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The evolution of BDNF is defined by strict purifying selection
and prodomain spatial coevolution, but what does it mean for

human brain disease?
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Brain-Derived Neurotrophic Factor (BDNF) is an essential mediator of brain assembly, development, and maturation. BDNF has been
implicated in a variety of brain disorders such as neurodevelopmental disorders (e.g., autism spectrum disorder), neuropsychiatric
disorders (e.g., anxiety, depression, PTSD, and schizophrenia), and various neurodegenerative disorders (e.g., Parkinson’s,
Alzheimer’s, etc.). To better understand the role of BDNF in disease, we sought to define the evolution of BDNF within Mammalia.
We conducted sequence alignment and phylogenetic reconstruction of BDNF across a diverse selection of >160 mammalian
species spanning ~177 million years of evolution. The selective evolutionary change was examined via several independent
computational models of codon evolution including FEL (pervasive diversifying selection), MEME (episodic selection), and BGM
(structural coevolution of sites within a single molecule). We report strict purifying selection in the main functional domain of BDNF
(NGF domain, essentially comprising the mature BDNF protein). Additionally, we discover six sites in our homologous alignment
which are under episodic selection in early regulatory regions (i.e. the prodomain) and 23 pairs of coevolving sites that are
distributed across the entirety of BDNF. Coevolving BDNF sites exhibited complex spatial relationships and geometric features
including triangular relations, acyclic graph networks, double-linked sites, and triple-linked sites, although the most notable pattern
to emerge was that changes in the mature region of BDNF tended to coevolve along with sites in the prodomain. Thus, we propose
that the discovery of both local and distal sites of coevolution likely reflects ‘evolutionary fine-tuning’ of BDNF's underlying
regulation and function in mammals. This tracks with the observation that BDNF’s mature domain (which encodes mature BDNF
protein) is largely conserved, while the prodomain (which is linked to regulation and its own unique functionality) exhibits more
pervasive and diversifying evolutionary selection. That said, the fact that negative purifying selection also occurs in BDNF's
prodomain also highlights that this region also contains critical sites of sensitivity which also partially explains its disease relevance

(via Val66Met and other prodomain variants). Taken together, these computational evolutionary analyses provide important
context as to the origins and sensitivity of genetic changes within BDNF that may help to deconvolute the role of BDNF

polymorphisms in human brain disorders.
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INTRODUCTION

Brain-derived neurotrophic factor (BDNF) is one of the most
ubiquitously studied molecules in modern neuroscience [1]. BDNF
is a neurotrophin that binds with high affinity to its cognate
tyrosine kinase receptor, TrkB [2], to elicit rapid induction of
synaptic plasticity [3-5] and neuronal spine remodeling [6, 71.
Additionally, BDNF has been implicated in a variety of brain
disorders [1], including depression [8-10], PTSD [11-14], schizo-
phrenia [9, 15-17], Parkinson’s disease [18, 19], and autism
spectrum disorders [20-22] amongst many more. BDNF has
correspondingly been the primary target, or an ancillary factor, of
many novel therapeutics including small molecule mimetics
[23, 24] and existing drugs (e.g., antidepressants [25, 26]). Yet,
nascent research has provided the humbling reminder that much

remains to be discovered about BDNF. In recent years, new BDNF
ligands have been discovered [27], new receptor interactions
unveiled [27, 28], and mechanisms of behavioral function
unlocked [7]. This is a timely reminder that while BDNF has
remained a seminal molecule of interest across the broader
neuroscience literature, much remains to be discovered about its
origins, evolution, function, and disease relevance.

A primer of the molecular biology of BDNF and its functional
topology

BDNF is encoded by the BDNF gene [29], whose expression is
regulated in humans by an antisense gene (BDNF-AS) that can
form RNA-duplexes to attenuate translation [30]. Thus, the natural
antisense for BDNF is capable of directly downregulating
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endogenous expression on demand [31]. The BDNF gene in
humans comprises 11 exons [30] and can produce at least 17
detectable transcript isoforms [29]. Different transcripts are
induced in response to activity and/or cellular states, allowing
the BDNF gene to adjust to environmental stimuli and potential
selection pressures. However, all transcripts ultimately yield a
singular preproBDNF protein that (prior to intracellular processing,
cleavage, and transport) can be partitioned into three domains
[11, 29]: a signal peptide, a prodomain, and the mature domain.
The signal domain is only 18 amino acid residues long (with
ambiguously defined functionality) with the majority of BDNFs
functional outputs reflecting sequence specificity to the prodo-
main and mature domain. The BDNF prodomain encodes binding
sites for intracellular transport of both BDNF mRNA [32] and BDNF
protein [33], and contains numerous posttranslational modifica-
tion sites [29]. The BDNF prodomain is also the resident location of
a widely studied Single Nucleotide Polymorphism (SNP) in
neuroscience (Val66Met, or rs6265) [1], and the Furin consensus
sequence (Arg 125) for cleavage to its mature form (including by
plasmin [34]). The prodomain is composed of 110 amino acids
within the N-terminus, and must be processed via proteases to
generate mature BDNF [5]. The mature domain of BDNF is almost
exclusively composed of the Nerve growth factor (NGF) domain
and is responsible for the canonical trophic actions associated
with BDNF (e.g., long-term potentiation, rapid-acting antidepres-
sant effects, etc.). Following intracellular handling, processing, and
transport, the preproBDNF isoform is cleaved to yield the mature
BDNF peptide (which only contains the mature NGF domain). For
many years the prodomain was thought to be degraded following
the facilitation of BDNF trafficking. However, recent work has
shown that the cleaved prodomain can be secreted and bind as a
ligand to novel receptors (e.g., SorCS2) [27]. Thus, the BDNF
prodomain can influence brain circuits as well as behavior [7]. For
a comprehensive, detailed, analysis of the various intricacies of the
BDNF gene, protein, and its regulation, more information is
provided in [29].

The conservation of BDNF and neurotrophins: a signal that
evolution is important

One of the interesting curiosities surrounding BDNF is its
relationship to other neurotrophic (NT) growth factors, comprising
NGF, NT-3, and NT-4. Specifically, all neurotrophins retain some
intercalated functionality. Neurotrophins also share some com-
monalities in structure (pre-, pro-, and mature-domains) [29],
posttranslational modification potential (e.g., glycosylation [35]),
as well as catalytic processing, trafficking, and composition [36].
Specifically, neurotrophins share approximately 50% sequence
homology [29], and a comparison of domains and motifs reveals
that each comprises a prototypic NGF domain as the principal
component of the mature pro-growth peptide (see PFAM
database [37]). While each neurotrophin elicits functionality via
binding to cognate receptors, neurotrophins also exhibit cross-
affinity amongst neurotrophin receptors [38] presumably due to
their high rates of structural homology. Not surprisingly then,
there is some redundancy in the trophic effects of neurotrophins,
yet each still maintains nuanced functionality which remains
specific to each factor during central nervous system development
[39]. Differences in the evolution and temporal dynamics of
regulatory sequences, which target gene products to specific
destinations within cell-compartments (e.g., dendrites) [40] or to
processing routes (e.g. the activity-dependent release pathway)
which alter secretory dynamics and/or bioavailability [41], likely
contribute to both similarities and differences between neuro-
trophins. However, almost nothing is known about how the BDNF
prodomain has evolutionarily adapted to specifically regulate
BDNF dynamics. While evolution has almost certainly shaped the
sequences, structure, and function of BDNF, the modeling of such
remains relatively unexplored but could provide important insight
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into the phylogenetic evolutionary history of BDNF, its selection
pressure sensitivity across lineages, and quantitative metrics of
evolutionary change across species.

Purpose of this Study

Here, we use computational methods to explore the molecular
evolution of BDNF. To reconstruct phylogenetic trees of BDNF, we
utilized sequence alignments of over 160 mammalian species (all
available mammalian sequences) to determine the genomic
attributes of BDNF evolution that are specific to Mammalia. This
analysis was specific by being constrained to sequences that have
the most direct evolutionary relevance to humans. Notably, we
sought to identify sites in BDNF that are subject to pervasive (i.e.,
consistently across the entire phylogeny) diversifying selection
(FEL) or pervasive/episodic (i.e., only on a single lineage or subset
of lineages, diversifying selection (MEME). Likewise, utilizing
multiple models for the inference of selective pressure and the
evaluation of evolutionary change, we identify novel sites within
the BDNF prodomain and mature peptide coding regions that are
susceptible to synonymous and nonsynonymous changes. Addi-
tionally, we investigate which sites in BDNF may be coevolving
(BGM). Taken together, these computational evolutionary analyses
provide an important context as to the origins and sensitivity of
genetic changes within the BDNF gene, which may be important
for providing insight into genetic risk factors linked to disease in
humans.

RESULTS

We find that unique evolutionary pressures have shaped the BDNF
gene across time. These forces have mostly operated through
strict purifying selection. Of note, BDNF elicits tight regulation and
specific functionality that can be separated from other neuro-
trophins, yet these growth factors remain closely related in their
structure and sequence, especially in the conserved NGF domain.

Evolutionary history of mammalian BDNF

Prior to conducting our primary evolutionary analysis, we ported
our mammalian species into a platform (timetree.org, see refs.
[42, 43]) to examine the epoch events that may have influenced
the analysis described here. This was an important pre-analysis
step to frame the age of our genomes, and the broad-stroke
evolutionary pressures that these species have been exposed to
(which, in theory, could contribute to subsequent purifying
selection and coevolution analyses). As expected, this revealed
BDNF as an ancient gene that has been preserved throughout the
mammalian lineage and has both survived and been shaped
under all major evolutionary events of the past ~177 million years
(data not shown). We identified several examples of species-level
evolutionary epochs that cross-referenced with major earth events
(e.g., bottleneck events) that have historically been believed to
drive evolutionary adaptation. This included major geologic
periods that are cross-referenced against earth impacts, oxygena-
tion changes across time, atmospheric carbon dioxide concentra-
tions, and solar luminosity. This indicates that even under extreme
evolutionary pressures, the BDNF gene has exhibited (relatively
speaking) very specific adaptation events (see results below) over
millions of years within Mammalia. This tracks with the idea that
“old genes” tend to be highly conserved, evolve more slowly, and
therefore are more likely to exhibit both specific and selective
changes as opposed to more dramatic permutations (e.g., gene
duplications, etc.).

Predominant purifying selection in BDNF

A common approach to gain an increased understanding of the
evolutionary forces that have shaped proteins is to measure the
omega ratio w consisting of the nonsynonymous (3 or dN) and
synonymous (a or dS) substitution rates, with w = 3/a for each site
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Fig. 1 Mammalian BDNF exhibits overwhelmingly strict purifying selection, but also evidence of specific evolutionary pressures at
particular sites. The FEL analysis of the BDNF gene found 174 of 261 (66.7%) sites to be statistically significant (LRT p value < 0.1) for pervasive
negative (purifying) selection. We plot the estimated values of omega (dN/dS) for each site in the alignment. Additionally, we plot 95%
confidence intervals (Cl) for each site. These results are also available in Table S1. We observe a high degree of strict purifying selection in the
Human NGF region. The region for Human NGF corresponds to alignment sites 144-254 (NP_001700.2 and https://github.com/aglucaci/
AnalysisOfOrthologousCollections/blob/main/tables/BDNF/BDNF_AlignmentMap.csv). This alignment of BDNF across all selected species
(Mammalia, see Table 3) reveals a site-specific positive/adaptive diversifying selection and negative purifying selection. The thick line
represents the point estimate (i.e., the evolutionary pressure) and the shadings reflect 95% confidence intervals which relate to the upper and
lower bound of the point estimates. As shown, the prodomain sites exhibit more pervasive/episodic and positive/diversifying evolutionary
selection, consistent with the fact that more disease-associated SNPs occur in this topological region of the BDNF gene in humans (early

prodomain mapping not further shown due to nuanced variation across mammalian species).

in a particular gene of interest [44]. We define two major changes
for the amino acid being coded for at each site: synonymous
changes, which keep the same amino acid coded for at a
particular site, and nonsynonymous changes, which change the
amino acid coded for at a particular site. Non-synonymous
changes can have strong influences on the structural, functional,
and fitness measures of an organism. This is in contrast to
synonymous changes which leave the amino acid at a particular
site unchanged but can confer weak fitness effects through the
emergent properties of codon usage bias, mRNA structural
stability, translation, and tRNA availability. However, synonymous
changes are typically understood to represent neutral selection
acting on coding sequences and provide a baseline rate against
which nonsynonymous evolutionary rates can be compared. The
omega ratio w of relative rates of nonsynonymous and synon-
ymous substitutions is a common measure in evolutionary biology
of the selective pressure acting on protein-coding sequences.
These estimates provide increased information availability as to
the type of selection (positive, with omega >1 or negative, with
omega <1, or neutral with omega =1) that has acted upon any
given set of protein-coding sequences.

As FEL analysis is a sensitive measure of negative (purifying)
selection, for this analysis we observe a predominant amount of
purifying selection (over 66% of sites, 174 sites out of 261; Table
S1) in our recombination-free alignment for BDNF. The dN/dS
estimates for the entire alignment were plotted including 95%
lower- and upper-bound estimates (see Fig. 1 or Table S1).
Overwhelmingly, the mature NGF domain of the BDNF exhibited
evidence of greater pervasive negative purifying selection relative
to the prodomain region of BDNF. Thus over the evolutionary
history of Mammalia, negative selection has predominantly
occurred in the regions of BDNF that encode the functional
mature protein that binds TrkB to elicit neurotrophic effects. The
mature domain of BDNF has exhibited remarkable conservation
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across innumerous epochs that have been defined by rapid
evolutionary adaptation in other genes and taxa.

Specific sites that are evolving non-neutrally

To examine specific sites for episodic adaptive evolutionary selection,
we utilized an algorithm known as MEME which is fundamentally
similar to our FEL analysis (described above) except that it applies a
more sensitive method for the detection of both pervasive
(persistent) and episodic selection (transient selection occurring only
on one or a subset of branches in the phylogenetic tree) as
compared to only pervasive selection which occurs across all
branches of the phylogenetic tree. Essentially, only a subset of the
lineages (i.e, species) are affected allowing for a more granular/
sensitive method of detecting selection (whereas FEL is better geared
towards broad changes). This analysis revealed that for all sites, only
2.3% (6 of 261; see Table 1) exhibit evidence for episodic diversifying
selection (i.e,, positive selection) in at least one branch within the
phylogeny. Spatially, these mutations occur outside of the NGF
functional region of BDNF. Further, this result is essentially relevant as
the MEME analysis is a sensitive measure of episodic selection. The
sites we observe as statistically significant were 26, 27, 30, 38, 249,
and 254. For comparison, these specific sites were realigned to the
respective  human sites with indel (insertion/deletion) events
accounting for any respective discrepancy in specific site numbers.
When mapping these sites to the human BDNF coordinate system,
they correspond to sites 26, 27, 29, 36, 238, and 240, respectively.

Evidence of coevolutionary forces

To examine the coevolution of sites, i.e., if one particular amino
acid was evolving in-tandem with another, we subjected our
protein-coding gene sequences to the BGM algorithm which
leverages Bayesian graphical models [45]. The BGM algorithm
infers substitution history through the use of maximum-likelihood
analyses for ancestral sequences and maps these to the
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Human CodonSite

MEME analysis of the BDNF gene found 6 of 261 (2.3%) of sites to be statistically significant (LRT p value <0.1).
26
27
29

CodonSite
26
27
30

#
1
2
3

Table 1.
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phylogenetic tree, which allows for the detection of correlated
patterns of substitution [45]. For our BGM analysis, we find evidence
for 23 pairs of coevolving sites. This suggests interaction dynamics in
tertiary space of the 3D, folded, protein level (see relevant sites in
Fig. 2) BDNF protein structure. Alternatively, this data may be
evidence that coevolving sites may be related to other fitness
consequences (e.g, compensation) for maladaptive changes in
another part of the protein sequence that may have occurred. When
we review these sites, we notice that several pairs (see Fig. 2) occur
within alignment sites, which correspond to the Human BDNF
coordinate system (Table 1). These include pair-sites of (89, 184), (94,
155), (103, 233), and (135, 154). Of note, several other sites also
display interesting geometric features including triangular relations
[(81, 93), (93, 98), and (81, 98)], an acyclic graph network of site
connections [(70, 74), (74, 94), (94, 155) and (25, 49), (49, 85), (49, 86)],
more complex double-linked coevolutionary sites [(39, 103) and
(103, 233)], and triple-linked coevolutionary sites [(30, 119), (33, 119),
and (91, 119)]. Additionally, three-dimensional reconstruction—here
focusing on a specific heterodimer configuration of BDNF and NT-4
as an example of a spatial protein—protein interaction—highlights
that coevolving sites, as well as positively evolving sites, are likely to
have been fine-tuned over time to help support BDNF's cognate
functionality (see Fig. 3). Mapping our FEL purifying sites in a
structural configuration was not shown due to the overwhelming
nature of negative selection acting on BDNF within mammals.

DISCUSSION

In this study, we explore the evolutionary history of the BDNF gene
in Mammalia. The BDNF gene is implicated in a number of human
diseases including a variety of brain disorders such as neurode-
velopmental disorders (e.g., autism spectrum disorder), neuropsy-
chiatric disorders (e.g., depression, PTSD, and schizophrenia), and
some neurodegenerative disorders [1]. By using orthologous BDNF
sequences within the Mammalia taxonomic group, our results
indicate that unique site-specific changes within BDNF have
evolved over time. We performed a number of comparative
evolutionary analyses to tease out signals from our orthologous
gene collection in BDNF. Of note, the BDNF gene elicits tight
regulation and specific functionality that can be separated from
other neurotrophins, yet these growth factors remain closely
related in their structure and sequence and conservation of the
NGF functional domain. In the NGF domain, we observe a high
degree of conservation (via purifying selection) across species,
owing to the functional importance of this region in
protein—protein interactions. This work additionally provides broad
comparative insights into the evolutionary history of the BDNF
gene family. Our MEME method identified novel substitutions (see
Table 1) in regions of BDNF that may provide significant areas of
interest for designing molecular therapeutic approaches, and their
potential broader significance are outlined in further detail below.

Predominant purifying selection across BDNF in Mammalia

Over time, evolution drives the divergence of genetic sequences,
but what can we learn from the direct comparison of the
sequences of the BDNF gene in Mammalia? By comparing the
BDNF products of orthologous sequences in different species, we
observe the accumulation of mutations at different sites with
varying degrees of insight into both BDNF functionality (see [29]
for site annotation) and potential disease [1]. These are
summarized in full within Table S1 and Table 1. Coding sequences
with highly constrained structures are expected to fix nonsynon-
ymous mutations at a slower rate due to the maladaptive nature
of changes such as what we observe with FEL negatively selected
sites across BDNF. Additionally, we observe a high degree of
negative (purifying) selection across the main functional domain
(NGF) of BDNF. While structures for the NGF domain in most
species under analysis do not exist, based on our findings we

Translational Psychiatry (2022)12:258
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Fig. 2 The BGM analysis of BDNF found 23 pairs of coevolving sites out of 261 total sites to be statistically significant (with a posterior
probability threshold of 0.5). Here, we plot only the statistically significant coevolving pairs. The number of shared substitutions between
pairs of coevolving sites is visualized by the size of the circle, with larger circles indicating more shared substitutions. Poster probability of the
interaction (coevolving pair) corresponds to the color blue, with dark blue indicating higher values. Individual BDNF sites are mapped on both
the X and Y axis so that readers can view which sites are coevolving with another. Once more, note that the coevolution tends to be focally
constrained to the broader BDNF prodomain region at a topological level, which is once more consistent with the idea that the NGF domain
(site >144; see Fig. 3) is highly conserved and probably deleteriously impacted by variation. However, we did discover four sites of coevolution
in the NGF domain (basically, the mature BDNF protein) that are evolving with early prodomain sites. This highlights that both proximal and
distal sites in BDNF can, and indeed are, evolving together over time.

Rotation 1

Rotation 2 Rotation 3

Rotation 4

Fig. 3 BDNF NT-4 heterodimer structural analysis to highlight coevolving and adaptive sites at the 3D protein level. Demonstrating the
structural configuration of the BDNF (blue) and NT-4 (pink) heterodimer (see https://www.rcsb.org/structure/1B8M), with rotations (arbitrary
degrees) shown to accentuate the view of coevolving sites (orange, see also Fig. 2 and Table 2) and positively evolving sites (red; see Table 1).
The PDB structure is limited to the NGF domain which limits our ability to highlight sites of interest (SOI), therefore we have limited our
annotation only to the modeled sites in the structure. The relative positioning of coevolving and positively evolving sites in this heterodimer
visualization are in proximity to looping and other macro tertiary structures of protein. An interactive figure that is rotatable in 3D space,
where occupations occur in three dimensions (i.e., teasing out relative proximity in 2D linear space), is available here: https://observablehq.
com/@aglucaci/bdnf-structure.

expect a highly conserved tertiary structure. Based on the high
degree of purifying selection observed across BDNF, we hypothe-
size that BDNF plays a critical role in the underlying network of
genes governing homeostasis and normal organismal develop-
ment. This may have happened because BDNF is particularly
useful specifically for the phylogenetic branch in question (i.e.,
mammals). This interpretation is also consistent with the observa-
tion that BDNF is essential for normative development and is
lethal in non-conditional full knock-out mammalian models.

Non-neutral positive diversifying evolution sites in the BDNF
gene

It has been described that BDNF plays a particular role as a
foundational gene for brain development [11]. Despite a significant

Translational Psychiatry (2022)12:258

level of purifying selection shaping the evolutionary history of
BDNF (Fig. 1), we observe several novel statistically significant
sites under positive episodic diversifying selection across the
BDNF gene (see Table 1). Traditionally, the evolution of this
variety consists of amino acid diversifying events that may
promote phylogenetic adaptation and/or functionality. These
results are entirely novel—they have not been previously
reported (to the best of our knowledge) and MEME is an
established and sensitive method for the analysis of episodic
diversifying sites. Thus, the very specific and limited sites
within BDNF to exhibit such patterns is a highly promising
result from which to further disentangle BDNF's complex
functionality and disease linkage. We would encourage
biologists to consider these sites as those that may contain
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Table 2. The BGM analysis of BDNF found 23 pairs of coevolving sites out of 261 total sites to be statistically significant (with a posterior probability

threshold of 0.5).

# Site 1 Site 2 P [Site 1 —> Site 2] P [Site 2 —> Site 1]
1 5 67 0.52 0.32
2 25 49 0.022 0.67
3 27 109 0.12 0.45
4 30 119 0.2 0.56
5 33 119 0.12 0.72
6 39 103 0.22 0.58
7 49 85 0.48 0.049
8 49 86 0.36 0.55
9 50 69 0.31 0.27
10 62 64 0.25 0.27
11 70 74 0.17 0.38
12 70 95 0.59 0.26
13 74 94 0.034 0.64
14 78 90 0.46 0.38
15 81 93 0.27 0.31
16 81 98 0.27 0.33
17 82 91 0.045 0.92
18 89 184 0.24 0.5
19 91 119 0.22 0.67
20 93 98 0.31 0.3
21 94 155 0.28 0.29
22 103 233 0.4 0.13
23 135 154 0.4 0.43

important adaptive functions within the BDNF gene. However,
where our results fall within the context of a core protein—-protein
interaction network of required genes for neural cellular diversity
and development is yet to be determined. We do note that at
least one identified site (238) overlaps with potential posttransla-
tional modifications to the human BDNF peptide (specifically, a
disulfide bridge; see UniProt and [29]). This supports the idea that
non-neutral positive diversifying sites within BDNF are not
spurious and likely reflect specialized, regulatory, or functional
capacities that may have yet to be annotated in full. Given that
this manuscript is devoted to the analysis of BDNF's evolution in
mammals, we highlight the potential importance of these sites
but emphasize that their importance remains a hypothesis that
should be tested in well-defined experiments under controlled
laboratory conditions.

Discovery of proximal and distal coevolving site-pairs in the
BDNF gene

Another novel, and potentially important, series of findings in this
manuscript was the presence of numerous sites that exhibit
coevolution. In fact, we observe a significant number of
coevolving sites within the BDNF gene (see Fig. 2 and Table 2),
and these too reflect an entirely novel aspect of BDNF biology that
has not previously been reported. Evidence of coevolving sites are
not limited to a particular domain (e.g., prodomain vs mature) nor
specific motifs. Instead, coevolving pairs seem to be distributed
across the entirety of BDNF with, perhaps unsurprisingly, an
increased density of interactions early in the prodomain region.
However, we also note that there are coevolving sites in the
mature NGF domain which are “linked” to early domain sites.
Importantly, these relationships may confer strong epistatic
interactions shaping the continued evolution of this critically
important gene. The new evidence for coevolution may point to

SPRINGER NATURE

P [Site 1 <> Site 2] Site 1 subs Site 2 subs Shared subs
0.84 1 1 1
0.69 8 6 3
0.57 2 1 1
0.75 6 12 4
0.84 3 12 3
0.8 8 4 3
0.53 6 3 2
091 6 5 3
0.58 1 2 1
0.52 1 1 1
0.55 7 14 4
0.85 7 21 5
0.68 14 7 4
0.84 1 1
0.58 1 1 1
0.61 1 1 1
0.96 15 29 9
0.74 6 2
0.89 29 12 8
0.61 1 1 1
0.57 7 2 2
0.53 4 3 2
0.82 1 1 1

the importance of these sites in shaping the early regulatory or
main functional (NGF) domain of BDNF. These residues may form
important interactions for the functional integrity of BDNF and,
importantly, the highly specific pairs which span the BDNF
prodomain and its mature region point to a new mechanism by
which the BDNF prodomain may have coregulated the mature
domain (or vice versa). Alternatively, these coevolving pairs may
be part of a network of residues occupying a shifted fitness
landscape in order to accommodate new or species-specific
functional requirements.

Potential structural implications of evolving sites

In considering our observation of both diversifying selection
and coevolving sites in the BDNF gene, we considered the
potential implications this may have at a protein structural level
in three-dimensional space (see Fig. 3). While protein structural
impacts from evolution remain poorly understood and cannot
be completely experimentally disentangled in a confirmatory
sense, the implications fall upon our understanding of basic
BDNF neurobiology. Here we note that our BGM and FEL
analyses implicate the prodomain—the primary topological
region of BDNF known for polymorphic variability (e.g.,
Val66Met and GIn75His) that is often linked to disease
[1, 11, 29], and our 3D modeling suggests that two of our
coevolving sites appear to be associated with looping structures
that could have important yet to be discovered functionality. In
this regard, we predict that the evolutionary changes described
here are likely to reflect some form of specialization and/or
divergence in function and/or interaction partners at different
points of BDNF’s evolutionary history in mammals. Thus, further
work may unveil yet more novel sites that could provide further
insight into the origins of BDNF's diverse functionality and its
role in disease.
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Limitations of our computational evolutionary analysis

This analysis focused on BDNF sequences contained in the
taxonomic group Mammalia in lieu of examining a more inclusive
dataset for BDNF containing sequences from all of Gnathostomata
(jawed vertebrates) or extension into invertebrate clades which
may contain BDNF or BDNF-like analog genes. Our results are
applicable to mammals, which are our intentional taxonomic
group of study, but we nonetheless emphasize that our results do
not capture the entirety of BDNF’'s evolutionary history (e.g., there
could be more to learn about BDNF from birds, lizards, fish, and
higher-order taxonomic groups which we do not evaluate here). In
addition, we do not explore the patterns or mutational processes
occurring outside of coding-sequence evolution which include
complex structure and dynamics of non-coding regions in the
BDNF gene. Therefore, evolutionary temporality is important in
the context and interpretation of our results because Mammalia
represents only a portion of the long evolutionary history of BDNF.
Although we failed to find evidence for recombination in our
dataset, species where we may find evidence for recombination
may have been precluded from our analysis due to our decision to
focus on mammalian BDNF evolution. Further, a limitation of the
current analysis is owed to the presence of indel events, especially
in the early region of the alignment but which also occur in other
spatially distributed regions of the BDNF gene. These indel events
are not currently modeled in existing codon substitution models
but may represent an additional pathway of evolutionary change.
Nonetheless, the prominence of indels in our observations
indicates that several regions of BDNF may evolve significantly
through indel events across species. Lastly, although there is a risk
that the “gappy” nature of the early region of our multiple
sequence alignment may be a computational artifact of the
alignment procedure, based on all other outputs we believe that
our results are reasonably interpreted and have subsequently
tolerated these potential effects.

Future directions: understanding the remainder of the
neurotrophin family

We hypothesize that the similarities between neurotrophins
reflects conserved evolutionary selection for motifs and domains
which support common functionality in neurotrophic factors
between sites and lineages. While we note significant isotropy in
mature peptide sequences for these factors, anisotropic pressures
likely influenced the prodomain sequences of neurotrophins
leading to alterations in processing, trafficking, regulation, and
secretion. As such, we also predict differences in the evolutionary
fate of other neurotrophins which also exhibit compartmentalized
functionality due to similar alterations within their prodomains
(i.e., similar results may be reasonably anticipated in NGF, NT-3,
and NT-4).

CONCLUSION

To sum up, our research modeled the natural evolutionary history
of changes in BDNF across >160 mammalian genomes. Conserva-
tively, this analysis spans ~177 million years of evolution—and
going deeper could yet reveal more information on the
ontogenesis of BDNF and its topological structure (and, conse-
quently, function). Notably, we observed strict purifying selection
in the main functional domain of the BDNF gene in mammals and
discovered 6 specific sites in our homologous alignment that are
under episodic selection in the early regulatory region of BDNF
(i.e., the prodomain) and in the terminal region of BDNF. We also
make the case for spatial coevolution within this gene, with 23
pair-sites that have evolved together. In sum, these data go above
and beyond the common trope that “BDNF is highly conserved”
by defining exactly where and how the mammalian BDNF has
evolved. Thus, we confirm the widespread belief that the BDNF
prodomain is more prone to change than the mature BDNF
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protein, having important implications for how we think about
and consider genetic variation in BDNF and its linkage to disease.

METHODS

Data retrieval

For this study, we queried the NCBI Ortholog database via https://www.
ncbi.nlm.nih.gov/kis/ortholog/627/?scope=7776. For the purpose of this
study, as we are interested in mammalian BDNF evolution, we limited our
search to only include species from this taxonomic group (mammals,
Mammalia). This returned 162 full gene transcripts and protein sequences.
We downloaded all available files: RefSeq protein sequences, RefSeq
transcript sequences, Tabular data (CSV, metadata). In Table 3, we provide
a table of the species included in this analysis but we also make this
accessible via GitHub. Furthermore, we also make these species NCBI
accessions (see also Table 3) available for download on GitHub:

®  AnalysisOfOrthologousCollections/BDNF_orthologs.csv at main - aglu-
caci/AnalysisOfOrthologousCollections - GitHub

Data cleaning

We used the protein sequence and full gene transcripts to derive coding
sequences (CDS) (via a custom script, scripts/codons.py). However, this
process was met with errors in 20 “PREDICTED” protein sequences,
which had invalid characters such as sequences, which have incorrect
“X", or unresolved amino acids and these sequences were subsequently
exempt from the analysis. This process removes low-quality protein
sequences from analysis which may inflate rates of nonsynonymous
change.

Analysis of orthologous collections (AOC): alignment,
recombination detection, tree inference, and selection
algorithms

The analysis of orthologous collections (AOC) application is designed for
comprehensive protein-coding molecular sequence analysis (https://
github.com/aglucaci/AnalysisOfOrthologousCollections). It accomplishes
this through a series of comparative evolutionary methods. AOC allows
for the inclusion of recombination detection, a powerful force in shaping
gene evolution and interpreting analytic results. As well, it allows for
lineage assignment and annotation. This feature (lineage assignment)
allows between-group comparisons of selective pressures. This application
currently accepts two input files: a protein sequence unaligned fasta file,
and a transcript sequence unaligned fasta file for the same gene. Typically,
this can be retrieved from public databases such as NCBI Orthologs.
Although other methods of data compilation are also acceptable. In
addition, the application is easily modifiable to accept a single CDS input, if
that data is available.

If protein and transcript files are provided, a custom script “scripts/
codons.py” is executed and returns coding sequences where available.
Note that this script currently is set to use the standard genetic code, this
will need to be modified for alternate codon tables. This script also
removes “low-quality” sequences if no match is found, see the above Data
cleaning section.

Step 1. Alignment. We used the HyPhy [46] codon-aware multiple
sequence alignment procedure available at (https://github.com/veg/
hyphy-analyses/tree/master/codon-msa). This was performed with a
Human BDNF coding sequence NM_001709.5 Homo sapiens brain-derived
neurotrophic factor (BDNF), transcript variant 4, mRNA as a reference-based
alignment. Our alignment procedure retained 126 unique in-frame
sequences.

Step 2. Recombination detection. Performed manually via RDP v5 [47],
see below, the “Recombination detection” section for additional details. A
recombination-free file is placed in the following folder: results/BDNF/
Recombinants. For the purpose of this study, we did not detect
recombination in our dataset.

Step 3. Tree inference and selection analyses. For the recombination-
free fasta file, we perform maximum-likelihood phylogenetic inference via
IQ-TREE [48]. Next, the recombination-free alignment and an unrooted
phylogenetic tree is evaluated through a standard suite of molecular
evolutionary methods. This set of selection analyses includes the following
but for the sake of brevity, some of these results were not shown
(essentially, most were not statistically significant or not meaningful as
relevant to the evolutionary results presented here).
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A.G. Lucaci et al.

® FEL: locates codon sites with evidence of pervasive positive
diversifying or negative selection [44].

® BUSTEDS: tests for gene-wide episodic selection [49].

® MEME: locates codon sites with evidence of episodic positive
diversifying selection [50].

® aBSREL: tests if a positive selection has occurred on a proportion of
branches [51].

® SLAC: performs substitution mapping [44].

® BGM: identifies groups of sites that are apparently coevolving [45].

® RELAX: compare gene-wide selection pressure between the query
clade and background sequences [52].

® CFEL: comparison site-by-site selection pressure between query and
background sequences [53].

® FMM: examines model fit by permitting multiple instantaneous
substitutions [54].

Step 4A. Lineage assignment and tree annotation. For the unrooted
phylogenetic tree, we perform lineage discovery, via NCBI and the python
package ete3 toolkit. Assigning lineages to a K (by default, K= 20) number
of taxonomic groups. Here, the aim is to have a broad representation of
taxonomic groups, rather than the species being heavily clustered into a
single group. As a reasonable approximation, we aim for <40% of species
to be assigned to any one particular taxonomic group.

Step 4B. We perform tree labeling via the hyphy-analyses/Label-Trees
(REF, link) method. Resulting in one annotated tree per lineage
designation. For the purpose of this study, we will only consider the
following five lineages for additional analyses (Artiodactyla, Carnivora,
Chiroptera, Glires, Primates) as they are the most populated lineages.

Step 5. Selection analyses on lineages. Here, the recombination-free
fasta file and the set of annotated phylogenetic trees (where labeling was
performed in Step 4) is provided for analysis with the RELAX and Contrast-
FEL methods.

Recombination detection
Manually tested via RDP v5.5 with modified settings as follows:

We also included the following algorithms/analyses: RDP [55], GENE-
CONV [56], Chimaera [57], MaxChi [58], BootScan [59] (Primary and
Secondary Scan), SiScan [60] (Primary and Secondary Scan), 3Seq [61].
Recombination events are “accepted” in cases where three or more
methods are in agreement.
We slightly modified default parameters, such that

Require topological evidence.

Polish breakpoints.

Check alignment consistency.

Sequences are linear.

List events detected by >2 methods.

We manually recheck all of the events via “Recheck all identified events
with all methods”.

We manually accept events detected by >2 methods.

The resulting alignment was saved as a distributed alignment (with
recombinant regions separated).

Recombination was not detected within our Human reference-based
alignment. Therefore we used the single recombination-free alignment for
analyses.

DATA AVAILABILITY

The AOC application is freely available via a dedicated GitHub repository at: https://
github.com/aglucaci/AnalysisOfOrthologousCollections Raw data for this study is
available on GitHub: https://github.com/aglucaci/AnalysisOfOrthologousCollections/
tree/main/data/BDNF. Full results for this study include all HyPhy selection analyses
JSON-formatted result files are available on GitHub: https://github.com/aglucaci/
AnalysisOfOrthologousCollections/tree/main/results/BDNF.
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