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Abstract

Cell death is associated with a variety of liver diseases, and 
hepatocyte death is a core factor in the occurrence and pro-
gression of liver diseases. In recent years, new cell death 
modes have been identified, and certain biomarkers have 
been detected in the circulation during various cell death 
modes that mediate liver injury. In this review, cell death 
modes associated with liver diseases are summarized, in-
cluding some cell death modes that have emerged in recent 
years. We described the mechanisms associated with liver 
diseases and summarized recent applications of targeting 
cell death in liver diseases. It provides new ideas for the di-
agnosis and treatment of liver diseases. In addition, multiple 
cell death modes can contribute to the same liver disease. 
Different cell death modes are not isolated, and they interact 
with each other in liver diseases. Future studies may focus on 
exploring the regulation between various cell death response 
pathways in liver diseases.
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Introduction
As a fundamental process of life, cell death plays a crucial 
role in embryonic development. This process maintains the 

body’s homeostasis by continuously eliminating damaged 
cells.1 According to the description listed in the Nomencla-
ture Committee on Cell Death 2018, cell death manifests as 
macroscopic morphological changes. There are three classic 
cell death modes: apoptosis, autophagy, and necrosis.2 With 
the further development of scientific research, a variety of 
new cell death modes have been discovered. These modes 
have different signaling pathways and morphological and 
molecular mechanisms.2,3 Different cell death modes can be 
regulated by various signaling pathways. When stimulated 
by internal or external factors, the activation or inhibition of 
various signaling pathways can cause cell death. There are 
many different types of liver disease. According to the etiol-
ogy, liver diseases are divided into: viral hepatitis, alcoholic 
liver disease, nonalcoholic fatty liver disease, genetic causes, 
autoimmune causes and liver diseases caused by drugs or 
other factors, and so on. The final common pathway of any 
chronic damage to the liver is persistent wound healing, lead-
ing to hepatic parenchymal fibrosis.4 During different types 
of liver disease, such as liver fibrosis, alcoholic liver disease 
(ALD), steatohepatitis, or liver failure, the most prominent 
manifestation is hepatocyte death, which results in impaired 
liver function.5–7 This review mainly summarizes the mecha-
nisms of various cell death modes that mediate liver disease, 
including some cell death modes that have emerged in recent 
years. This review provides new ideas for the diagnosis and 
treatment of liver diseases.

Modes of cell death associated with liver diseases

Apoptosis
Before introducing the mechanism of apoptosis, the B-cell 
lymphoma 2 (Bcl-2) family needs to be mentioned. Bcl-2 
family proteins are divided into three groups according to 
their roles and domains: antiapoptotic Bcl-2-like proteins (in-
cluding Bcl-2, Bcl-xL, Bcl-w, Mcl-1, and A1/Bfl-1), proapop-
totic Bax-like proteins (including Bax, Bak, and Bok/Mtd) and 
only proapoptotic BH3 proteins (including Bid, Bim/Bod, Bad, 
Bmf, Bik/Nbk, Blk, Noxa, Puma/Bbc3, and Hrk/DP5).8 Apop-
tosis is activated by two pathways: the intrinsic (mitochon-
drial) pathway and the extrinsic (death receptor) pathway. 
Studies have shown that the intrinsic pathway is triggered 
by the Bcl-2 family, which is normally activated by mitochon-
drial dysfunction, endoplasmic reticulum (ER) stress, lysoso-
mal permeabilization, and nuclear DNA damage.9 Then, toxic 
proteins such as cytochrome c are released from the inter-
membrane space through permeabilization of the outer mi-
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tochondrial membrane. Ultimately, caspase is activated and 
promotes apoptosis.5,8 Studies have shown that caspases 
related to apoptosis include promoters including caspase-8 
and -9 and effectors including caspase-3, -6, and -7.10 In 
addition to being death receptor ligands, tumor necrosis fac-
tor (TNF), TNF-related apoptosis-inducing ligand (TRAIL) 
and Fas ligand (Fas-l) trigger extrinsic apoptosis pathways 
by binding to death receptors.11 Several studies have shown 
that apoptosis mediated by death receptors is a key feature 
of various liver diseases.12 The progression of liver diseases 
is influenced by the balance between apoptosis and antiapo-
ptotic capacity.13 During liver injury, as hepatocyte apoptosis 
and its pathophysiology vary among different liver diseases, 
this review will address them separately (Fig. 1).

Viral hepatitis
Hepatitis B virus (HBV) or hepatitis C virus (HCV) infection 
is the main cause of chronic viral hepatitis. The damage to 
hepatocytes caused by hepatitis virus is mainly mediated by 
the immune response. When hepatitis virus is copied in large 
quantities, cytotoxic T lymphocytes (CTLs) identify and kill 
hepatocytes that express hepatitis virus antigens and cause 
hepatocyte damage. Compared with acute viral hepatitis, 
chronic viral hepatitis is characterized by a large amount 
of apoptosis during continuous viral infection. Studies have 
shown that HBV and HCV promote the occurrence of apo-
ptosis via cJun-N-terminal kinase (JNK) and CHOP through 
the intrinsic pathway.14,15 The extrinsic pathway is typically 
not sufficient to induce apoptosis, and it needs to be en-
hanced through the intrinsic pathway. When liver cells are 
infected by HCV, TNFα/TNF receptor (TNF-R), Fas/Fas-l, and 
TRAIL/TRAIL receptor-1 (also called death receptor 4, DR4) 
or TRAIL receptor-2 (also called death receptor 5, DR5) bind 
to CTLs and undergo apoptosis.16 Death receptors bind with 

death ligands to form a complex that activates caspase-8,17 
which triggers two signaling pathways. In the first pathway, 
caspase-8 activation directly leads to the activation of effec-
tor caspases (caspase-3, -6, -7), which results in massive 
amplification and promotes apoptosis .18,19 The second path-
way is related to the mitochondria, recruited by the intrinsic 
pathway, and involves the cleavage of Bid. Mitochondria-
dependent apoptosis is mediated by Bcl-2 family proteins 
converged at the mitochondrial permeability transition (MPT) 
pore, which regulates the release of apoptotic regulatory 
proteins like cytochrome C and caspase-9 is ultimately acti-
vated.20 The hepatocyte is a so-called type II cell in which the 
activation of caspase-3, caspase -7 is inhibited, so the extrin-
sic pathway mainly acts through the second pathway.2 HCV 
also induces apoptosis by generating reactive oxygen species 
(ROS) and reducing mitochondrial cross-membrane poten-
tial.21 During chronic HBV infection, liver expression of TNF 
α, TRAIL, and Fas is also related to hepatocyte apoptosis.22,23 
The expression of Bax in liver cells is positively related to the 
number of apoptotic cells. HBV X protein can adjust TRAIL 
receptor expression during apoptosis.23,24

ALD
Various death modes are involved in ALD, and apopto-
sis plays an important role in ALD.25,26 Caspase-3-positive 
hepatocytes were significantly increased in liver biopsies 
taken from patients with alcoholic hepatitis.27 In vivo and 
in vitro experiments have shown that caspase inhibitors 
significantly attenuate alcohol-induced hepatocyte apopto-
sis.28,29 At present, the mechanisms of apoptosis in ALD can 
be summarized as follows: acetaldehyde metabolism drives 
the production of ROS, which leads to mitochondrial dysfunc-
tion and the release of the proapoptotic factor cytochrome 
c, which ultimately promotes caspase activation.30 Alcohol 

Fig. 1.  Mechanism of apoptosis, necrosis, necroptosis and autophagy. FADD, fas-associated protein; Fas-L, fas ligand; JNK, cJun-N-terminal Kinase; MLKL, 
mixed lineage kinase domain protein; MPT, mitochondrial permeability transition; RIPK1, receptor interacting protein kinases 1; RIPK3, receptor interacting protein 
kinases 3; TNF, tumor necrosis factor; TRADD, TNFR1-associated death domain protein.
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and its metabolites trigger ER stress and promote apoptosis 
via CHOP.14,25,26 Fas-l and TNF play important roles in the 
pathogenesis of ALD.31,32 Studies have shown that TNF and 
TNF-R levels were increased in ALD patients, and anti-TNF 
antibody treatment prevented alcoholic liver injury in animal 
models.26,33 However, anti-TNF antibodies are currently not 
clinically recommended for the treatment of ALD owing to in-
creased infection and mortality rates.26,34 In addition, studies 
have also shown that there is crosstalk between the gut mi-
crobiome and the liver. Alcohol increases systemic bacterial 
production by altering intestinal permeability, which in turn 
stimulates Kupffer cells (KCs) and promotes TNF production 
and ultimately leads to apoptosis.35 When cytotoxic T cell 
sensitivity is increased, Fas receptor expression is signifi-
cantly increased in ALD through lymphocyte-mediated apo-
ptosis.27,36 Through ER stress, alcohol promotes the phos-
phorylation of interferon regulatory factor 3, which leads to 
hepatocyte apoptosis via Bax.26,37

Nonalcoholic fatty liver disease (NAFLD) and nonal-
coholic steatohepatitis (NASH)
Studies have shown that free fatty acids (FFAs) stimulate 
TNF-α expression through the lysosomal pathway, which 
promotes hepatic fat metabolism and apoptosis.38 The re-
lease of lysosomal enzymes into the cytosol is dependent 
on the specific lysosomal enzyme cathepsin B. This enzyme 
promotes TNF-α-mediated hepatocyte apoptosis by promot-
ing mitochondrial depolarization, cytochrome c release and 
increased ROS production, thereby exacerbating liver dam-
age.39,40 It has been reported that Fas protein expression 
is increased in NASH patients.41 In addition, elevated se-
rum TNF-α levels were observed in patients with NASH.42 
Studies have shown that Fas/Fas-l,43,44 TNF-α/TNF-R and 
TRAIL/TRAIL-R2 form a death-inducing signaling complex in 
NASH.45–47 This complex induces mitochondrial dysfunction 
through caspase-8-dependent cleavage of Bid. Mitochondrial 
dysfunction results in the release of cytochrome c, which 
activates caspase-3 and caspase-7,44,47 and then caspase-6 
is activated. Recent studies have shown that activated cas-
pase-6 cleaves Bid, and mitochondrial cytochrome c is re-
leased, which in turn activates caspase-3 and caspase-7, 
resulting in continuous apoptosis in hepatocytes.48 In addi-
tion, ER stress plays an important role in the development of 
NAFLD.49 Hepatocyte ballooning and apoptosis were detect-
ed in wild-type mice after the injection of ER stress inducers. 
Studies have shown that ER stress leads to apoptotic cell 
death through JNK-mediated Bim activation.26,50 Thus, apo-
ptosis is the predominant mode of cell death in NAFLD. Both 
the intrinsic and extrinsic pathways play important roles.

Hepatic fibrosis and cirrhosis
Viral hepatitis, ALD, NAFLD, autoimmune hepatitis, and drug-
induced liver injury can contribute to liver fibrosis.51 Apoptotic 
bodies that form during apoptosis can be engulfed by phago-
cytes in the liver, such as KCs.52 Studies have shown that 
apoptosis is not only a mode of death but is also associated 
with inflammatory responses. When the level of hepatocyte 
apoptosis exceeds the clearance capacity of phagocytes, apo-
ptotic bodies accumulate and release their proinflammatory 
factors. The phagocytosis of apoptotic bodies by KCs enhanc-
es the expression of the death ligands Fas and TNF-α and pro-
motes hepatocyte apoptosis. It also promotes the production 
of transforming growth factor β (TGF-β), which leads to liver 
fibrosis.53 Studies have shown that the phagocytosis of apop-
totic bodies by hepatic stellate cells (HSCs) directly stimulates 
fibrogenesis.54 In addition, the destruction of the antiapop-
totic factor Bcl-xL in hepatocytes leads to continuous apopto-

sis in hepatocytes, which increases the production of hepatic 
TGF-β and leads to liver fibrosis.55 In conclusion, chronic liver 
diseases cause continuous apoptosis in hepatocytes, induce 
hepatocyte fibrosis, and gradually cause liver cirrhosis.

Hepatocellular carcinoma (HCC)
HCC is closely related to chronic inflammation and fibrosis, 
and is a common end-stage of chronic liver disease. Apop-
tosis is a prominent defense mechanism against hepatocar-
cinogenesis. An imbalance of proapoptotic and antiapoptotic 
members (e.g., activation of the antiapoptotic protein BCL-
xL and downregulation of the proapoptotic protein Bax) has 
been observed in human HCC.56 Most HCCs show insensitiv-
ity to TNF-related apoptosis-inducing ligands or Fas-mediat-
ed cell death.57 As a strong inducer of apoptosis, sorafenib 
treatment of different HCC cell lines increased the levels of 
pro-apoptotic mRNA and proteins and decreased the levels of 
anti-apoptotic proteins.58

Necrosis
Necrosis is generally considered to be an unprogrammed 
form of cell death. Necrosis is characterized by cell swelling 
and plasma membrane rupture.59 Under oxidative stress or 
toxin stimulation, MPT occurs.60 MPT leads to the opening 
of mitochondrial pores through interactions with the mito-
chondrial protein cyclophilin D (CypD).61 The subsequent dis-
turbance in the ion gradient across the inner mitochondrial 
membrane and the decrease in mitochondrial membrane po-
tential result in the loss of oxidative phosphoric acid and the 
rapid depletion of ATP. Ultimately, cellular homeostasis and 
ion pump disruption drive cell necrosis (Fig. 1).59,60

NAFLD and NASH
Studies have shown that in response to a high-fat diet (HFD), 
CypD-knockout mice exhibited reduced triglyceride levels, 
steatosis, and mitochondrial stress compared with wild-type 
mice.62 Similarly, treatment of HFD-fed mice with the pan-
cyclophilin inhibitor CRV431 significantly reduced hepatocyte 
steatosis, ballooning, and liver fibrosis compared with control 
mice.63 Further studies have shown that CypD induces MPT 
by disrupting calcium homeostasis and mediates hepatocyte 
necrosis.62 However, the specific mechanism of necrosis in 
NAFLD needs further study.

Acetaminophen (APAP)-induced liver injury
APAP is a common cause of drug-induced acute liver failure. 
Studies have shown that JNK activation plays a role in APAP-
induced acute liver failure.64 In a mouse model, the inhibition 
of JNK protected against APAP-induced liver injury.65 MPT 
leads to the opening of mitochondrial pores through interac-
tions with the mitochondrial protein CypD.61 Inhibiting CypD 
prevents APAP-induced acute liver injury.66 Therefore, necro-
sis is considered to be the main mode of APAP-induced liver 
injury. Cytochrome P450-mediated metabolism produces the 
toxic metabolite N-acetyl-p-benzoquinoneimine (NAPQI). 
Glutathione (GSH) is required for the detoxification of NAPQI, 
resulting in GSH depletion. GSH depletion increases oxida-
tive stress and alters calcium homeostasis, leading to MPT. 
Mitochondrial membrane potential is lost, and ATP depletion 
ultimately leads to hepatocyte necrosis.67

Necroptosis
Unlike necrosis, necroptosis is programmed necrosis mediat-
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ed by death receptors.68 Necroptosis is also morphologically 
characterized by cell swelling and plasma membrane rupture. 
Receptor-interacting protein kinases 1 and 3 (RIPK1, RIPK3) 
and mixed lineage kinase domain protein (MLKL) play impor-
tant roles in necroptosis.69 Caspase-8 is a hub that mediates 
cell death, leading to different cell death modes.70 The bind-
ing of TNF and TNF-R1 provides a binding site for receptor-
interacting protein 1 (RIP1). After RIP1 is deubiquitinated by 
cylindromatosis, caspase-8, RIP1, RIP3, and Fas-associated 
protein form complex IIa, which activates caspase-8 and me-
diates apoptosis. A necrosome (complex IIb) consisting of 
RIP1, RIP3 and MLKL induces necroptosis when the activity 
of caspase-8 is inhibited (Fig. 1).71,72

NAFLD and NASH
Studies have shown that RIPK3 expression is increased in 
liver biopsy specimens from NASH patients.73 Increased 
expression of RIPK3 and pMLKL was found in the livers of 
HFD-fed mice.74 Paradoxically, RIPK3-knockout mice exhib-
ited exacerbated hepatocyte steatosis and liver injury com-
pared with wild-type mice that were fed HFD. A lack of RIP3 
exacerbates liver injury in NASH, which may be related to 
a shift in hepatocytes from necrosis to apoptosis and an in-
crease in the inflammatory response.74 RIP3 is a key me-
diator of necroptosis. Although its overexpression or dele-
tion may cause liver injury in NASH, the way it mediates 
cell death is different. In addition, in response to methio-
nine–choline-deficient (MCD) conditions, intrahepatic triglyc-
eride levels in caspase-8-knockout or RIP3-knockout mice 
were significantly increased. Studies have shown that RIP3 
activates the JNK pathway in a caspase-8-dependent man-
ner. This pathway promotes the development of NASH.75 In 
addition, inhibition of RIPK1 resulted in downregulation of 
MLKL and reduced liver injury and liver fibrosis in a HFD-fed 
mouse model. The same study showed that MLKL knockout 
increases β-oxidation in fatty liver cells.76 Therefore, RIPK1-
RIPK3-MLKL-mediated NASH is related to necroptosis, but 
whether the mechanism involves crosstalk with apoptosis or 
other modes of cell death needs further study.

ALD
Necroptosis also plays an important role in the occurrence 
and progression of ALD. Increased expression of RIPK3 and 
pMLKL was reported in the liver biopsies of ALD patients.77,78 
Compared with the control group, RIPK3-knockout mice ex-
hibited reduced liver injury and steatosis in response to etha-
nol induction.79 This finding suggests that RIPK3 mediates 
ethanol-induced liver injury. Furthermore, inhibiting RIPK1 
reduced alcohol-induced neutrophil recruitment in mice.80 
Therefore, RIPK1 mediates inflammatory responses in ALD. 
Although pMLKL expression was increased in liver biopsies, 
MLKL knockdown did not alleviate ethanol-induced liver in-
jury compared with that in wild-type mice. This finding sug-
gests that MLKL is not important for ALD.78 It is reported that 
RIP3 expression was reduced in CYP2E1-deficient mice after 
chronic ethanol feeding, along with a decrease in plasma as-
partate aminotransferase (AST) expression. It suggests that 
CYP2E1 contributes to ethanol-induced RIP3 expression and 
liver injury. Furthermore, in RIP3-deficient mouse livers, p-
JNK was reduced after chronic ethanol feeding.79,80 CYP2E1 
mediates p-JNK via RIPK3, which promotes liver injury and 
steatosis in response to ethanol induction. Therefore, CY-
P2E1-RIPK3-JNK mediates necroptosis, leading to ALD.

Autophagy and autophagy-dependent cell death
Autophagy is considered to be a survival mechanism under 

stressful conditions and is essential for maintaining cellular 
homeostasis. Misfolded or aggregated proteins, damaged 
organelles, and intracellular pathogens are sequestered 
within vesicles that become autophagosomes, which in turn 
function as lysosomes for degradation.81,82 Theoretically, 
autophagy mediates cytoprotective effects, and defects in 
autophagy accelerate cellular stress, leading to cell death.2 
However, several studies have shown that cell death does 
not completely cease when apoptosis is inhibited by caspase 
inhibitors or apoptosis-related gene knockdown and that 
autophagy can drive cell death (autophagy-dependent cell 
death) to compensate.83,84 Autophagy-dependent cell death 
is also regulated.85 However, its occurrence is dependent on 
certain environments and needs to be further explored. The 
dual nature of autophagy means that we have to distinguish 
autophagy-dependent cell death from autophagy required 
for cell survival. At present, studies on autophagy in liver 
diseases such as viral hepatitis, ALD, NAFLD, and HCC have 
focused on the protective role of autophagy rather than au-
tophagy-dependent cell death.86 Autophagy deficiency is as-
sociated with a variety of liver diseases. This review focuses 
on the mechanisms by which autophagy influences other 
modes of cell death such as apoptosis and contributes to the 
development of liver diseases (Fig. 1).

ALD
In general, autophagy activation has a protective effect on 
ALD. However, the effect of alcohol on autophagy is time- 
and dose dependent. Acute or low-dose ethanol exposure 
increases autophagy,87 and chronic or high-dose ethanol 
exposure decreases autophagy. Chronic and high-dose al-
cohol exposure inhibits autophagy,88,89 and inhibiting au-
tophagy results in hepatocyte death.88 Crosstalk exists be-
tween autophagy and other modes of cell death.90 Alcohol 
causes apoptosis and the release of ROS, and autophagy 
is activated to remove cellular debris and lipid droplets, 
thus protecting hepatocytes.87,91 Apoptosis promotes cell 
death by inhibiting autophagy-related proteins.92 Studies 
have shown that inhibiting autophagy enhances cell death 
and that knocking down autophagy-associated protein 7 
(ATG7) leads to liver injury.93 In response to alcohol stimu-
lation, inhibiting autophagy promotes liver injury through 
apoptosis.87

NAFLD and NASH
Reduced levels of autophagy have been observed in patients 
with NAFLD and in mouse models.94,95 It has been shown 
that inhibiting autophagy in HFD-fed mice promotes apop-
tosis and increases lipid accumulation in hepatocytes.96 In-
creased JNK signaling and impaired autophagy due to oxida-
tive stress promote NAFLD.97 In NAFLD, autophagy protects 
hepatocytes from death receptor-mediated liver injury. Mac-
roautophagy inhibits apoptosis mediated by the death recep-
tors TNF and Fas,98,99 and inhibiting hepatocyte autophagy 
promotes liver injury by activating caspase-8.100 Autophagy 
is a target of NAFLD therapy and exerts hepatoprotective ef-
fects by enhancing mitochondrial autophagy.

HCC
Autophagy has two sides in the occurrence of HCC.101 On 
the one hand, autophagy plays an inhibitory role in the early 
stages of tumors by maintaining genome stability, removing 
damaged mitochondria, and inhibiting malignant transforma-
tion of cells.102 On the other hand, autophagy acts as a tu-
mor promoter during malignancy. Once tumors are formed, 
autophagy promotes tumor proliferation.103
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Ferroptosis
Unlike other types of cell death, ferroptosis is an iron-de-
pendent form of cell death accompanied by extensive lipid 
peroxidation.104,105 In addition to the role of iron metabo-
lism in ferroptosis, a growing number of metabolic pathways 
have been implicated in ferroptosis. These pathways include 
the GSH/GSH peroxidase 4 (GPX4) axis, guanosine triphos-
phate cyclohydrolase 1 (GCH1)/tetrahydrobiopterin (BH4)/
dihydrofolate reductase (DHFR) axis, dihydroorotate dehy-
drogenase (DHODH)-dihydroubiquione (CoQH2) axis106 and 
F/coenzyme Q (CoQ) axis.107,108 Ferroptosis is initiated by 
intracellular iron accumulation, lipid peroxidation, and the 
oxidation of phospholipids containing polyunsaturated fatty 
acids (PUFA-PLs).109 According to recent findings, the main 
mechanism of ferroptosis is the ROS-dependent regulation of 
cell death. The presence of iron in the cytoplasm leads to the 
formation of ROS through the Fenton reaction. Through this 
reaction, H2O2 is converted to hydroxyl radicals. This process 
leads to lipid peroxidation, which plays an important role in 
ferroptosis.109 The increase in ROS can be regulated by the 
quenching effect of GPX4.110 In fact, GPX4 prevents iron-
dependent ROS accumulation, and GSH is a cofactor to pro-
duce lipidol (R-OH) from lipid hydroperoxides (R-OOH). This 
metabolic process has a cytoprotective effect against Fe2+-
dependent formation and ROS accumulation.109,111 Further-
more, System Xc− supports the efficiency of the antioxidant 
activity of GPX by inhibiting a series of events that trigger a 
reduction of GSH levels, lipid peroxidation, and consequent 
ferroptosis.109 In addition, cytochrome P450 oxidoreductase 
(POR)-mediated or arachidonic acid lipoxygenase (ALOX)-
mediated enzymatic reactions have also been shown to 
promote lipid peroxidation. Iron not only controls the direct 
peroxidation of PUFA-PLs through the nonenzymatic Fenton 

reaction, but also is as an essential cofactor for enzymes in-
volved in lipid peroxidation, such as ALOX and POR, to con-
trol ferroptosis.112 A growing number of studies have shown 
that ferroptosis has an important role in the pathogenesis of 
liver diseases. Therefore, targeting ferroptosis may provide a 
promising new therapeutic strategy (Fig. 2).

ALD
Ferroptosis is associated with the development of ALD, and 
approximately half of patients with ALD exhibit hepatic iron 
overload.113 Alcohol metabolism mediates the accumulation 
of large amounts of acetaldehyde, which causes lipid per-
oxidation in hepatocytes through mitochondrial GSH deple-
tion and excessive ROS production.5 GPX4 protein expression 
was observed in the hepatocytes of alcohol-treated mice. In 
vitro studies have shown that ferrostatin-1 (Fer-1) partially 
alleviates the cytotoxicity of alcohol, and Fer-1 almost com-
pletely reverses alcoholic liver injury.114 Further studies have 
shown that Fer-1 significantly attenuates ALD lipid peroxida-
tion and reduces liver injury. Other studies have shown that 
activation of the nuclear factor erythroid 2-related factor 2 
(Nrf2) pathway inhibits ferroptosis and exerts a protective 
effect against ALD.115 Ferroptosis is a promising therapeutic 
target for ALD treatment.

NAFLD and NASH
Lipid ROS cause hepatic steatosis through the formation of 
lipid droplets. A study showed that iron accumulation en-
hanced lipid ROS levels in MCD-fed mice. Treatment of MCD-
fed mice with Fer-1 or liproxstatin-1 significantly improved 
hepatic steatosis and liver injury.116 GPX4 is most highly ex-
pressed in the liver, and GPX4 protects the liver from lipid 
peroxidation.117 It has been shown that inhibiting GPX4 in 

Fig. 2.  Mechanisms of ferroptosis, pyroptosis, NETosis and cuproptosis. ASC, apoptosis-associated speck-like protein; CoQ, coenzyme Q;DAMP, damage-asso-
ciated molecular modes; DLAT, dihydrolipoic acid s-acetyltransferase; FDX1, iron oxidation reduction protein 1; FSP1, ferroptosis inhibitory protein 1; GPX4, glutathione 
peroxidase 4; GSDMD, gasdermin D; GSH, glutathione; IL, interleukin; LPS, lipopolysaccharide; PAMP, pathogen-associated molecular modes; PMA, phorbol 12-myristate 
13-acetate; ROS, reactive oxygen species; SLC3A2, solute carrier family 3 member 2; SLC7A11, solute carrier family 7 member 11; TAC, tricarboxylic acid cycle.
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MCD-fed mice promoted NASH through ferroptosis-related 
effects. Conversely, GPX4 activation inhibited ferroptosis 
and improved the severity of NASH.118 Thymidine β4 delays 
NAFLD development by upregulating GPX4, which inhibits 
ferroptosis. In addition, Nrf2 inhibits ferroptosis by promot-
ing antioxidant responses and eliminating lipid ROS accumu-
lation in the liver.119 The activation of Nrf2 in HFD-fed mice 
delays the occurrence of NAFLD.120

APAP-induced liver injury
A study showed that ferroptosis occurred in APAP-induced 
liver injury, and Fer-1 provided modest protection against 
APAP-induced primary hepatocyte death in mice.121 Ferrop-
tosis occurred in a mouse model of APAP-induced acute liver 
failure with elevated lipid peroxide derived from n-6 PUFAs. 
In addition, the ferroptosis inhibitor UAMC-3203 and the 
VDAC1 oligomerization inhibitor VBIT-12 reduced ferroptosis 
in APAP-induced liver injury animal models by preserving mi-
tochondrial function.122 These studies suggest that ferropto-
sis may serve as a therapeutic target for APAP-induced liver 
injury.

Hepatic fibrosis and cirrhosis
Ferroptosis is a double-edged sword in liver fibrosis. When 
ferroptosis targets activated HSCs, ferroptosis suppresses 
liver fibrosis.123 HBx promotes the development of liver fi-
brosis by inhibiting ferroptosis. Chrysophanol promotes fer-
roptosis by downregulating GPX4 and SLC7A11 (a key part 
of System Xc−) levels. Thus, chrysophanol attenuates the 
activation of HSCs and improves liver fibrosis.124 Erastin/
sorafenib alleviates liver fibrosis in mice by inducing HSC fer-
roptosis.125 Magnesium isoglycyrrhizinate promotes HSC fer-
roptosis by regulating heme oxygenase 1, which significantly 
reduces liver fibrosis and attenuates liver injury.126 P53 plays 
a crucial role in the induction of ferroptosis.127 Artemether, 
a derivative of artemisinin, reduced liver fibrosis in a mouse 
model of liver fibrosis. Knockdown of P53 exacerbated liver 
fibrosis by blocking artemether-induced HSC ferroptosis, 
which in turn exacerbated liver fibrosis.128 Hepatocyte fer-
roptosis leads to liver fibrosis. Studies have shown that in-
creased hepatocyte ferroptosis promotes the occurrence of 
liver fibrosis. Liver fibrosis was reversed when Fer-1 inhibited 
hepatocyte ferroptosis.129 It is important to explore the role 
of ferroptosis in the development of hepatic fibrosis.

HCC
The role of ferroptosis in HCC is complex. On the one hand, 
ferroptosis associated with iron overload is involved in the 
progression of different types of liver diseases, which pro-
motes the development of HCC.130 On the other hand, fer-
roptosis inhibits HCC cell proliferation. PUFAs reduce HCC 
growth by inhibiting β-catenin and cyclooxygenase 2 (COX-
2).131 Studies have shown that ferroptosis regulators GPX4 is 
overexpressed in HCC.132 Therefore, induction of ferroptosis 
may be a promising therapeutic strategy for HCC.

Pyroptosis
Pyroptosis is a type of programmed cell death that is usually 
induced in cells in the innate immune system.133 Pyropto-
sis is activated by the presence of pathogen-associated mo-
lecular patterns (PAMPs) or cell-derived damage-associated 
molecular patterns (DAMPs). There are two main molecular 
mechanisms of pyroptosis, the classic caspase-1-dependent 
pathway and the noncaspase-1-dependent pathway.134,135 
In caspase-1-dependent pyroptosis, the activation of inflam-

masome receptors such as NLRP1, NLRP3, NLRC4, AIM2 by 
PAMPs or DAMPs triggers the recruitment of the adapter pro-
teins ASC and caspase-1 to form a macromolecular complex 
in which caspase-1 is activated. Activated caspase-1 directly 
cleaves gasdermin D (GSDMD), and the precursor cytokines 
pro-interleukin (IL)1β and pro-IL18, leading to pyroptosis 
and the maturation of IL1β and IL18. The cleaved gasder-
min D N-terminal fragment (GSDMD-NT) forms pores in 
the cell membrane and mediates the release of cytoplasmic 
contents.135,136 During noncaspase-1-dependent cell pyrop-
tosis, caspase-4 or caspase-5 in human cells or caspase-11 
in murine cells recognize lipopolysaccharide (LPS) in the cy-
tosol.137 These caspases directly cleave GSDMD and induce 
pyroptosis.135–137 Recent studies have shown that pyroptosis 
plays a role in various liver diseases, such as viral hepati-
tis, ALD,26 NAFLD,138 liver fibrosis, and liver failure.139 This 
review focuses on the mechanism of pyroptosis in liver dis-
eases (Fig. 2).

Viral hepatitis
Pyroptosis is associated with viral hepatitis. Previous stud-
ies have suggested that in patients with chronic hepatitis 
B, HBcAg induces IL18 secretion by inducing caspase-1.140 
HBeAg inhibits LPS-induced activation of the NLRP3 inflam-
masome and IL1β production in two ways: direct inhibition 
by inhibiting NF-κB phosphorylation and through inhibition of 
ROS production, which inhibits caspase-1 activation and IL1β 
maturation.141 Furthermore, in patients with chronic HCV in-
fection, HCV RNA directly induces NLRP3 inflammasome ac-
tivation in infected hepatocytes.142 In KCs, IL1β production 
via the NLRP3 inflammasome promotes HCV virus amplifica-
tion,143 and the activation of natural killer cells inhibits HCV 
replication.144 Although the mechanisms of pyroptosis in viral 
hepatitis need to be further explored, inhibiting NLRP3 or 
IL1β activity is an effective strategy.

ALD
In ALD, IL1β promotes hepatic steatosis and liver injury. The 
upregulation of caspase-1 and inflammasome activation in 
KCs increases IL1β. However, recombinant IL1Ra blocks IL1 
signaling in vivo.145 In an alcohol-induced mouse model, al-
cohol promoted TXNIP overexpression and NLRP3 activation, 
which induced hepatocyte pyroptosis.146 In addition, a non-
caspase-1-dependent pathway induced pyroptosis in ALD. 
The activation of caspase-11 in alcoholic hepatitis mice and 
caspase-4 in alcoholic hepatitis patients promotes pyroptosis 
mediated by GSDMD.147

NAFLD and NASH
Compared with other liver diseases, pyroptosis has been 
most studied in NAFLD/NASH. GSDMD-N expression is 
significantly upregulated in the liver biopsies of NASH pa-
tients.148 Similarly, GSDMD expression was increased in an 
MCD-fed mouse model. GSDMD-knockout mice have less 
steatosis than wild-type mice.148 Further studies have shown 
that pyroptosis driven by GSDMD-N increased the severity of 
steatohepatitis in mouse models.148 NLRP3 knockdown at-
tenuated liver injury in a mouse model of NAFLD.149 In con-
trast, NLRP3 activation promoted the development of NASH 
or NAFLD through hepatocyte pyroptosis.150 The selective 
NLRP3 inhibitor MCC950 was used in a steatohepatitis model 
constructed by HFD and MCD feeding and resulted in reduced 
NFκB activation and reduced liver inflammation.151 MCC950 
inhibited inflammation and liver fibrosis in NAFLD mouse 
models by reducing the expression of caspase-1, IL6, and 
IL1β.152 Inhibiting NLRP3 and GSDMD significantly reduces 
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inflammation and fibrosis and ultimately alleviates NAFLD by 
regulating the pyroptosis signaling pathway.153

Liver fibrosis
Pyroptosis is also associated with liver fibrosis.148 Activated 
HSCs promote collagen deposition through pyroptosis.154 
IL1β promotes the proliferation of HSCs in rats, which in turn 
enhances the expression of collagen and TGFβ and induces 
liver fibrosis.155 In addition, eosinophils promote liver fibrosis 
by inducing the secretion of IL1β and IL18, which leads to 
pyroptosis. However, a caspase-1 inhibitor can reverse liver 
fibrosis.156 Studies have shown that GSDMD promotes the 
progression of liver fibrosis in MCD-fed mice.148 Excessive 
activation of NLRP3 exacerbates liver inflammation and liver 
fibrosis. NLRP3 knockdown protects the liver from drug-in-
duced liver fibrosis.157

NETosis
It has been shown that activated neutrophils capture and kill 
pathogens by releasing neutrophil extracellular traps (NETs), 
which consist of depolymerized chromatin and intracellular 
granule proteins, to the outside of the cell. This novel form of 
inflammatory cell death, which is accompanied by neutrophil 
death during the formation of NETs, is known as NETosis.158 
NETosis is a specific form of programmed cell death in which 
NADPH oxidase is activated when the concentration of Ca2+ 
in the cytoplasm increases, leading to the massive produc-
tion of ROS and ultimately inducing NETosis.159 ROS trigger 
the release of NE into the cytoplasm, where myeloperoxi-
dase (MPO) activates its protein hydrolytic activity, ultimately 
leading to chromatin decondensation and disruption of the 
nuclear membrane.160 Although NETs do not cause hepato-
cyte death, they are involved in the pathogenesis of various 
chronic liver diseases, such as autoimmune liver disease, 
NASH, and HCC(Fig. 2).161

Viral hepatitis
Studies have shown that HBV C protein (HBc) and HBV E pro-
tein (HBe) caused lower cfDNA levels in patients with chronic 
hepatitis B infection. It shows that HBc and HBe proteins in-
hibit NETs release. Further studies revealed that HBc and HBe 
proteins reduce neutrophil autophagic activity and inhibit ROS 
production by enhancing mTOR activity. In turn, the inhibition 
of NETs release ultimately delays the elimination of HBV. It 
makes HBV to evade the immune system and eventually leads 
to the establishment of persistent infection in this way.162

NAFLD and NASH
Studies have shown that serum neutrophil levels are signifi-
cantly elevated in patients with NASH. NETs were detected in 
MCD/HF diet-fed mouse models. The removal of NETs signifi-
cantly reduced liver injury in MCD/HF diet-fed mouse mod-
els.163 In vivo and in vitro experiments revealed that FFAs 
stimulated the formation of NETs in a mouse model of NASH. 
Inhibiting NETs reduces the production of inflammatory cy-
tokines and inflammatory cell infiltration, which in turn slows 
the progression of NASH.164 Other studies have shown a 
positive correlation between serum levels of NETs markers 
(MPO-DNA complexes) and sphingosine kinase 1 (S1P rate-
limiting enzyme) levels in damaged livers in a mouse model 
of NASH. In vitro, S1P receptor 2 (S1PR2) is involved in regu-
lating the transition of neutrophils from apoptosis to NETosis. 
Knockdown of S1PR2 in MCD/HF diet-fed mice significantly 
inhibited NETs formation in damaged liver tissue, which in 
turn reduced liver inflammation and fibrosis.163

Cuproptosis
Copper is an important catalytic cofactor involved in oxy-
gen metabolism and energy conversion.165 Changes in the 
concentration of copper cause significant damage to cells.166 
Cuproptosis is a novel type of cell death, and studies have 
shown that intracellular copper accumulation leads to the ag-
gregation of mitochondrial lipoproteins and protein destabili-
zation.167 In addition, copper ions regulate cell death by tar-
geting lipidylated mitochondrial tricarboxylic acid cycle (TAC) 
proteins.168 Further studies revealed that iron oxidation re-
duction protein 1 (FDX1) encodes a reductase that reduces 
Cu2+ to Cu+. In contrast, dihydrolipoic acid S-acetyltrans-
ferase (DLAT), a protein target of lipid acylation, is involved 
in the TAC cycle. FDX1 promotes DLAT lipid acylation, Cu+ 
enhancement of lipid acylated protein aggregation and the 
reduction of iron-sulfur cluster proteins, thereby promoting 
cell death.168,169 The liver is an important organ for regu-
lating energy metabolism in the body.170 Impaired energy 
metabolism is associated with the exacerbation of acute 
liver failure. Studies have shown that an imbalance in cop-
per metabolism affects normal liver metabolism.171,172 Thus, 
cuproptosis may be a potential cell death mode in liver dis-
eases, which can be used as a new research direction and 
therapeutic target (Fig. 2).

NAFLD and NASH
Copper and lipid metabolism have a complex relationship, 
and increased cellular copper may downregulate lipid and 
lipogenesis genes.173 Study carried out transcriptome analy-
sis on the liver tissues of HFD-induced NAFLD mice and nor-
mal mice. Gene set variation analysis results showed that the 
cuproptosis was aberrantly activated in NAFLD. Among them, 
DLD and PDHB may be potential hub genes for the diagnosis 
and treatment of NAFLD.174

Targeting cell death in liver diseases’ application
Currently, some preclinical or clinical studies has provided 
the basis to transfer cell death–based therapies for liver dis-
eases to the clinic. In this section, we summarize the involve-
ment of cell death in liver diseases.

Targeting apoptosis in liver diseases
Clinical trials have shown that inhibition of hepatocyte apop-
tosis delays the progression of liver disease. Pan-caspase in-
hibitors PF-03491390 improved liver function in patients with 
chronic HCV infection.175 The selective caspase inhibitor GS-
9450 significantly reduced alanine transaminase (ALT) levels in 
NASH patients by reducing hepatocyte apoptosis.176 Besides, 
as small noncoding RNAs, miRNAs are highly stable and easily 
detected in the circulation compared with traditional biomark-
ers. Studies have shown that many miRNAs are specifically 
expressed in hepatocytes. MiR-34a/SIRT1/p53 leads to NA-
SLD by promoting apoptosis of hepatocytes. It is reported that 
miR-296-5p levels are inversely correlated with PUMA (pro-ap-
optotic protein) mRNA levels in human liver samples. In NASH 
patients, hepatic miR-296 expression was decreased, PUMA 
was increased, and hepatic steatosis was observed.177 MiR-
34a and miR-296 play a role in NAFLD by regulating hepato-
cyte apoptosis. Sorafenib is approved for the first-line treat-
ment of advanced liver cancer, and its main antitumor activity 
is related to caspase activation, Bax and Bak activation.57

Targeting necrosis in liver diseases
Clinical studies have shown that glycyrrhizin, as an HMGB1 
inhibitor, reduces serum ALT levels in patients with HCV in-
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fection and improves hepatic necroinflammation and fibrosis. 
Glycyrrhizin can be used as an adjuvant drug in viral hepa-
titis.178

Targeting ferroptosis in liver diseases
Targeting ferroptosis therapy plays important role in non-
viral liver diseases.179 Preclinical studies have found that 
Fer-1 improves ALD and NAFLD by inhibiting ferroptosis in 
hepatocytes.108,114 As a ferroptosis inducer, erastin improves 
liver fibrosis by promoting ferroptosis by inhibiting the sys-
tem Xc−.125 In addition to apoptosis inducers, sorafenib can 
also induce a new type of programmed cell death, ferropto-
sis. However, it shows that inhibition of ferroptosis mediates 
solafenib resistance in HCC. Studies have shown that sol-
ute carrier family 27 member 5 (SLC27A5) is downregulated 
in sorafenib-resistant HCC. Loss of SLC27A5 enhances GSH 
reductase (GSR) expression in a Nrf2-dependent manner, 
thereby maintaining GSH homeostasis and it promotes HCC 
by inhibiting ferroptosis.180 It provides a potential therapeu-
tic strategy for overcoming sorafenib resistance.

Targeting pyroptosis in liver diseases
Inhibition of NLRP3 or its downstream signaling pathways 
(e.g., caspases and IL1) is the main strategy for the treat-
ment of pyroptosis. Animal experiments have shown that 
taurine or the ER stress inhibitor Tudaka relieves nonalcohol-
ic fatty liver/NASH by inhibiting the activity of NLRP3 inflam-
masome.150,181 A pan-caspase inhibitor, IDN 6556, reduced 
liver injury and fibrosis in a mouse model of NASH. Clinical 
trials have shown that pan-caspase inhibitors IDN 6556 or 
PF-034 reduce serum AST and ALT levels in patients with 
chronic hepatitis C.175,182

Future directions and therapeutic implications
Cell death is central to the study of the development and 
progression of liver diseases. In recent years, cell death 
in liver diseases has been intensively studied and new cell 
death modes that enhance our understanding of the patho-
physiology of liver diseases have been discovered. In this 
review, it was found that different cell death modes occur si-
multaneously in certain liver diseases. Therefore, the various 
cell death modes are not independent or compartmentalized, 
and different cell death modes crosstalk with each other. The 
activation or inhibition of one cell death mode may activate 
other cell death modes. Future studies should focus on ex-
ploring the regulatory relationship between various cell death 
response pathways in the liver. Moreover, the application of 
cell death in liver diseases is mostly in the preclinical stage. 
We should aim to translate cell death into clinical applications 
and predict the onset and regression of liver diseases using 
hepatocyte death-related biomarkers as early as possible. 
That will provide a basis for the diagnosis, monitoring and 
treatment of liver diseases in the future and could help to 
block liver diseases in the initial stage or delay the progres-
sion of liver disease and improve the cure rate.
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