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Abstract
Despite decades of investigation into the genetics of autism spectrum disorder (ASD), a current consensus in the field persists 
that ASD risk is too heterogeneous to be diagnosed by a single set of genetic variants. As such, ASD research has broadened 
to include assessment of other molecular biomarkers implicated in the condition that may be reflective of environmental 
exposures or gene by environment interactions. Epigenetic variance, and specifically differential DNA methylation, have 
emerged as areas of particularly high interest to ASD, as the epigenetic markers from specific chromatin loci collectively can 
reflect influences of multiple genetic and environmental factors and can also result in differential gene expression patterns. 
This review examines recent studies of the ASD epigenome, detailing common gene pathways found to be differentially 
methylated in people with ASD, and considers how these discoveries may inform our understanding of ASD etiology. We 
also consider future applications of epigenetics in ASD research and clinical practice, focusing on substratification, biomarker 
development, and experimental preclinical models of ASD that test causality. In combination with other -omics approaches, 
epigenomics allows an improved conceptualization of the multifactorial nature of ASD, and opens future lines of inquiry 
for both basic research and clinical practice.
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1 Introduction

Autism spectrum disorder (ASD) is a diagnosis that 
encompasses a group of neurodevelopmental disorders 
characterized by persistent impairments in social 
interaction and language, together with repetitive patterns 
of behavior and interests [1]. ASD has been consistently 
observed to have a male bias, with ASD being reported 
as 4.2 times more prevalent in male children than female 
children [2]. Prevalence of ASD has been increasing in the 
US since the Centers for Disease Control and Preven-
tion (CDC) first began monitoring in 1996, with the most 
recent surveillance report observing ASD prevalence at 
23.0/1000 children (1 in 44 children) [2]. However, due 
to increased awareness of ASD and changing criteria for 
ASD diagnosis over this time frame, debate persists over 
whether this increase in prevalence is the result of biologi-
cal or sociological factors [3–5]. Nonetheless, the sheer 
magnitude of the rise in ASD prevalence in recent decades 
warrants consideration of biological explanations for this 
increase, including consideration of environmental risk 
[5–8].

Parsing how much of the increase in ASD prevalence is 
attributable to environmental risk is made difficult by ASD 
being both highly heterogenous in its etiology and dependent 
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on diagnosis through behavioral assessment. While ASD 
is defined by the presence of both social/language impair-
ments and repetitive behaviors, these two parameters can be 
particularly difficult to assess in children under 3 years of 
age, leading to high potential for changing diagnosis even 
when adhering to ‘gold standard’ diagnostic tools such as 
the Autism Diagnostic Observation Schedule (ADOS) and 
the Autism Diagnostic Interview-Revised (ADI-R) [9]. Fur-
thermore, 70% of individuals with ASD also have psychiat-
ric comorbidities (including social anxiety and/or attention 
deficit and hyperactivity disorders), whose own behavioral 
traits can mask ASD [9, 10].

Given the difficulties of behavioral diagnosis of ASD, 
studies of the molecular etiology of the condition have 
attracted interest for their potential to identify quantifiable 
biomarkers that can act as metrics of ASD severity. Studies 
of ASD heritability have firmly established a genetic com-
ponent of ASD etiology, with a 58–90% concordance rate 
in monozygotic twins [11, 12]. However, heritability esti-
mates as well as specific genetic risk factors for ASD vary 
dramatically between studies, with insufficient evidence to 
designate a singular set of ASD-specific genetic risk factors 
[13–16]. Epigenetics, literally meaning ‘on top of genetics’, 
is defined as alterations to DNA or chromatin that can alter 
gene expression without a change to the DNA sequence. 
DNA methylation, which collectively refers to methyl groups 
added at cytosine bases in DNA, is the most investigated 
epigenetic mark in human tissues and will be the focus of 
this review. As a multifactorial disorder, ASD development 
is often a result of the interplay between genetic and envi-
ronmental factors, which is what DNA methylation marks 
are frequently reflecting. Thus, a complete understanding of 
the molecular etiology of ASD requires knowledge of both 
genetics and epigenetics associated with the condition.

The genetic components of ASD risk have been thor-
oughly covered in prior publications [16–20]. As such, this 
review will focus on recent advances in the comparatively 
young field of ASD epigenetics, with the specific goal of 
envisioning future prospects of improved diagnosis and tar-
geted behavioral therapy.

2  Autism Spectrum Disorder  Epigenetics

The insufficiency of solely considering genetic risk factors 
for the purpose of understanding ASD etiology has prompted 
a plethora of investigations into the environmental factors 
contributing to ASD development [21]. Various maternal 
medical conditions, including maternal prepregnancy body 
mass index (BMI) [22], diabetes [23], and hypertension 
[24], have been shown to increase the risk of ASD. Perinatal 
exposure to some common environmental pollutants, such 
as air pollution [25], and pesticides [26] have also shown 

an association with increased ASD risk. Some differences 
in maternal nutrients, including maternal iron supplement 
consumption [27] and maternal use of folic acid and mul-
tivitamin supplements [28], have also been shown to have 
potential protective effects against ASD development. These 
environmental exposures are often hypothesized to act at 
least partially through epigenetic mechanisms [29–33], 
although the tissue-specific and temporally influenced 
nature of epigenetic modifications can make repeated obser-
vation of epigenetic markers of ASD difficult. In spite of 
these inherent challenges, some progress has been made in 
identifying DNA methylation patterns from multiple tissue 
sources that distinguish ASD from typically developing con-
trols (Fig. 1).

The neurodevelopmental origin of ASD makes post-mor-
tem human brain tissue the most relevant tissue to provide 
direct epigenetic links between environmental exposures 
and altered genes in ASD. Insights gained from epigenetic 
changes associated with ASD in the brain therefore serve 
as the standard against which epigenetic data from other 
tissues are compared. Epigenomic analysis of post-mortem 
ASD brain DNA has focused largely on the cortex and cer-
ebellum, as these regions of the brain have been implicated 
in prior examination of neural abnormalities associated 
with ASD [34–38] and are more commonly available from 
public brain banks. Among the most common methods for 
studying ASD epigenetics is the methylation array, which 
is manufactured to target regions of epigenetic interest in 
humans and uses hybridization-based fluorescent signaling 
to determine whether a given target nucleotide is methylated 
[39]. Despite the relative scarcity of available ASD brain tis-
sue for investigations, methylation array-based analyses of 
epigenetic changes in the ASD brain have revealed a large 
number of differences at individual CpGs or differentially 
methylated regions (DMRs). These analyses rarely identify 
global differences in DNA methylation between ASD and 
control brains, regardless of the brain region surveyed.

Cerebral cortex has been the brain tissue of focus for mul-
tiple array-based ASD methylome analyses. For instance, 
Wong et al. extracted DNA from post-mortem prefrontal 
cortex and temporal cortex to perform region comethyla-
tion network analysis, revealing multiple comethylation 
modules significantly associated with ASD diagnosis [35]. 
Gene ontology (GO) pathway analysis of these comethyla-
tion modules revealed them to be enriched for pathways 
relating to immune functionality, synaptic signaling and 
regulation, and postsynaptic density, with these enrich-
ments reflecting the known dual contributions of immune 
and neuronal dysregulation associated with ASD [40, 41]. 
Using an alternative approach of whole-genome bisulfite 
sequencing (WGBS), Vogel Ciernia et al. found similar gene 
pathway enrichments in ASD cortex, focusing on micro-
glia as the source of the inflammatory signal [42]. Other 
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array-based methylomic studies of ASD cortex have made 
similar findings. Ladd-Acosta et al. reported three DMRs in 
ASD temporal cortex, with these DMRs being proximal to 
genes involved in neuronal and immune pathways as well as 
maintaining imprinting patterns [43]. Nardone et al. identi-
fied differentially methylated CpGs in ASD prefrontal cortex 
samples, with GO analysis revealing hypomethylated CpGs 
enriched for immune functions and hypermethylated CpGs 
enriched for neuron-neuron synaptic activity [44]. Further 
ASD methylomic analysis of the sorted nuclei from frontal 
cortex neurons revealed differential regions of comethylation 
that were enriched for synaptic, neuronal, GABAergic and 
immune processes [45].

Methylomic analyses of cerebellum has shown simi-
lar general findings, with differences in genic locations of 
ASD differences. Corley et al. performed DNA methyla-
tion analysis of the subventricular zone, a component of the 
cerebellum that serves as a source of neuronal stem cells, 
and reported differentially methylated loci (DML) in ASD 
samples [37]. The observed DML were underrepresented at 
promoter regions and overrepresented at gene bodies and 
intergenic sequences, with GO analysis of the ASD-related 
DMLs showing enrichment of genes involved in neuron pro-
liferation, differentiation, and migration. A targeted inves-
tigation of the ASD-associated and neurodevelopmentally 

Fig. 1  A summary of multiple genetic and environmental risk factors 
implicated in ASD that can be informed by distinct epigenetic pro-
files in both postmortem brain and perinatal tissues collected prior 
to diagnosis. ASD autism spectrum disorder, AP3S2 adaptor-related 
protein complex 3 subunit sigma 2, ARHGAP15 Rho GTPase-acti-
vating protein 15, BRSK2 brain-specific serine/threonine-protein 
kinase 2, CAMK2A calcium/calmodulin-dependent protein kinase IIα, 
CCDC1171/C90rf93 coiled coil domain containing 171, CD44 CD44 
molecule (Indian blood group), CHST12 carbohydrate sulfotrans-
ferase 12, DGKZ diacylglycerol kinase zeta, DLGAP2 DLG-asso-
ciated protein 2, EN2 engrailed homeobox  2, EPHA6 EPH receptor 

A6, ETS1 ETS proto-oncogene 1 transcription factor, FMR1 fragile 
X messenger ribonucleoprotein 1, GRIA3 glutamate ionotropic recep-
tor AMPA type subunit 3, HDAC3 histone deacetylase 3, IL1B inter-
leukin 1β, ISLR4 immunoglobulin superfamily containing leucine 
rich repeat, NHIP neuronal hypoxia-inducible placenta-associated, 
SATB2 SATB homeobox 2, SOCS2 suppressor of cytokine signaling 
2, STK38L serine/threonine kinase 38 like, TSPAN32 tetraspanin 32, 
ZIC3 Zic family member 3. a Wong et al. [35]; b Nardone et al. [45]; c 
Ladd-Acosta et al. [43]; d Cheng et al. [48]; e James et al. [46]; f Cor-
ley et al. [37]; g Bakulski et al. [53]; h Mordaunt et al. [3]; i Zhu et al. 
[54] (full citations provided in the References section)
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linked EN2 gene by James et al. identified significant hyper-
methylation in the EN2 promoter region of ASD cerebellum 
samples relative to non-ASD samples [46]. In addition to 
ASD DMRs being identified in the cerebellum, differen-
tially hydroxymethylated regions (DhMRs) have also been 
observed. Hydroxymethylated cytosines are the result of 
Tet protein interaction with methylated cytosines, and have 
been implicated to function in a manner unique from meth-
ylated cytosines in some biological functions [47]. Cheng 
et al. screened for DhMRs between ASD and non-ASD cer-
ebellum and identified 797 DhMRs [48]. GO analysis of 
the 181 DhMRs that were identified in intragenic regions 
were found to be significantly enriched for ASD-implicated 
pathways such as ‘cell-cell communication’ and ‘heparan 
sulfate biosynthesis’, and cis functionality of the 599 inter-
genic DhMRs associated with ASD was predicted.

While studies of ASD-specific differential methylation in 
the brain are limited due to low sample availability, methyl-
omic analysis of peripheral tissues does not suffer this same 
limitation. A wide range of investigations into DNA meth-
ylation patterns associated with ASD in non-neuronal tis-
sue have been performed, with many of these studies using 
either ASD blood or maternal placenta as sources of DNA. 
While these peripheral tissue studies are less informative 
about consequential methylomic changes associated with 
ASD than studies on brain tissue, blood methylation levels 
at specific loci have been shown to be correlative with brain 
tissue methylation in prior studies [49, 50], and placental 
methylation levels have likewise been shown to associate 
with child ASD diagnosis [51–54].

Blood samples from individuals diagnosed with ASD 
versus matched controls offer an easily accessible sample 
type for interrogating the ASD epigenome, but questions 
have been raised about how well alterations in blood reflect 
the brain. ASD blood samples were demonstrated to have an 
impaired metabolic capacity for methylation [55], sparking 
further interest. Investigations of potential associations 
between blood DNA methylation and ASD have shown 
modest associations [56–58]. Of particular note is the meta-
analysis of Andrews et al., where the authors conducted the 
largest methylome-wide association study on blood DNA 
ever performed, using samples from 1654 children [56]. 
No single CpG surveyed in this study was identified as 
being significantly associated with ASD, although seven 
CpGs passed the much lower threshold for suggestive 
association. A study from a fairly small subset of ASD-
discordant monozygotic twin pairs showed some significant 
differentially methylated genes, with the significance of 
association decreasing when comparing ASD with non-ASD 
individuals more broadly [59]. Furthermore, the methylation 
chip used in this study screened for nearly 19x fewer CpG 
sites than the chips used in future studies, including Andrews 
et al. [60]. While blood DNA methylation profiles may well 

contain ASD-associated DMRs in small subsamples of 
highly genetically similar individuals, contemporary studies 
have shown them to be ill-suited to examining large and 
heterogenous groups.

In contrast to the somewhat limited utility of blood meth-
ylation studies from ASD patients, recent prospective inves-
tigations into the methylome of ASD placental, cord blood, 
and maternal blood samples have identified some consistent 
epigenetic changes that exist prior to the diagnosis of ASD. 
This is not particularly surprising given the importance of 
the placental in utero environment for fetal neurodevelop-
ment [61, 62]. Mordaunt et al. performed WGBS of cord 
blood from a high-risk ASD cohort and identified 2299 
DMRs across male and female samples, with ASD-associ-
ated DMRs being significantly enriched for methyl-sensitive 
developmental transcription factors that play a role in fetal 
neurodevelopment [63]. Sex-stratified DMRs associated 
with ASD were found to be highly enriched for X chro-
mosome location, implying a potential epigenetic etiology 
to ASD’s male bias. Further implication of the role of the 
methylome in ASD development was reported by Zhu et al., 
where the authors performed WGBS of placenta samples 
and observed an ASD-associated 118 kb hypomethylated 
region at 22q13.33 [54]. This hypomethylated region was 
comprised of ASD-associated DMRs that were significantly 
enriched for multiple fetal brain enhancers and a novel gene 
named NHIP (neuronal hypoxia-inducible, placenta-asso-
ciated). Bakulski et al. assessed the methylomes of both 
cord blood and placenta, finding nominally ASD-associated 
differentially methylated positions (DMPs) that correlated 
across both tissues [53]. Additionally, these DMPs were 
highly enriched for SFARI ASD risk genes. The authors 
also assessed the methylation of maternal whole blood DNA 
and found ASD DMPs that overlapped with those identi-
fied in placenta and cord blood. These results contribute 
to emerging evidence of conserved regions of cross-tissue 
methylomic profiles associated with neuropsychiatric disor-
ders such as ASD [50, 51, 63, 64].

It is noteworthy that much of the existing methylomic 
analyses of ASD DNA (both in brain and peripheral tis-
sues) are limited by the relatively narrow focus of the com-
mercially available methylation array platforms. The vast 
majority of contemporary methylomic studies assess meth-
ylation with Illumina HumanMethylation450 or Infinium 
MethylationEPIC platforms, which provide coverage of only 
approximately 1.5–3% of all CpG sites in the human genome 
[60]. The targeted regions were determined by expert panels 
prior to whole methylome maps based on sequencing, intro-
ducing additional bias for particular regions of the genome 
with the least variation in methylation [65, 66]. As an exam-
ple, > 80% of the ASD-associated DMRs identified in cord 
blood by WGBS did not overlap with a single probe repre-
sented on the Illumina HumanMethylation450 or Infinium 
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MethylationEPIC platforms [63]. While these methylation 
array platforms do provide broad coverage of Refseq genes 
and CpG islands, the limited scope of their query should be 
kept in mind when considering potential ASD-differential 
methylation patterns outside of these locations.

Nonetheless, the current body of methylomic 
investigations of ASD already consists of numerous studies 
describing alterations in DNA methylation in gene pathways 
relevant to the ASD phenotype (summarized in Fig. 1). As 
future research deepens our understanding of the methylomic 
profile of ASD, epigenomic knowledge will be increasingly 
actionable, both in the clinic and in the laboratory. The 
remainder of this article discusses three areas of high interest 
in the future of ASD epigenetics: epigenetic substratification 
of ASD, predictive epigenetic biomarkers of ASD, and direct 
mechanistic investigation of epigenetic factors on ASD-
related phenotypes in preclinical models.

3  Application of ASD Epigenetics 
in Substratification

The heterogeneity of symptomatic presentation in 
ASD poses a challenge to both researchers and clinical 
practitioners. While all ASD cases are broadly diagnosed 
by the presence of impairments in social behavior, language, 
and repetitive behavioral patterns, the manifestations and 
severity of these symptoms can vary substantially between 
individuals. Furthermore, the potential for common 
comorbid psychopathologies produces great difficulty 
in attempting to generalize studies of ASD individuals 
to the broader population [67, 68]. In response to this 
problem, clinicians and scientists have often attempted to 
stratify ASD individuals into subgroups for the purpose 
of studying more distinct manifestations of ASD, such as 
those individuals with or without intellectual disability. 
The identification of reliable, consistent subtypes of ASD 
reflective of psychological and biological phenomena has 
transformative potential, as it would enable more highly 
targeted studies of specific pathways involved in the 
manifestation of subphenotypes. Such an approach may 
also highlight subtype-specific treatment outcomes from 
behavioral intervention therapy with ASD youth [69, 70].

Unfortunately, review of an assortment of subtype strati-
fication studies reports that many identified ASD subtypes 
are insufficiently verified by more than two strategies [71]. 
Furthermore, many employed substratification methods 
have been found to be over-reliant on symptom scores and 
cognitive measures, with few adequately including sensory 
processing and biological variables [72].

The incorporation of ASD-associated methylation pat-
terns into substratification criteria, in combination with 
other data such as transcriptomics or metabolomics, has 

the potential to substantially enhance the biological con-
siderations of substratification criteria. This is especially 
true with regard to discerning subtypes of idiopathic ASD, 
defined as cases of ASD arising from unknown causes [73]. 
In contrast to occurrences of ASD where a specific cause can 
be identified (known as syndromic ASD), idiopathic ASD 
describes the approximately 85% of ASD cases arising from 
an unknown combination of genetic and environmental fac-
tors. Epigenetic analyses are uniquely well-suited to uncover 
the mechanics of gene-environment interactions, and have 
been highlighted in reviews of neurodevelopmental condi-
tions such as ADHD and anxiety disorders as a likely origin 
of condition risk that cannot be directly explained by genetic 
variation [74, 75].

While few studies have attempted to incorporate epige-
netic data into ASD substratification, preliminary investiga-
tions of the epigenetic profiles associated with phenotypic 
ASD subtypes offer support for an epigenetic component 
in substratification criteria. Lee and Hu compared methyla-
tion profiles across three phenotypically distinct subtypes 
(severe language impairment, intermediate, and mild) of 
ASD lymphoblastoid cell lines, and observed that a greater 
number of significant DMRs were detected when compar-
ing control cell lines with a specific phenotype subtype 
than were detected when comparing control cell lines to all 
pooled ASD samples [76]. Furthermore, functional analy-
sis of subtype-specific DMRs revealed those DMRs to be 
enriched for subtype-specific biological pathways. For exam-
ple, severe language impairment ASD DMRs were shown to 
be highly enriched for neuritogenesis genes, while the inter-
mediate ASD DMRs were heavily populated with neuroin-
flammation genes and the mild ASD DMRs included genes 
involved in sensory system development. Epigenetic inves-
tigation of ASD subtyping holds the potential to uncover 
subtype-specific insights into ASD etiology that will enable 
researchers and clinicians alike to better understand the 
molecular dynamics of ASD’s various manifestations and 
etiologies (Fig. 2). In reducing the heterogeneity of ASD, 
these approaches may also empower large-scale ASD dif-
ferential methylation analyses of peripheral tissue to uncover 
subtype-specific DMRs, even in the absence of more gener-
alizable ASD DMRs [56, 58].

4  Epigenetic ASD Biomarkers

ASD’s heterogeneity of presentation can also contribute to 
difficulties in diagnosis and treatment, especially for younger 
children. The average age of clinical diagnosis has been found 
to be 4–5 years [77, 78], although it is fairly common for youth 
with ASD with poor access to health care services to remain 
undiagnosed until early adolescence [79]. This is particu-
larly concerning given the body of evidence indicating early 
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behavioral interventions can confer substantial improvements 
to ASD children’s social, vocal, and adaptive skills that trans-
late into increased thriving later in life [80–82]. Such interven-
tions have already been proven to reduce symptom severity, 
and sometimes even diagnosis rates, when administered at 
approximately 12 months of age [83, 84].

One strategy to lessen the consequences of delayed ASD 
diagnosis is to identify ASD biomarkers that are predictive 
of risk for ASD prior to diagnosis. Infants at a higher risk 
could be offered behavioral intervention, followed up with 
behaviorally based ASD diagnoses at 3–5 years of age, a 
time when diagnosis is more informative (Fig. 3). Extensive 
studies in this field have identified a broad spectrum of ASD 
biomarkers across various sample types, but have generally 
failed to identify a consistent set of genetic differences col-
lectively associated with ASD diagnosis [85–87]. In light of 
this ‘missing heritability problem’ [88], epigenetic biomark-
ers of ASD have been investigated as alternative predictive 
features for ASD diagnosis. Studies focusing on biomarkers 
detectable before the typical ASD diagnosis window hold 
particularly high value for potential ASD intervention, and 
some early investigations have shown success in this field.

Reports of significant ASD-associated methylation bio-
markers detected early in development from accessible periph-
eral tissues, including buccal swabs [89] and placenta [51, 54], 
could be implemented in ASD risk factor calculations, thereby 
giving clinicians additional levels of evidence when attempt-
ing to make an early ASD diagnosis. Furthermore, the devel-
opment of methods for assessing ASD biomarkers prenatally 

through the assessment of cell-free fetal DNA (cffDNA) would 
provide a window of opportunity for in utero interventions. 
CffDNA is derived from the placenta, representing circulating 
fetal genetic material deposited in the maternal bloodstream 
throughout gestation [90, 91]. This potential value is high-
lighted in a preprint by Laufer et al. describing how longitu-
dinal cffDNA DMRs in a macaque model of maternal obesity 
was associated with behavioral measure and brain methyla-
tion patterns of offspring [92]. Additionally, these cffDNA and 
brain DMRs associated with maternal obesity were found to 
significantly overlap with DMRs in human ASD brain and 
placenta, a result that aligns with established knowledge of 
maternal obesity as an ASD risk factor [22, 93]. Larger studies 
searching for prenatal cffDNA epigenetic biomarkers of ASD 
in humans may likewise identify consistent signals associated 
with the likelihood of ASD development. Working in com-
bination with established postnatal ASD biomarkers, these 
new tools would empower earlier and more accurate ASD 
diagnosis, and in turn allow clinicians to begin administering 
behavioral intervention therapies in the developmental window 
where they are proven to be most effective.

5  Direct Investigation of the Epigenetic 
Mechanisms of ASD

While additional investigations of existing associations 
between epigenetics and ASD will provide actionable results 
that support clinical practices such as substratification and 

Fig. 2  A hypothetical example showing how epigenetic substratification of ASD patients could facilitate subtype-specific interventions and 
improve patient outcomes. ASD autism spectrum disorder



575Future Prospects for Epigenetics in ASD

biomarker development, they are fundamentally limited in 
the extent to which these correlative findings can uncover 
the direct mechanisms by which epigenetic alterations 
influence ASD phenotype. By their very nature, association 
studies of epigenetic alterations and ASD can only report 
differential epigenetic layers that associate with ASD phe-
notype. Even more direct interventions, such as knockout of 
chromatin-modifying enzymes [94, 95], are complicated due 
to the broad range of non-explicitly epigenetic functionality 
observed in such proteins [96–98]. Thus, these studies are 
capable of identifying loci whose epigenetics may play a 
role in ASD development but are incapable of identifying 
true causality [99].

However, the rapid proliferation of epigenetic editing 
technologies has begun to make casual studies between epi-
genetic alterations and phenotypes feasible [100–102]. Many 
laboratories have generated fusion proteins where a given 
deactivated DNA-targeting protein such as dCas9 is ligated 
to an effector domain capable of making chromatin or DNA 
methylation modifications. These fusion proteins are then 

introduced to a given organism, such as a mouse model or 
human cell line model, and researchers directly observe how 
the engineered modifications result in changes to organism 
phenotype [103]. Rather than being merely associative, these 
investigations using direct epigenetic editing of a locus make 
possible observations of causality (Fig. 4).

Applied to ASD, these methods can prove helpful in nar-
rowing the scope of epigenetic investigations to loci shown 
to have direct phenotypic impacts in other models. While 
human epigenetic editing of loci implicated in ASD remains 
clinically difficult [104] and ethically dubious [105, 106], 
epigenetic mechanism experiments in non-human models of 
ASD can reveal the degree to which a given locus’s chroma-
tin conformation directly contributes to the ASD phenotype. 
Considering the growing list of epigenetically divergent 
loci associated with ASD, filtering for proven high-impact 
epigenetic variants will enable researchers to focus their 
studies on regions whose epigenetic profile is likely to be 
most impactful in endeavors such as substratification and 
biomarker discovery.

Fig. 3  Hypothetical example of 
how epigenetic ASD biomarkers 
can result in earlier ASD behav-
ioral therapy interventions, and 
the potential reductions to ASD 
severity resulting from earlier 
therapy administration. ASD 
autism spectrum disorder, yrs 
years

Fig. 4  Hypothetical experi-
ment investigating epigenetic 
mechanisms of ASD through 
phenotype rescue attempt using 
dCas9 fused to a DNMT. ASD 
autism spectrum disorder, 
dCas9-DNMT deactivated 
CRISPR-associated protein 
9-deoxyribose nucleic acid 
methyltransferase, Me methyl 
functional group, DNMT DNA 
methyltransferase
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For example, a plethora of preclinical mouse models of 
rare genetic syndromic forms of ASD have been generated 
that display novel social, communicative, and behavioral 
symptoms [107]. While investigations of ASD epigenetic 
mechanism in these models have been undertaken using 
enzymatic inhibition [108–110], an additional degree of 
mechanistic certainty of the role a particular epigenetic 
mark plays in ASD development could be acquired by 
making precise epigenetic edits to loci of interest and 
observing downstream effects on both the molecular and 
phenotypic level. Lu et al. describe an early example of 
dCas9-based epigenetic investigation, with the authors 
reporting targeted methylation of the MECP2 transcrip-
tion start site in mice-induced deficits in social behavior 
[111]. These tools could also be employed in developed 
ASD mouse models to study the potential for phenotypic 
rescue. Furthermore, one could imagine a study applying 
the CRISPRoff tool designed by Nuñez et al. to selectively 
repress loci of interest in the Myt1l+/- mouse model of 
ASD developed by Chen et al. [101, 112]. The Myt1l+/- 
mouse model was shown to replicate ASD-related social 
impairments in males, and also had greater chromatin 
accessibility in some regions of cortex than wild-type 
mice. By using an epigenetic editor such as CRISPRoff 
to target some of these more accessible regions in the 
Myt1l+/- mouse model, and observing any changes in 
ASD-related trait severity, direct hypotheses as to whether 
the action of the MYT1L gene in mouse ASD-like path-
ways is explicitly epigenetic could be tested. Such conclu-
sions could then inform future human studies.

Unfortunately, the heterogeneous origins of idiopathic 
ASD makes it a more challenging target for direct model 
generation and subsequent mechanistic investigations [113]. 
Nonetheless, some attempts to generate non-syndromic 
rodent ASD models have been mildly successful at repro-
ducing ASD phenotypes [114–116]. These non-syndromic 
models exhibit a wide range of neurodevelopmental impacts 
caused by environmental exposures and accumulation of 
numerus mutations implicated in altered neurodevelop-
ment. These multifactorial etiologies mirror the etiologies 
of many idiopathic cases of ASD in the US. While limited 
in their direct translation to humans, non-syndromic ASD 
rodent models could offer a valuable tool for refinement for 
epigenetic variants of interest in future studies.

6  Conclusions

ASD is one of the most common neurodevelopmental 
conditions in the US, and understanding its etiology 
requires epigenetic investigations at the interface of 

genetics and environment. The elucidation of differ-
entially methylated gene pathways in ASD brain and 
peripheral tissues has substantially improved our knowl-
edge of ASD epigenetics, and future studies will build 
upon this knowledge in basic research clinical applica-
tion. While this review focuses on a small handful of 
potentially high-impact applications for epigenetics in 
the ASD field, others exist that are not detailed in this 
article. Incorporated together with other -omics informed 
technologies and predictive machine learning algorithms, 
epigenetics can facilitate the next-generation of ASD 
care, informing healthcare decisions from gestation to 
adulthood.
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