datasets
In this study, there were 19 overlapping genes in the
intersection between 279 DEGs identified by the feature
selection method and 454 hub genes in the gray module

totally. To validate these overlapping genes, two independent
datasets from GSE34289 were applied to perform the systematic
validation (Alexander et al., 2012). In this validation dataset,
there were 23 malignant with 26 benign samples and 120
malignant with 198 benign samples form GPL5175 and
GPL14961 platforms, respectively. The boxplots (as shown in
Figure 4) were used to demonstrate the key genes between
malignant and benign thyroid nodules. Among the 19
overlapping genes, there were four key genes expressed in the

FIGURE 5 | Classification model constructed for discriminating malignant from benign thyroid nodules using four different machine learning methods. The four
methods referred to support vector machine, linear discriminate analysis, partial least squares, and random forest algorithm from top to bottom. The ROC curves and
AUC values for the five-fold cross validation were shown in (A1–D1) for the comprehensive dataset using the four methods. The ROC curves and AUC values for the first
independent test set were shown in (A2–D2). The ROC curves and AUC values for the second independent test set were shown in (A3–D3).
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independent dataset, and the dysregulation of these key genes was
validated. As shown in Figure 4, the significant differences of three
upregulated genes (ST3GAL5, NRCAM, and MT1F) and one
downregulated gene (PROS1) were indicated in these boxplots
obviously for the independent data detected from GPL5175
(Figure 4A) and GPL14961 platforms (Figure 4B), respectively.

As a result, these four key genes were effectively validated as
the important ones participated in the pathogenesis of thyroid
nodules. It was reported that the specific genetic variants of
ST3GAL5 in patients with thyroid-associated ophthalmopathy
were discovered (Park et al., 2017). Górka et al. provided the first
evidence that NRCAM is overexpressed in papillary thyroid
carcinomas, and the upregulation of NRCAM was implicated
in the pathogenesis and behavior of papillary thyroid cancers
(Gorka et al., 2007). It was reported that MT1F might contribute
to thyroid carcinogenesis and potentially serve as a diagnostic
marker in distinguishing benign from malignant lesions (Kim
et al., 2010; Wojtczak et al., 2017). In the previous studies, PROS1
was reported as the biomarker significantly related to thyroid
nodules’malignancy (Griffith et al., 2006; Wu et al., 2020). In this
study, these four key genes (ST3GAL5, NRCAM, MT1F, and
PROS1) were discovered for distinguishing malignant from
benign thyroid nodules.

Construction of the High-Performance
Classification Model Using the Key Genes
To distinguish malignant from benign thyroid nodules, four
popular machine learning methods were applied to construct
the classification model in this study. These methods included
support vector machine, linear discriminate analysis, partial
least squares, and random forest algorithm. The key genes
between benign and malignant thyroid nodules were used to
discriminate different samples. For the comprehensive dataset
in Table 1, the five-fold cross validation was first performed to
validate the performance of this classification model. As shown
in Figure 5A1, 5B1, 5C1, and 5D1, the values of area under the
ROC curve (AUC) were 0.83, 0.82, 0.82, and 0.78 for the five-
fold cross validation using four different machine learning
methods, respectively. Moreover, the high performance of the
independent test sets could accurately reflect the ability of the
classification model. The comprehensive dataset was set as the
training set, and the test sets consisted of two parts detected by
GPL5175 and GPL14961 platforms from the independent
dataset (GSE34289). As displayed in Figure 5A2, 5B2, 5C2,
and 5D2, the AUC values of the ROC curve for the first
independent test set were 0.83, 0.67, 0.74, and 0.74 by four
machine learning methods, respectively. As shown in
Figure 5A3, 5B3, 5C3, and 5D3, the AUC values for the
second independent test set were 0.81, 0.60, 0.69, and 0.77 by
four machine learning methods, respectively.

As shown in Figure 5, for the five-fold cross validation, the
performances (AUC >0.8) of the classification model were
outstanding using support vector machine, linear discriminate
analysis, and partial least squares. However, the classification
models of support vector machine and random forest (AUC >0.7)
have shown more excellent performances than the other methods

for the two independent test sets. Therefore, the high-
performance classification model using support vector
machine was recommended for discriminating malignant from
benign thyroid nodules based on both five-fold cross validation
and independent test.

Until now, it fails to discriminate as benign or malignant in
one-third of thyroid nodules using FNA with cytologic
evaluation. To save medical costs and improve the diagnostic
accuracy, the high-performance classification model
constructed in this study could be applied before FNA. For
the thyroid nodule patients, the expression of four key genes
could be detected. Then, this sample could be classified as
benign or malignant thyroid nodules based on the
classification model. If the patient was classified as a
malignant thyroid sample, it was highly necessary to make a
definite diagnosis using FNA with cytologic evaluation. If the
patient was classified as a benign sample based on the
classification model, the necessity of the FNA could be
determined depending on the specific conditions. In the
future, selection method, the high-performance classification
model is expected to be applied for clinical diagnosis and
management for malignant and benign thyroid nodules.

CONCLUSION

In this study, a comprehensive dataset including 150
malignant and 93 benign samples was collected to discover
the gene signature of thyroid nodules. Then, 279 DEGs were
identified by the feature selection method (Student’s t test and
fold change). Then, the WGCNA network was performed to
identify modules of highly co-expressed genes, and 454 genes
were discovered as the hub genes. As a result, the intersection
between the DEGs and the hub genes was identified as the key
genes. Using the independent dataset, three upregulated genes
(ST3GAL5, NRCAM, and MT1F) and one downregulated gene
(PROS1) were effectively validated. Moreover, the high-
performance classification model was constructed for
discriminating malignant from benign thyroid nodules.
However, certain limitations still exist in this study. The
number of samples for identifying and validating key genes
was still needed to be increased. In the future, the key genes
and classification model could be further verified based on the
experimental data.
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