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The ideal cell type to be used for cartilage therapy should possess a proven chondrogenic capacity, not cause donor-site morbidity,
and should be readily expandable in culture without losing their phenotype. There are several cell sources being investigated to
promote cartilage regeneration: mature articular chondrocytes, chondrocyte progenitors, and various stem cells. Most recently,
stem cells isolated from joint tissue, such as chondrogenic stem/progenitors from cartilage itself, synovial fluid, synovial
membrane, and infrapatellar fat pad (IFP) have gained great attention due to their increased chondrogenic capacity over the
bone marrow and subcutaneous adipose-derived stem cells. In this review, we first describe the IFP anatomy and compare and
contrast it with other adipose tissues, with a particular focus on the embryological and developmental aspects of the tissue. We
then discuss the recent advances in IFP stem cells for regenerative medicine. We compare their properties with other stem cell
types and discuss an ontogeny relationship with other joint cells and their role on in vivo cartilage repair. We conclude with a
perspective for future clinical trials using IFP stem cells.

1. Introduction

Cell-based approaches are increasingly gaining attention in
the development of treatments for articular cartilage defects
[1–4], especially since the clinical application of autologous
chondrocytes for articular cartilage repair in 1994 (autolo-
gous chondrocyte implantation, ACI) [5, 6]. However, the
development of a regenerated cartilage that fully recapitulates
the native tissue still eludes us. It is therefore unsurprising
that a full consensus has not yet been reached on the
optimum cell source for cartilage tissue regeneration [7, 8].

Some of the most frequently studied cells include mature
chondrocytes, chondrocyte progenitors, embryonic stem

cells (ESC), induced pluripotent stem cells (iPS), and mesen-
chymal stem cells (MSC). Mature chondrocytes, such as
those currently used in ACI, have led to improved clinical
outcomes [5], although there are challenges associated with
their isolation, culture, donor-site morbidity, and dedifferen-
tiation [9–11]. Tissue-specific progenitor cells found in the
perichondrium [12, 13], periosteum [14], and in normal or
osteoarthritic (OA) cartilage itself [15–17] are being actively
explored as substitutes to mature chondrocytes. Studies on
the chondrogenic differentiation of ESC and iPS have shown
these cell types are emerging as potential future cell sources
for cartilage repair [18]; however, ethical and/or safety issues
remain (e.g., tumor formation) [19]. Given their availability
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and chondrogenic potential, MSC—primarily from the
bone marrow but also from adipose tissue—have emerged
as the most promising cell source to regenerate articular
cartilage [20–22].

Interestingly, MSC isolated from tissues within the
articular joint possess superior chondrogenic capacity
when compared to the bone marrow or subcutaneous adi-
pose tissue-derived MSC [23]. Specifically, MSC can be iso-
lated from the synovial fluid [24, 25], synovial membrane
[26, 27], and the infrapatellar fat pad (IFP) [28–32]. MSC
isolated from the synovial fluid or the synovial membrane
have been previously discussed in another review paper
[33], and the latter have already been investigated in a
clinical study, where significant improvements in clinical
outcomes were demonstrated including improved MRI
scores (from 1.0± 0.3 to 5.0± 0.7, median± 95% CI) which
grade for “degree of defect repair and filling of the defect”
[34], Lysholm knee scores (from 76± 7 to 95± 3, median
± 95% CI) which grade “patients’ own opinion of function”
[35] and histological qualitative assessments [27]. Although
very few clinical trials have been reported so far employing
IFP stem cells [36, 37], this review will outline how these cells
could be a very promising source for cartilage regeneration.
First, we will discuss IFP as a tissue source, anatomically
and developmentally. Next, we will describe the latest
advances in analyzing the therapeutic potential of IFP stem
cells for cartilage regeneration. Finally, we will compare IFP
stem cells to other cell types in the joint, suggesting their
main role in the maintenance of joint homeostasis. In the
conclusions and future perspectives section, we will motivate
the use of IFP cells in future clinical trials.

2. The IFP Structure and Development

In order to put forward the IFP as a promising cell source for
cartilage regeneration, it is important to understand its ana-
tomical characteristics, as well as its developmental origin.
As an adipose tissue within the joint, the IFP can be easily
harvested arthroscopically or during open knee surgery
[38]. The IFP is an intracapsular structure in the anterior
knee compartment, composed of approximately 20 cm3 of
adipose tissue, or slightly larger in patellofemoral OA joints
[39–41]. As it is lined on its deep surface by the synovial

membrane, it is classified as an extrasynovial structure. The
IFP lies inferior to the patella and posteriorly extends into
the infrapatellar plica (IPP) (ligamentum mucosum), which
inserts into the anterior border of the intercondylar notch
[42]. The infrapatellar plica is, together with the suprapatellar
and mediopatellar, one of the three plicas in the knee. These
plicas are believed to be synovial fold remnants from the
incomplete resorption of the synovial septa during the
embryological development of the knee [43].

Although generally considered to participate in the bio-
mechanics of the knee [44], the exact roles of IFP in articular
physiology have not been fully elucidated [45]. In 1691, it was
originally proposed by Havers et al. that synovial fat pads
were responsible for the secretion of synovial fluid. However,
it is now believed that they simply occupy space in the joint,
maintaining the articular cavity, allowing the synovial fluid to
circulate over the joint, and contributing to lubrication [46],
with the contribution to lubrication attributed to increased
synovial surface resulting from their anatomical location
[47]. Participation of the IFP in shock absorption has also
been proposed [48]. Interestingly, the weight of the synovial
fat pads are unrelated to the state of nutrition, unless in
extreme emaciation [49]. Even under starvation conditions,
with the elimination of the subcutaneous adipose tissue, the
IFP may be preserved [50]—this biological drive underscores
its importance in the knee joint. As discussed later in this
review, we believe this biological drive results from IFP stem
cells’ role in tissue maintenance and repair.

Besides its anatomical position, the embryonic origin of
the IFP also highlights its potential. Synovial joints develop
through the formation of an interzonal layer of flattened cells
within a mesenchymal condensation, which is responsible for
the cavitation and formation of the joint tissues [51]. Specif-
ically, during human knee formation, at the 9th week of
development—when the chondrification of the patella,
femur, and tibia has already begun but prior to the menisci
maturation and ossification—the chondral anlagen—a trian-
gular space occupied by a mesenchymal tissue—appears
below the patella. It is thought that this is the site of forma-
tion of the future IFP [52]. The cells from the interzone will
further contribute to the development of the epiphyseal
articular chondrocytes, ligaments, menisci, synovial lining,
and fat pad [53–57] (Figure 1).
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Figure 1: Ontogeny of the infrapatellar fat pad (IFP). During embryonic development, (a) a dense mesenchyme tissue arises between the
chondrification of the femur (F) and tibia (T), the interzone (flattened cells in pink). (b) This is followed by a cavitation in between this
region. (c) By the 9th week of human development, a triangular space composed of a mesenchymal tissue becomes visible below the
patella (P) (highlighted by the blue dashed). (d) In adulthood, interzone cells will have contributed to several joint structures (pink),
including the IFP (highlighted by the blue dashed). This image was made using https://MindTheGraph.com.

2 Stem Cells International

https://MindTheGraph.com


3. The IFP as an Adipose Tissue

Although the exact roles of the IFP and its development are
not yet fully understood, it is important to highlight its
nature as an adipose tissue and, more specifically, as an
elastic adipose tissue, due to its orcein-stained elastic-fiber
content [49]. Traditionally, the adipose tissue has been iden-
tified as a metabolic tissue responsible for storing energy in
the form of fat. However, more recently, due to the descrip-
tion of adipokines and their regulation of appetite and partic-
ipation in inflammation and vascular diseases, the adipose
tissue is now also regarded as an endocrine tissue [58, 59].
Indeed, the adipose tissue can be divided into brown (BAT)
and white (WAT) types, which are further divided into
subcutaneous and visceral adipose tissue. WAT is commonly
associated with energy storage, while BAT with energy dissi-
pation in the form of heat [60]. In a similar way, subcutane-
ous adipose tissue is more predisposed to storing free fatty
acids and triglycerides, while visceral adipose tissue is more
cellularized, vascularized, innervated, and therefore more
metabolically active and predisposed to insulin resistance
[61]. Different sites of the adipose tissue therefore present
different physiological properties [62].

Although all adipose tissues possess a mesodermal origin,
different stem cell populations give rise to visceral and subcu-
taneous adipose tissue [63, 64], for example mesothelial cells
originated mainly from the lateral plate mesoderm strongly
contribute to the formation of visceral adipocytes, while
paraxial mesoderm and neural crest contribute to the forma-
tion of mesenchymal/mesodermal stem cells that originate
subcutaneous adipocytes [65, 66]. Based on this delineation,
it is important to note that the IFP should be evaluated as
an adipose tissue with singular characteristics. It does not
correlate with visceral adipose tissue since its origin is not
related in any way to the formation of visceral structures
and has never presented a mesothelium cover. On the other
hand, it is not functionally similar to subcutaneous adipose
tissue either; for instance, IFP from obese patients secretes
different levels of inflammatory molecules and adipokines
(e.g., higher levels of IL-6, soluble IL-6 receptor and adipo-
nectin, and lower levels of leptin), and expresses lower levels
of lipid metabolism-related genes compared to subcutaneous
adipose tissue [67].

4. Adipose-Derived Stem Cells

Mesenchymal stem-like cells with multilineage differentia-
tion capacities were first isolated from the human subcutane-
ous adipose tissue obtained after the enzymatic digestion of
lipoaspirate samples in 2001 [68]. This was in accordance
with later findings that MSC with tissue/organ-specific char-
acteristics could be found in virtually all organs, occupying a
perivascular niche [69, 70]. Further investigation confirmed
that although MSC derived from both subcutaneous adipose
tissue and the bone marrow are multipotent, the bone
marrow-derived MSC are more committed to osteogenic
and chondrogenic lineages, while adipose-derived stem cells
are more committed to the adipogenic lineage [71]. More-
over, while CD34 is not expressed by the bone marrow-

derived MSC, it is only the CD34+ cells in the adipose tissue
which are capable of multilineage differentiation and of
forming fibroblastic colony-forming units (CFU-F) [72].
More recently, it has been proposed that four different
nonhematopoietic (CD45−) progenitor populations exist in
adipose tissue: endothelial progenitors (CD146+/CD31+/
CD34+); pericytes (CD146+/CD31−/CD34−), which are
more naïve; a transit amplifying progenitor population
(CD146+/CD31−/CD34+); and a more adipogenic-
committed supra-adventitial adipose stromal cell population
(CD146−/CD31−/CD34+) [73].

In 2013, the International Federation for Adipose
Therapeutics and Science (IFATS) and the International
Society for Cellular Therapy (ISCT) published a joint state-
ment on some definitions regarding adipose-derived stem
cells. For instance, marker expression profiles of cells from
the stromal vascular fraction (SVF) and the adipose tissue-
derived stromal cells (ASC) have been defined. The SVF
comprises the cell populations obtained after enzymatic
digestion of the adipose tissue, separated from the mature
adipocytes through centrifugation, such as endothelial cells,
erythrocytes, fibroblasts, lymphocytes, monocytes/macro-
phages, pericytes, and stem/progenitor populations; while
the ASC comprises the adherent cells populations obtained
from the SVF [74].

5. The IFP Stem Cells

In 1996—before the first isolation of adipose-derived stem
cells (2001)—Maekawa et al. described a population of fibro-
blasts that are a “kind-of a stem cell” in the synovial tissue
near the IFP. The cells described reside in a perivascular
niche, expressing fibronectin and laminin, and are associated
with small vessels. They participate in anterior cruciate
ligament (ACL) repair after injury, by secreting extracellular
matrix (ECM) components such as collagen type I and III.
Moreover, these cells can also differentiate into surface-
lining phagocytic fibroblasts [75]. To our knowledge, this
was the first report of a stem cell-like population related to
the IFP.

More recently, multipotent stem cells from IFP have been
isolated and characterized as CD9+, CD10+, CD13+, CD29+,
CD44+, CD49e+, CD59+, CD105+, CD106+, and CD166+
with the ability to differentiate into chondrogenic, osteo-
genic, and adipogenic lineages under the appropriate stim-
ulation in vitro. Under chondrogenic stimulation, the cells
did not produce collagen type X, a marker of hypertrophy
[76]. Since then, many studies have confirmed IFP stem cells’
chondrogenic capacity in different in vitro and in vivo
models [28–30, 32, 51, 77–81].

Continuing the characterization studies, Hindle et al.
distinguished two populations within the IFP stem cells: the
pericytes (CD31−/CD34−/CD45−/CD146+) and adventitial
cells (CD31−/CD34+/CD45−/CD146−), corresponding to
3.8% and 21.2% of the isolated cells at the stromal vascular
fraction (SVF). The two mixed populations were termed
“perivascular stem cells” (PSC). The total adherent popula-
tion was termed “MSC.” Interestingly, both PSC and MSC
derived from IFP showed superior chondrogenic capacity
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compared to the bone marrow-derived MSC. Additionally,
comparing the two populations from IFP, it was found that
PSC were superior toMSC [82]. Additionally, 3G5 (a pericyte
marker) has been detected in IFP cells in situ. Situated in the
adventitia of small blood vessels, 1–20% of cells retained
3G5 expression both in mixed and clonal population after
expansion in culture [51].

When compared with other cell types, IFP stem cells
were found to retain their chondrogenic potential for a
longer period than chondrocytes obtained from OA articu-
lar cartilage [83]. Compared with subcutaneous adipose
tissue-derived stem cells, IFP stem cells presented with a
similar ability to form CFUs; however, they expressed
higher levels of chondrogenic and osteogenic genes [84].
Compared with the bone-marrow MSC, IFP stem cells gen-
erated more cartilaginous ECM in pellet cultures and
expressed higher levels of chondrogenic genes [82]. In one
study, IFP stem cells were compared to the bone marrow-
derived MSC and synovium-derived stem cells (SDSC)
[85]. Importantly, SDSC had been reported to present
enhanced chondrogenic potential compared to the bone
marrow, adipose, and muscle MSC both in vitro [86] and
in vivo [23]. Although SDSC generated the most functional
and mechanically stable cartilaginous tissue in vitro, none of
the cell types generated stable cartilage after subcutaneous
implantation in vivo. Nevertheless, the authors stated that
it is not possible to fully conclude that SDSC possess higher
chondrogenic capacity compared to the other cell types,
since different culture conditions may interfere with each
cell’s chondrogenic potential [85]. For instance, the applica-
tion of physiological levels of hydrostatic pressure (HP) fur-
ther enhances IFP stem cells chondrogenic capacity, as well
as maintain their potential after removal of TGF-β3 stimuli
[87]. Moreover, when exposed to dynamic compression and
a gradient oxygen tension [88] or cultured in decellularized
cartilage explants [89], IFP stem cells produced cartilagi-
nous ECM with zonal architecture that resembled native
articular cartilage.

It is possible that specific subpopulations in the heteroge-
neous IFP stem cell population may possess an even greater
chondrogenic potential. A subpopulation of freshly isolated,
that is not expanded in vitro, CD44+ cells (approximately
10% of the entire population) showed an impressive capabil-
ity to synthesize sGAG and collagen type II in vivo when
seeded on a cartilage ECM-derived scaffold and subcutane-
ously implanted [28]. The idea of using an enriched popula-
tion with increased chondrogenic capacity, without the need
of culture expansion, is particularly promising for clinical
trials. A study comparing donor-matched articular chondro-
cytes, bone marrow, IFP, and subcutaneous adipose tissue
stem cells also suggested that CD49c and CD39 expression
positively correlate to an enhanced in vitro chondrogenic
potential, besides suggesting IFP stem cells as the best stem
cell alternative to chondrocytes, followed by the bone
marrow and subcutaneous adipose tissue [90].

Recently, IFP stem cells were also compared to synovial
fluid stem cells (SFSC). The chondrogenic capacity of both
was considered similar in vitro, although the adipogenic
and osteogenic potential of IFP stem cells was greater.

Moreover, the expression of CD34 was detected in
30.1%± 18.6% of passage 3-4 IFP stem cells. As mentioned
previously, this marker is also present in adipose-derived
stem cells and is related to their multilineage potential
[72]. Finally, both populations presented CD14 positivity, a
marker of macrophage lineage, although there was some
variation among donors (30.5%± 30.3% for IFP stem cells
and 7.4%± 7.2% for SFSC) [91].

A possible strategy in the field of cartilage repair is to use
cocultures of different cell types, usually with articular chon-
drocytes, instead of choosing only one [92]. In this regard,
several promising attempts have been performed with
bone-marrow [93–96], synovium [97], and adipose-derived
[96, 98] stem cells. IFP stem cells also present an enhanced
chondrogenic potential when cocultured with articular
chondrocytes [99] and most especially when cocultured in a
structured manner (i.e., on top of the articular chondrocytes),
instead of homogeneously mixing them, in an attempt to
recapitulate the zonal characteristics of a progenitor popula-
tion on top of the native articular cartilage [100].

One potential clinical concern would be the therapeutic
potential of IFP stem cells obtained from a diseased OA joint.
Encouragingly, studies have shown comparable chondro-
genic capacities of OA-derived IFP stem cells with “healthy”
cells (i.e., obtained from patients undergoing ligament
reconstruction). Moreover, when cultured onto PLLA fiber
membranes, OA-derived IFP stem cells generated hyaline
cartilage-like grafts of approximately 2 cm diameter [32].
This property is of crucial importance for the future clinical
translation of IFP stem cells, since it is necessary that even
IFP cells from diseased joints are capable of enhancing
cartilage repair.

Indeed, a rabbit model study showed improvement in the
degree of cartilage degeneration, osteophyte formation, and
subchondral sclerosis after allogeneic IFP stem cells injection
20 weeks after anterior cruciate ligament transection (ACLT)
surgery to induce OA [101]. And in 2012, a therapeutic case
control study level III was published using IFP cells to treat
patients with OA in the knee. An average of 1.89 million cells
was injected with platelet-rich plasma (PRP) as the carrier
after arthroscopic procedure. PRP was further administered
in a second and third round of treatment. The control group
was treated with PRP injections without cells. There were sig-
nificant clinical improvements evidenced by Lysholm score,
Tegner activity scale, and visual analog scale (VAS) after 3
months and a last follow-up ranging from 12 to 18 months,
on the same way that no major adverse events were reported.
Interestingly, there was evidence that the therapy was
more effective in younger patients and with early stage
OA. Furthermore, although the degree of improvement
was superior with cells, there was no statistical significance
in the last follow-up comparing the treatment with and
without cells [36].

A second study with the same group of patients, with
level IV of evidence, was published one year afterwards with
a final follow-up ranging from 24 to 26 months. At this point,
clinical outcome was assessed with the Western Ontario and
McMaster Universities Osteoarthritis Index (WOMAC), the
Lysholm score, and VAS. The results were similar, although
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the authors noticed that improvement in WOMAC score
positively correlated with the amount of injected cells [37].
It is important to highlight, though, that in this study the
authors used freshly isolated cells, which did not undergo
in vitro expansion [102].

6. Ontogeny Relationships between Stem Cells
within the Cartilage Joint

Along with the IFP stem cells, other stem cell populations
with chondrogenic capacity reside in the articular joint, such
as SDSC and SFSC. Moreover, the surface of the articular
cartilage itself contains a stem cell-like population that con-
tributes to tissue appositional growth [103, 104]. These cells
have been characterized in healthy articular cartilage and
have been shown to possess MSC characteristics [15, 17].
Similar populations have also been identified in OA cartilage
[16]. Indeed, both healthy and OA cartilage progenitor cells,
which are CD105+ and CD166+, had an adipogenic and
osteogenic potential similar to the bone marrow-derived
MSC. Interestingly, the percentage of these cells increases
with OA, comprising 4% of cells in healthy cartilage and
8% in OA cartilage [105]. Although their origin and function
are still not fully elucidated, it is believed that these cartilage-
derived stem/progenitor cells, expressing NOTCH-1, reside
in the surface of articular cartilage, where upon injury they
may migrate to the defect site in an attempt to promote tissue
repair. With lesion progression, for instance in advanced
stages of OA, these cells may potentially migrate throughout
the cartilaginous tissue [106].

Interestingly, there is growing evidence that cartilage
stem/progenitor cells are related to other stem/progenitor
cells isolated from the joint. A gene expression profile study

showed that cartilage progenitor cells were more closely
related to synoviocytes and synovial fluid cells than to chon-
drocytes [107]. Moreover, Tgfbr2-expressing cells in the
interzone have been proposed to represent a population of
joint stem cells in a murine developmental model. These cells
are also found in adult mice in areas such as the synovial
lining of the IFP and in part of the articular cartilage [108].
Indeed, a mouse model where Tgfbr2 is knocked-out in the
limbs, fails to develop the interzone resulting in a lack of
interphalangeal joints [109]. Other molecules have also been
used to illustrate the ontogenetic relationship between artic-
ular cartilage and noncartilaginous tissues in the joint. For
instance, articular chondrocytes and cells from the cruciate
ligament and the synovium do not express matrilin-1; by
contrast, nonarticular chondrocytes from the developing
anlagen start to express matrilin-1 when the interzone is
formed [110]. Roelofs et al. recently described a stem cell
population in the synovial lining and in the vascularized
sublining of connective tissue derived from interzone Gdf5-
expressing cells. Following articular cartilage injury, this
population proliferates, migrates, and differentiates into
chondrocytes in the cartilage-defect sites. Interestingly, cells
derived from interzone Gdf5-expressing cells were also
detected in the adult’s articular cartilage, menisci, ligaments,
and fat pad [57]. These data contribute to the suggestion that,
as articular cartilage is ontogenetically closely related to non-
cartilaginous tissues in the joint, IFP stem cells could be used
in future articular cartilage cell therapy trials.

This data also lead us to hypothesize that the IFP pericyte
stem cell population described by Hindle et al. could be a
tissue-resident stem cell population, as it is proposed for the
subcutaneous adipose tissue [73], bone marrow [111–114],
and muscle [115, 116]. Upon injury, these pericytes could

IFP stem
cells

Pericytes

Adventitial

Synovial membrane
stem cells

Synovial fluid
stem cells Attempt to

heal damaged
cartilage

Figure 2: Hypothesis for a differentiation cascade between joint stem cells. The infrapatellar stem cells (IFP) would be divided into a
perivascular (pericytes) and an adventitial population, with the pericytes being the most naive ones. Those would differentiate into
synovial membrane stem cells. These can migrate into the synovial fluid, giving rise to synovial fluid stem cells, which would attempt to
heal damaged cartilage. Dashed arrows represent more hypothetical relationships here proposed, while full arrows represent more proven
ideas in the literature. This image was made using https://MindTheGraph.com.
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be recruited, migrating to the synovium lining and into the
synovial fluid in an attempt to reach and regenerate the
damaged articular cartilage (Figure 2). Indeed, the IFP is
highly vascularized [117], with several perivascular niches
for such stem cells. Remarkably, the first observations of
Maekawa et al. resemble that hypothesis, although for ACL
repair [75]. Liu et al. also hypothesized that IFP stem cells
participate in patella tendon repair [118]. It is important to
highlight that although this hypothesis is consistent with
the interzonal origin of articular cartilage and IFP, the
increased number of stem cells in the synovial fluid during
OA and the pattern of surface marker expression described
by Hindle et al. leaves much yet to be proved. For example,
by contrast, Roelofs et al. observed that synovial stem cells
were not from a perivascular niche and actually gave rise
to perivascular cells upon cartilage injury [57]. Furthermore,
there exact relationship between IFP stem cells and SDSC
must yet be elucidated.

7. Conclusions and Future Perspectives

It has become clear that the IFP contains progenitor cells
with MSC-like characteristics, such as multilineage differen-
tiation potential and specific surface marker expressions.
Interestingly, it seems that the characteristics of these cells
and their subpopulations are comparable to ADSCs, particu-
larly in regard to the fact that IFP stem cells possess a much
greater chondrogenic potential. From a translational per-
spective, the IFP could be easily harvested arthroscopically
for cell isolation.

Cartilage cell therapy has traditionally been investigated
using articular the chondrocytes, bone marrow, and subcuta-
neous ADSCs. The recent promising clinical trial using SDSC
further encourages the therapeutic use of joint-derived stem
cells, and IFP stem cells are an exciting source. These obser-
vations, along with our hypothesis on the in vivo role of IFP
stem cells in cartilage repair, strongly support the future
applications of IFP stem cells for cartilage repair clinical trials
in the near future.
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