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Abstract

Background: For many practical hypothesis testing (H-T) applications, the data are correlated and/or with
heterogeneous variance structure. The regression t-test for weighted linear mixed-effects regression (LMER) is a
legitimate choice because it accounts for complex covariance structure; however, high computational costs and
occasional convergence issues make it impractical for analyzing high-throughput data. In this paper, we propose
computationally efficient parametric and semiparametric tests based on a set of specialized matrix techniques dubbed
as the PB-transformation. The PB-transformation has two advantages: 1. The PB-transformed data will have a scalar
variance-covariance matrix. 2. The original H-T problem will be reduced to an equivalent one-sample H-T problem. The
transformed problem can then be approached by either the one-sample Student’s t-test or Wilcoxon signed rank test.

Results: In simulation studies, the proposed methods outperform commonly used alternative methods under both
normal and double exponential distributions. In particular, the PB-transformed t-test produces notably better results
than the weighted LMER test, especially in the high correlation case, using only a small fraction of computational cost
(3 versus 933 s). We apply these two methods to a set of RNA-seq gene expression data collected in a breast cancer
study. Pathway analyses show that the PB-transformed t-test reveals more biologically relevant findings in relation to
breast cancer than the weighted LMER test.

Conclusions: As fast and numerically stable replacements for the weighted LMER test, the PB-transformed tests are
especially suitable for “messy” high-throughput data that include both independent and matched/repeated samples.
By using our method, the practitioners no longer have to choose between using partial data (applying paired tests to

yunzhang813/PBtest-R-Package.

only the matched samples) or ignoring the correlation in the data (applying two sample tests to data with some
correlated samples). Our method is implemented as an R package ‘PBtest’ and is available at https://github.com/
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Background

Modern statistical applications are typically characterized
by three major challenges: (a) high-dimensionality; (b)
heterogeneous variability of the data; and (c) correlation
among observations. For example, numerous data sets
are routinely produced by high-throughput technologies,
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such as microarray and next-generation sequencing, and
it has become a common practice to investigate tens of
thousands of hypotheses simultaneously for those data.
When the classical i.i.d. assumption is met, the compu-
tational issue associated with high-dimensional hypoth-
esis testing (hereinafter, H-T) problem is relatively easy
to solve. As proof, R packages genefilter [1] and
Rfast [2] implement vectorized computations of the
Student’s and Welch’s ¢-tests, respectively, both of which
are hundreds times faster than the stock R function
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t.test (). However, it is common to observe hetero-
geneous variabilities between high-throughput samples,
which violates the assumption of the Student’s t-test.
For example, samples processed by a skillful technician
usually have less variability than those processed by an
inexperienced person. For two-group comparisons, a spe-
cial case of the heterogeneity of variance, i.e., samples in
different groups have different variances, is well studied
and commonly referred to as the Behrens-Fisher prob-
lem. The best known (approximate) parametric solution
for this problem is the Welch’s ¢-test, which adjusts the
degrees of freedom (hereinafter, DFs) associated with the
t-distribution to compensate for the heteroscedasticity in
the data. Unfortunately, the Welch’s ¢-test is not appropri-
ate when the data have even more complicated variance
structure. As an example, it is well known that the qual-
ity and variation of the RNA-seq sample is largely affected
by the total number of reads in the sequencing specimen
[3, 4]. This quantity is also known as sequencing depth or
library size, which may vary widely from sample to sample.
Fortunately, such information is available a priori to data
analyses. Several weighted methods [5-7] are proposed
to utilize this information and make reliable statistical
inference.

As the technology advances and the unit cost drops,
immense amount of data are produced with even more
complex variance-covariance structures. In multi-site
studies for big data consortium projects, investigators
sometimes need to integrate omics-data from different
platforms (e.g. microarray or RNA-seq for gene expres-
sion) and/or processed in different batches. Although
many normalization [8—10] and batch-correction meth-
ods [11-13] can be used to remove spurious bias, the
heterogeneity of variance remains to be an issue. Besides,
the clustering nature of these data may induce correlation
among observations within one center/batch. Correlation
may arise due to other reasons such as paired samples.
For example, we downloaded a set of data for a com-
prehensive breast cancer study [14], which contain 226
samples including 153 tumor samples and 73 paired nor-
mal samples. Simple choices such as Welch’s ¢-test and
paired ¢-test are not ideal for comparing the gene expres-
sion patterns between normal and cancerous samples,
because they either ignore the correlations of the paired
subjects or waste information contained in the unpaired
subjects. To ignore the correlation and use a two-sample
test imprudently is harmful because it may increase the
type I error rate extensively [15]. On the other hand, a
paired test can only be applied to the matched samples,
which almost certainly reduces the detection power. In
general, data that involves two or more matched samples
are called repeated measurements, and it is very common
in practice to have some unmatched samples, also known
as unbalanced study design.
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One of the most versatile tools in statistics, the linear
mixed-effects regression (LMER), provides an alternative
inferential framework that accounts both unequal vari-
ances and certain practical correlation structures. The
standard LMER can model the correlation by means of
random effects. By adding weights to the model, the
weighted LMER is able to capture very complex covari-
ance structures in real applications. Although LMER has
many nice theoretical properties, fitting it is computa-
tionally intensive. Currently, the best implementation is
the R package 1me4 [16], which is based on an itera-
tive EM algorithm. For philosophical reasons, 1me4 does
not provide p-values for the fitted models. The R pack-
age lmerTest [17] is the current practical standard to
perform regression ¢- and F-tests for 1me4 outputs with
appropriate DFs. A fast implementation of LMER is avail-
able in the Rfast package, which is based on highly
optimized code in C++ [2]; however, this implementation
does not allow for weights.

Many classical parametric tests, such as two-sample and
paired ¢-tests, have their corresponding rank-based coun-
terparts, i.e. the Wilcoxon rank-sum test and the Wilcoxon
signed rank test. A rank-based solution to the Behrens-
Fisher problem can be derived based on the adaptive
rank approach [18], but it was not designed for correlated
observations. In recent years, researchers also extended
rank-based tests to situations where both correlations and
weights are presented. [19] derived the Wilcoxon rank-
sum statistic for correlated ranks, and [20] derived the
weighted Mann-Withney U statistic for correlated data.
These methods incorporate an interchangeable correla-
tion in the whole dataset, and are less flexible for a
combination of correlated and uncorrelated ranks. Lum-
ley and Scott [21] proved the asymptotic properties for
a class of weighted ranks under complex sampling, and
pointed out that a reference ¢-distribution is more appro-
priate than the normal approximation for the Wilcoxon
test when the design has low DFs. Their method is imple-
mented in the svyranktest () function in R package
survey. But most of the rank-based tests are designed
for group comparisons; rank-based approaches for test-
ing associations between two continuous variables with
complex covariance structure are underdeveloped.

Based on a linear regression model, we propose two H-T
procedures (one parametric and one semiparametric) that
utilize a priori information of the variance (weights) and
correlation structure of the data. In “Methods” section, we
design a linear map, dubbed as the “PB-transformation’,
that a) transforms the original data with unequal vari-
ances and correlation into certain equivalent data that
are independent and identically distributed; b) maps the
original regression-like H-T problem into an equivalent
one-group testing problem. After the PB-transformation,
classical parametric and rank-based tests with adjusted
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DFs are directly applicable. We also provide a moment
estimator for the correlation coefficient for repeated mea-
surements, which can be used to obtain an estimated
covariance structure if it is not provided a priori. In
“Simulations” section, we investigate the performance of
the proposed methods using extensive simulations based
on normal and double exponential distributions. We show
that our methods have tighter control of type I error
and more statistical power than a number of competing
methods. In “A real data application” section, we apply
the PB-transformed ¢-test to an RNA-seq data for breast
cancer. Utilizing the information of the paired samples
and sequencing depths, our method selects more cancer-
specific genes and fewer falsely significant genes (i.e.
genes specific to other diseases) than the major competing
method based on weighted LMER.

Lastly, computational efficiency is an important assess-
ment of modern statistical methods. Depending on the
number of hypotheses to be tested, our method can per-
form about 200 to 300 times faster than the weighted
LMER approach in simulation studies and real data anal-
yses. This efficiency makes our methods especially suit-
able for fast feature selection in high-throughput data
analysis. We implement our methods in an R package
called 'PBtest, which is available at https://github.com/
yunzhang813/PBtest-R-Package.

Methods
Model framework
For clarity, we first present our main methodology
development for a univariate regression problem. We
will extend it to multiple regression problems in
“Extension to multiple regressions” section.

Consider the following regression-type H-T problem:

y:ll,l,—i—xﬁ—f—E, (1)
where 1,8 e€R, yxel1=(, --,1) eR”
and € ~N(0,%);

Hy: B #0. (2)

Here, y is the response variable, x is the covariate, and €
is the error term that follows an n-dimensional multivari-
ate normal distribution N with mean zero and a general
variance-covariance matrix ¥. By considering a random
variable Y in the n-dimensional space, the above problem
can also be stated as

Hy: B =0 versus

n

N Qu, ), under Hy,
Y ~

N Ap+xB, ¥), under H.

3)
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In this model, i is the intercept or grand mean that is
a nuisance parameter, and S is the parameter of interest
that quantifies the effect size. We express the variance-
covariance matrix of € in the form

cov(e)=X =02-8, (4)

where o2 is a nonzero scalar that quantifies the magnitude

of the covariance structure, and S is a symmetric, positive-
definite matrix that captures the shape of the covariance
structure. Additional constraints are needed to determine
o2 and S; here, we choose a special form that can sub-
sequently simplify our mathematical derivations. For any
given X, define

2= (Z (E_l)i”,) and Si=o072T = (Z (2—1)”) .

ij i
From the above definition, we have the following nice
property

-1\ _ 1/e-17 _
Z(s ), =1s'1=1 (5)
ij
Hereinafter, we refer to S the standardized structure
matrix satisfying Eq. 5.

The proposed method
As a special case of Model (3), if S is proportional to I,
the identity matrix, it is well-known that regression ¢-test
is a valid solution to this H-T problem. If S # I, e.g.
the observed data are correlated and/or have heteroge-
neous variance structure, the assumptions of the standard
t-test are violated. In this paper, we propose a linear trans-
formation, namely PB : Y — Y, which transforms the
original data to a new set of data that are independent and
identically distributed. Furthermore, we prove that the
transformed H-T problem related to the new data is equiv-
alent to the original problem, so that we can approach the
original hypotheses using standard parametric (or later
rank-based) tests with the new data.

To shed more lights on the proposed method, we first
provide a graphical illustration in Fig. 1. The proposed
procedure consists of three steps.

1 Estimate 1(Y) (i.e. the weighted mean of the original
data), and subtract & from all data. This process is an
oblique (i.e. non-orthogonal) projection from R” to
an (n — 1)-dimensional subspace of R”. The
intermediate data from this step is YV (i.e. the
centered data). It’s clear that EY(V is the origin of the
reduced space if and only if Hy is true.

2 Use the eigen-decomposition of the covariance
matrix of Y to reshape its “elliptical” distribution
to a “spherical” distribution. The intermediate data
from this step is Y%,
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Step 1: Centering at the weighted mean

Step 2: Standardization

methods. The final data from this step is Y

e.g. Under Hy e.g. Under Ho B-map
B-map Y v T
2
Oblique o*(S - J)\ Y® < o1
(non-orthogonal) / K\
: projection
(Y)1 </ \j

e.g. Under Hq
P-map
/—_\A Y -
Y@ .
Z ’

Y = observed data 0 1

Y = PB-transformed data

Other notations as defined in the text.

Fig. 1 Graphical illustration of the PB-transformation. Step 1: Estimate {(Y) (i.e. the weighted mean of the original data), and subtract /i from all data.
This process is an oblique (i.e. non-orthogonal) projection from R” to an (n — 1)-dimensional subspace of R”. The intermediate data from this step
is Y(, also called the centered data. If Ho is true, Y(1)' centers at the origin of the reduce space; otherwise, the data cloud Y(" deviates from the
origin. Step 2: Use eigen-decomposition to reshape the “elliptical” distribution to an “spherical” distribution. The intermediate data from this step is
Y@ Step 3: Use QR-decomposition to find a unique rotation that transforms the original H-T problem to an equivalent problem. The equivalent
problem tests for a constant deviation along the unit vector in the reduced space, thus it can be approached by existing parametric and rank-based

Step 3: Rotation

3 Use the QR-decomposition technique to find a
unique rotation that transforms the original H-T
problem to an equivalent problem of testing for a
constant deviation along the unit vector. The
equivalent data generated from this step is Y, and the
H-T problem associated with Y can be approached
by existing parametric and rank-based methods.

In the proposed PB-transformation, B-map performs both
transformations in Step 1 and 2; P-map from Step 3 is desi
gned to improve the power of the proposed semiparametric
test to be described in “A semiparametric generalization”
section.

Centering data

Using weighted least squares, the mean estimation
based on the original data is a(Y) = 1S7'Y
(for details please see Additional file 1: Section S1.1). We
subtract & from all data points and define the centered
data as

YV =Y-1a=(1-J5)Y,

where ] = 1- 1’ (i.e. a matrix of all 1’s). With some math-
ematical derivations (see Additional file 1: Section S1.1),
we have

0 under H
EYD ={ " o YV) =025 -)).
(I — ]S*I) x8, under Hy; cov ( ) o™ ( D
The B-map

Now, we focus on S—J, which is the structure matrix of the
centered data. Let TAT’ denote the eigen-decomposition
of S —J. Since the data are centered, there are only n —
1 nonzero eigenvalues. We express the decomposition as
follows

S — ] = Tn—lAn—lT;,_ly (6)

where T),_1 € My xn—1) isasemi-orthogonal matrix containing
the first n — 1 eigenvectors and A,_1 € Mp—1)x@u—1) is a
diagonal matrix of nonzero eigenvalues. Based on Eq. 6,
we define (see Additional file 1: Section S1.2)
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1/2

B:=A/ T, 1S' € Mu—1)sm

so that Y® := BY € R”~! have the following mean and
covariance

cov (Y(Z)) = 02I(n—1)><(n—1)'

(7)

We call the linear transformation represented by matrix
B the “B-map” So far, we have centered the response
variable, and standardized the general structure matrix
S into the identity matrix I. However, the covariate and
the alternative hypothesis in the original problem are also
transformed by the B-map. For normally distributed Y, the
transformed H-T problem in Eq. 7 is approachable by the
regression t-test; however, there’s no appropriate rank-
based counterpart. In order to conduct a rank-based test
for Y with broader types of distribution, we propose the
next transformation.

0,,—1, under H
@ _ ) On-1, 0
EY™ = {Bxﬂ, under Hy;

The P-map
From Eq. 7, define the transformed covariate

z:=BxeR" L (8)

We aim to find an orthogonal transformation that aligns z
to 1,1 in the reduced space. We construct such a trans-
formation through the QR decomposition of the following
object

A= (1,-1l2) = QR,

where A € M(,—1)x2 is a column-wise concatenation of
vector z and the target vector 1,_1, Q € M(,—1)x2 is a
semi-orthogonal matrix, and R € My is an upper trian-
gular matrix. We also define the following rotation matrix

Rot := 5 V1-§2 € My, where
-V1-8> ¢
(z1,-1)

= ————€R
s W
Geometrically speaking, £ = cos6, where 6 is the angle
between z and 1,_;.

With the above preparations, we have the following
result.

Theorem 1 Matrix P := 1 — QQ' + Q RotQ =

Ii—1)x(n—1) — QU2x2 — Rot)Q’ is the unique orthogonal
transformation that satisfies the following properties:

PP = P'P = I 1)x(n—1) 9)

PZ = ; : 1}1—1’

Pu=u, Yus.t.(ul,—1) = (u,z) = 0.
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Proof See Additional file 1: Section 1.3. O

We call the linear transformation P defined by
Theorem 1 the “P-map”. Equation 9 ensures that this map
is an orthogonal transformation. Equation 10 shows that
the vector z is mapped to 1,_; scaled by a factor ¢.
Equation 11 is an invariant property in the linear subspace
LZL, which is the orthogonal complement of the linear sub-
space spanned by 1,,_; and z, i.e. L, = span(1,—1,z). This
property defines a unique minimum map that only trans-
forms the components of data in L, and leaves the com-
ponents in L} invariant. A similar idea of constructing
rotation matrices has been used in [22].

With both B and P, we define the final transformed data
as Y := PY® = PBY, which has the following joint
distribution

- seneran | N (0, 021), under Hy,
Y~N (PBxf, PB(s S)BP):{ ./\/Elgﬂ, G)ZI),underHl.

The normality assumption implies that each Y; follows
an ii.d. normal distribution, for i = 1,---,n — 1. The
location parameter of the common marginal distribu-
tion is to be tested with unknown o2. Therefore, we can
approach this equivalent H-T problem with the classical
one-sample ¢-test and Wilcoxon signed rank test (more in
“A semiparametric generalization” section).

Correlation estimation for repeated measurements
If ¥ is unknown, we can decompose X in the following
way

T =W ICorWz, (12)
where W is a diagonal weight matrix and Cor is the corre-
sponding correlation matrix. By definition, the weights are
inversely proportional to the variance of the observations.
In many real world applications including RNA-seq anal-
ysis, those weights can be assigned a priori based on the
quality of samples; but the correlation matrix Cor needs
to be estimated from the data. In this section, we provide a
moment-based estimator of Cor for a class of correlation
structure that is commonly used for repeated measure-
ments. This estimator does not require computationally
intensive iterative algorithms.

Let Y be a collection of repeated measures from L sub-
jects such that the observations from different subjects
are independent. With an appropriate data rearrange-
ment, the correlation matrix of Y can be written as a
block-diagonal matrix

Corp
cor(Y) =

Cory,
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We assume that the magnitude of correlation is the same
across all blocks, and denote it by p. Each block can be
expressed as Cor;(p) = (1—p)Lysm +PVuyxnp,  for 1=
1,---,L, where n; is the size of the I/th block and n =
YL

We estimate the correlation based on the weighted regres-
sion residuals € defined by Eq. (S3) in Additional file 1:
Section S2.1. Define two forms of residual sum of squares

SS1=) &l¢ and SS =Y éJé,
1 !

where €, is the corresponding weighted residuals for the
Ith block. With these notations, we have the following
Proposition.

Proposition 1 Denote X, = cov(€) and assume that for

somie nonzero 0’2,

e =0’ - diag(Cori(p),- -, Corr(p)).
An estimator of p based on the first moments of SS1 and
S8y is
52 _ 88, — SS1
T LY (mn = 1) Sy
Moreover, ifé ~ N(0,Z) andnmy = --- = np = n/L

(i.e. balanced design), the above estimator coincides with
the maximum likelihood estimator of p, which has the form

. 85— 88
PMLE = (1 — 1)SS;
Proof See Additional file 1: Section S2.1. O

Standard correlation estimates are known to have down-
ward bias [23], which can be corrected by the Olkin
and Pratt’s method [24]. With this correction, our final
correlation estimator is

A2
1-— P, momenti|

2(L —3) (13)

/3 = lsmoment |:1 +

Kenward-roger approximation to the degrees of freedom
The degree of freedom (DF) can have nontrivial impact
on hypothesis testing when sample size is relatively small.
Intuitively, a correlated observation carries “less informa-
tion” than that of an independent observation. In such
case, the effective DF is smaller than the apparent sample
size. Simple examples include the two-sample ¢-test and
the paired ¢-test. Suppose there are n observations in each
group, the former test has DF = 2n — 2 for i.i.d. obser-
vations, and the latter only has DF = n — 1 because the
observations are perfectly paired. These trivial examples
indicate that we need to adjust the DF according to the
correlation structure in our testing procedures.

We adopt the degrees of freedom approximation pro-
posed by [25] (K-R approximation henceforth) for the
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proposed tests. The K-R approximation is a fast moment-
matching method, which is efficiently implemented in R
package pbkrtest[26]. In broad terms, we use the DF
approximation as a tool to adjust the effective sample size
when partially paired data are observed.

Alternative approach using mixed-effects model
As we mentioned in “Background” section, the H-T prob-
lem stated in Model (3) for repeated measurements can
also be approached by the linear mixed-effects regression
(LMER) model. Suppose the ith observation is from the
Ith subject, we may fit the data with a random intercept
model such that

Yiy =n+xi+ 1y +€
where 1; is the indicator function of the /th subject,

i.i.d.
y ~N (0, 03), and ¢, <N (0,62). The correlation is
modeled as
o2

! (14)

p = cor (Yip Yyy) = 02+ o2
Y €

The LMER model is typically fitted by a likelihood
approach based on the EM algorithm. Weights can be
incorporated in the likelihood function. The lmer ()
function in R package 1me4 [16] provides a reference
implementation for fitting the LMER model. The algo-
rithm is an iterative procedure until convergence. Due
to relatively high computational cost, the mixed-effects
model has limited application in high-throughput data.

The R package lmerTest [17] performs hypothesis
tests for lmer () outputs. By default, it adjusts the DF
using the Satterthwaite’s approximation [27], and can
optionally use the K-R approximation.

A semiparametric generalization

In the above sections, we develop the PB-transformed
t-test using linear algebra techniques. These techniques
can be applied to non-normal distributions to transform
their mean vectors and covariance matrices as well. With
the following proposition, we may extend the proposed
method to an appropriate semiparametric distribution
family. By considering the uncorrelated observations with
equal variance as a second order approximation of the
data that we are approaching, we can apply a rank-based
test on the transformed data to test the original hypothe-
ses. We call this procedure the PB-transformed Wilcoxon
test.

Proposition 2 Let Y = {)V’l, cey
of i.i.d. random variables with a common symmetric den-
sity function g(y), g(—y) = g(¥). Assume that EY; = 0,
var(Y1) = o2 Let Y* be a random number that is inde-
pendent of Y and has zero mean and variance o>, For every

Yn_l} be a collection
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symmetric semi-definite S € Myx,, X € R? and 1, 8 € R,
there exists a linear transformation D : R"~1 — R" and
constants u, v, such that

Y:=D (Y + uln,l) + Y+, (15)

is an n-dimensional random vector with
E(Y) =1u+xB and cov(Y) = oS.

Furthermore, if we apply the PB-transformation to Y, the
result is a sequence of (n — 1) equal variance and uncor-
related random variables with zero mean if and only if

p=0.
Proof See Additional file 1: Section S1.4. O

The essence of this Proposition is that, starting with an
i.i.d. sequence of random variables with a symmetric com-
mon p.d.f., we can use linear transformations to generate a
family of distributions that is expressive enough to include
a non-normal distribution with an arbitrary covariance
matrix and a mean vector specified by the effect to be
tested. This distribution family is semiparametric because:
a) the “shape” of the density function, g(y), has infinite
degrees of freedom; b) the “transformation” (D, u, and v)
has only finite parameters.

As mentioned before, applying both the B- and P-maps
enables us to use the Wilcoxon signed rank test for the
hypotheses with this semiparametric distribution family.
This approach has better power than the test with only the
B-map as shown in “Simulations” section . Once the PB-
transformed data are obtained, we calculate the Wilcoxon
signed rank statistic and follow the testing approach in
[21], which is to approximate the asymptotic distribution
of the test statistic by a ¢-distribution with an adjusted DFE.
Note that Wilcoxon signed rank test is only valid when
the underlying distribution is symmetric; therefore, the
symmetry assumption in Proposition 2 is necessary. In
summary, this PB-transformed Wilcoxon test provides an
approximate test (up to the second order moment) for
data that follow a flexible semiparametric distributional
model.

Extension to multiple regressions
In this section, we present an extension of the proposed
methods for the following multiple regression

y=XB +e¢,
B R,

y € R”,
e cR”.

X € My, )

Here the error term € is assumed to have zero mean
but does not need to have scalar covariance matrix. For
example, € can be the summation of random effects and
measurement errors in a typical LMER model with a form
specified in Eq. 4.
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To test the significance of Bg, k = 1,...,p, we need
to specify two regression models, the null and alterna-
tive models. Here the alternative model is just the full
Model (16), and the null model is a regression model for
which the covariate matrix is X_g, which is constructed
by removing the kth covariate (Xj) from X

y=X_iB i +e€
B_i € R¥~!, span (X_4) C span(X).

x—k S Mnx(p—l): (17)

Compared with the original univariate problem, we see
that the nuisance covariates in the multiple regression
case are X_;f_ instead of 1 in Eq. 1. Consequently, we
need to replace the centering step by regressing out the
linear effects of X_

E:=CY:= (1,”,4 S X (X STX ) x’_ks—l) Y.

The new B-transformation is defined as the eigen-
decomposition of cov(E) = o2 (S — X_kXLk). The P-
transformation is derived the same as before, but with the
new B matrix.

Simulations

We design two simulation scenarios for this study: SIM1
for completely paired group comparison, and SIM2 for
regression-type test with a continuous covariate. For both
scenarios we consider three underlying distributions (nor-
mal, double exponential, and logistic) and four correlation
levels (0 = 0.2, p = 04, p = 0.6, and p = 0.8). We
compare the parametric and rank-based PB-transformed
test with oracle and estimated correlation to an incom-
plete survey of alternative methods. Each scenario was
repeated 20 times and the results of p = 0.2 and 0.8 for
normal and double exponential distributions are summa-
rized in Figs. 2 and 3, and Tables 1 and 2. See Additional
file 1, Section S3 for more details about the simulation
design, additional results of p = 0.4 and 0.6, and results
for logistic distribution.

Figures 2 and 3 are ROC curves for SIM1 and
SIM2, respectively. In all simulations, the proposed PB-
transformed tests outperform the competing methods.

The PB-transformed ¢-test has almost identical perfor-
mance with oracle or estimated p. Using the estimated
p slightly lowers the ROC curve of the PB-transformed
Wilcoxon test compared with the oracle curve, but it
still has a large advantage over other tests. Within the
parametric framework, the weighted LMER has the best
performance among the competing methods. It achieves
similar performance as our proposed parametric test
when the correlation coefficient is small; however, its per-
formance deteriorates when the correlation is large. Judg-
ing from the ROC curves, among the competing methods,
the svyranktest () is the best rank-based test for the
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Fig. 2 ROC curves for group comparison tests. In SIM1, seven parametric methods and six rank-based methods are compared. (@): normal with small
correlation; (b) normal with large correlation; (c): double exponential with small correlation; (d) double exponential with large correlation. AUC
values are reported in the legend. Plot A is zoomed to facilitate the view of curves that overlay on top of each other. When curves are severely
overlaid, line widths are slightly adjusted to improve readability. For both p = 0.2 and p = 0.8, the PB-transformed parametric and rank-based tests

outperform all other tests

False positive rate

group comparison problem, primarily because it is capa-
ble of incorporating the correlation information. However,
it fails to control the type-I error, as shown in Table 1.
Tables 1 and 2 summarize the type-I error rate and
power at the 5% significance level for SIM1 and SIM2,
respectively. Overall, the PB-transformed tests achieve
the highest power in all simulations. In most cases, the
proposed tests tend to be conservative in the control of
type-I error; and replacing the oracle p by the estimated
0 does not have significant impact on the performance of
PB-transformed tests. The only caveat is the rank-based
test for the regression-like problem. Currently, there’s no
appropriate method designed for this type of problem.
When the oracle correlation coefficient is provided to
the PB-transformed Wilcoxon test, it has tight control of
type I error. With uncertainty in the estimated correlation
coefficient, our PB-transformed Wilcoxon test may suffer
from slightly inflated type I errors; but it is still more con-
servative than its competitors. Of note, other solutions,
such as the naive t-test and rank-based tests, may have

little or no power for correlated data, though they may not
have the lowest ROC curve.

Computational cost and degrees of freedom
We record the system time for testing 2000 simulated
hypotheses using our method and lmer (), since they
are the most appropriate methods for the simulated data
with the best statistical performance. Our method takes
less than 0.3 s with given X, and less than 0.9 s with the
estimation step; lmer () takes 182 s. We use a MacBook
Pro equipped with 2.3 GHz Intel Core i7 processor and
8GB RAM (R platform: x86_64-darwinl5.6.0). Of note,
lmer () may fail to converge occasionally, e.g. 0 — 25 fail-
ures (out of 2,000) in each repetition of our simulations.
We resort to a try/catch structure in the R script to
prevent these convergence issues from terminating the
main loop.

We also check the degrees of freedom in all applica-
ble tests. In this section, we report the DFs used/adjusted
in SIM1, i.e. the completely paired group comparison.
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SIM2: Regression Test

outperform all other tests
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Table 1 Type-l error and power comparison for group comparison tests

p =02 p =08
Type-l error Power Type-l error Power
Normal
PB.t (oracle) 0.037 (0.005) 0.841 (0. 01 0) 0.035 (0.005) 0.919(0.010)
PB.t (estimation) 0.036 (0.005) 0.839 (0.010) 0.029 (0.005) 0.910 (0.009)
Weighted LMER 0.042 (0.007) 0.826 (0.011) 0.022 (0.003) 0616 (0.016)
Rfast LMER 0.064 (0.008) 0.555 (0. 01 6) 0.063 (0.008) 0.517 (0.017)
Weighted regression t-test 0.032 (0.005) 0.822 (0.012) 0.002 (0.001) 0.373 (0.011)
Paired t-test 0.049 (0.006) 0.503 (0.016) 0.050 (0.006) 0475 (0.013)
Welch's t-test 0.031 (0.004) 0.449 (0.015) 0.001 (0.001) 0.090 (0.010)
Double Exponential
PB.wilcox (oracle) 0.032 (0.007) 0.898 (0.012) 0.030 (0.007) 0.950 (0.007)
PB.wilcox (estimation) 0.046 (0.010) 0.861(0.016) 0.032 (0.007) 0.918 (0.012)
svyranktest 0.121 (0.010) 0.821 (0.013) 0.100 (0.012) 0.615 (0.024)
Friedman 0.050 (0.009) 0492 (0.018) 0.050 (0.006) 0.513(0.014)
Wilcoxon signed rank 0.056 (0.008) 0.569 (0.016) 0.054 (0.005) 0.563 (0.015)
Wilcoxon rank-sum 0.042 (0.009) 0.595 (0.013) 0.002 (0.001) 0.211 (0.015)
At the 5% significance level, mean and standard deviation (in brackets) of the type-I error rate and power over 20 sets of SIM1 data are reported
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Table 2 Type-l error and power comparison for regression tests

Page 10 of 14

p =02 p =08
Type-l error Power Type-l error Power
Normal
PB.t (oracle) 0.046 (0.007) 0.763 (0.012) 0.044 (0.007) 0.696 (0.013)
PB.t (estimation) 0.045 (0.007) 0.762 (0.012) 0.037 (0.007) 0.673 (0.013)
Weighted LMER 0.051 (0.009) 0.758 (0.011) 0.053 (0.006) 0.605 (0.014)
Rfast LMER 0.062 (0.009) 0.709 (0.014) 0.073 (0.005) 0.598 (0.013)
Weighted regression t-test 0.049 (0.009) 0.756 (0.012) 0.057 (0.007) 0.396 (0.015)
Welch's t-test 0.054 (0.008) 0.688 (0.015) 0.053 (0.007) 0.349 (0.012)
Double Exponential
PB.wilcox (oracle) 0.043 (0.007) 0.822 (0.014) 0.040 (0.008) 0.739(0.015)
PB.wilcox (estimation) 0.066 (0.010) 0.729 (0.013) 0.069 (0.007) 0.636 (0.012)
B.spearman (estimation) 0.077 (0.008) 0.683 (0.019) 0.085 (0.009) 0.588 (0.016)
Spearman test 0.073 (0.008) 0.651(0.018) 0.070 (0.010) 0.331(0.018)
(

At the 5% significance level, mean and standard deviation (in brackets) of the type-I error rate and power over 20 sets of SIM2 data are reported

Recall that # = 40 with np = ng = 20. It is straight-
forward to calculate the DFs used in the two-sample
t-test and the paired ¢-test, which are 38 and 19, respec-
tively. Using 1merTest () (weighted LMER) with default
parameters, it returns the mean DF = 35.51 with a large
range (min = 4.77, max = 38) from the simulated data
with p = 0.2. Using the oracle ¥gpy, our method returns
the adjusted DF = 14.35; if the covariance matrix is esti-
mated, our method returns the mean DF = 14.38 with
high consistency (min = 14.36, max = 14.42). When
p = 0.8, the adjusted DFs become smaller. The weighted
LMER returns the mean DF = 20.63 (min = 4.03, max
= 38). Our method returns DF = 12.48 for the oracle
covariance, and mean DF = 12.56 (min = 12.55, max =
12.57) for the estimated covariance. Also, the rank-based
test svyranktest () returns a DF for its ¢-distribution
approximation, which is 18 for both small and large
correlations.

A real data application

We download a set of RNA-seq gene expression data from
The Cancer Genome Atlas (TCGA) [14] (see Additional
file 1: Section S4). The data are sequenced on the Illumina
GA platform with tissues collected from breast cancer
subjects. In particular, we select 28 samples from the
tissue source site “BH’, which are controlled for white
female subjects with the HER2-positive (HER2+) [28]
biomarkers. After data preprocessing based on nonspe-
cific filtering (see Additional file 1: Section S4.1), a total
number of 11,453 genes are kept for subsequent analy-
ses. Among these data are 10 pairs of matched tumor
and normal samples, 6 unmatched tumor samples, and 2
unmatched normal samples. Using Eq. 13, the estimated
correlation between matched samples across all genes is
p = 0.10.

The sequencing depths of the selected samples range
from 23.80 million reads to 76.08 million reads. As men-
tioned before, the more reads are sequenced, the better
is the quality of RNA-seq data [4]; thus it is reasonable
to weigh samples by their sequencing depths. Since this
quantity is typically measured in million reads, we set the
weights

w; = sequencing depth of the ith sample x 107, (18)

fori=1,---,28.

With the above correlation estimate and weights, we
obtained the covariance structure using Eq. 12. For prop-
erly preprocessed sequencing data, a proximity of normal-
ity can be warranted [29]. We applied the PB-transformed
t-test and the weighted LMER on the data.

Based on the simulations, we expect that if correlation is
small, the PB-transformed ¢-test should have tighter con-
trol of false positives than alternative methods. At 5% false
discovery rate (FDR) level combined with a fold-change
(FC) criterion (FC < 0.5 or FC > 2), the PB-transformed
t-test selected 3,340 DEGs and the weighted LMER
selected 3,485 DEGs (for biological insights of the DEG
lists, see Additional file 1: Section S4.4).

To make the comparison between these two methods
more fair and meaningful, we focus on studying the bio-
logical annotations of the top 2,000 genes from each DEG
list. Specifically, we apply the gene set analysis tool DAVID
[30] to the 147 genes that uniquely belong to one list.
Both Gene Ontology (GO) biological processes [31] and
KEGG pathways [32] are used for functional annotations.
Terms identified based on the 147 unique genes in each
DEG list are recorded in Additional file 1: Table S6. We
further pin down two gene lists, which consist of genes
that participate in more than five annotation terms in
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the above table: there are 11 such genes (PIK3R2, AKT3,
MAPK13, PDGFRA, ADCY3, SHC2, CXCL12, CXCR4,
GAB2, GAS6, and MYL9) for the PB-transformed ¢-test,
and six (COX6B1, HSPA5, COX412, COX5A, UQCRIO,
and ERN1) for the weighted LMER. Expression level of
these genes are plotted in Fig. 4. These DEGs are bio-
logically important because they are involved in multiple
biological pathways/ontology terms.

Those 11 genes uniquely identified by the PB-
transformed ¢-test are known to be involved in cell sur-
vival, proliferation and migration. The CXCR4-CXCL12
chemokine signaling pathway is one of the deregulated
signaling pathway uniquely identified by PB-transformed
t-test in HER2+ breast cancer cells. This pathway is
known to play a crucial role in promoting breast can-
cer metastasis and has been reported to be associ-
ated with poor prognosis [33, 34]. Compared with
the state-of-the-art method (weighted LMER), the PB-
transformed ¢-test identifies more genes whose protein
products can be targeted by pharmaceutical inhibitors.
CXCR4 inhibitors have already demonstrated promis-
ing anti-tumor activities against breast [35, 36], pros-
trate [37] and lung [38] cancers. Additional down-
stream signaling molecules identified by our analysis
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to be significantly associated with HER2+ breast tumor
such as PI3K, p38, adaptor molecule GAB2 and SHC2
can also be potential therapeutic targets for selec-
tively eliminating cancer cells. Please refer to Additional
file 1: Section S4.5 for full list of functional annotation
terms.

Discussion

In this paper, we present a data transformation technique
that can be used in conjunction with both the Student’s
t-type test and rank-based test. In the simulation studies,
our proposed tests outperform the classical tests (e.g. two-
sample/regreesion ¢-test and Wilcoxon rank-sum test) by
a large margin. In a sense, this superiority is expected,
because the classical methods do not consider the corre-
lation nor heteroscedasticity of the data.

In our opinion, the most practical comparison in this
study is the one between the PB-transformed ¢-test and
the weighted LMER. The fact that the PB-transformed
t-test outperforms the weighted LMER, and this advan-
tage is more pronounced for data with higher correlation
(see e.g., Figs. 2 and 3), is the highlight of this study, which
may have profound implications for applied statistical
practice.

Weighted LMER
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s




Zhang et al. BMC Bioinformatics (2019) 20:185

We believe the following reasons may explain the
advantages of the PB-transformed tests. 1. As reported
in “Computational cost and degrees of freedom”
section, the default degrees of freedom approximation
in lmerTest varies dramatically, as oppose to very
stable degrees of freedom approximation in our method.
2. Our moment-based correlation estimator is better
than the LMER correlation estimator (see Additional
file 1: Section S2.2). One possible explanation is that
LMER depends on nonlinear optimizer, which may
not always converge to the global maximum likeli-
hood. 3. In a minor way but related to 2, lmer ()
fails to converge to even a local maximum in certain
rare cases.

Another major contribution of our method is that the
transformation-based approach is computationally much
more efficient than the EM algorithm used in LMER,
which is an important advantage in high-throughput data
analysis. Recall that in simulation studies, PB-transformed
t-test is approximately 200 times faster than the weighted
LMER approach. As an additional evidence, to test the
11,453 genes in the real data study, it takes 933 s using the
weighted LMER, and only 3 s using our method, which is
more than 300 times faster.

Nonetheless, we want to emphasize that, by no means,
our method is a replacement for LMER. The mixed-
effects model is a comprehensive statistical inference
framework that includes parameter estimation, model
fitting (and possibly model selection), hypothesis test-
ing, among other things; whereas our methods are only
designed for the hypothesis testing. We envision that in
a typical high-throughput data application, an investiga-
tor may quickly run PB-transformed ¢-test to identify
important features first, then apply 1lme4 to fit mixed
effects models for those selected features. In this way,
he/she enjoys both the computational efficiency of our
method and the comprehensive results provided by a full
LMER model.

In “Extension to multiple regressions” section, we
extend the PB-transformed tests for multiple regressions.
We must point out two weaknesses in this approach. 1.
The proposed extension is comparable to the regression
t-test for individual covariates, not the ANOVA F-test
for the significance of several covariates simultaneously.
In fact, the B-map can be defined in this case so we can
define a transformed parametric test easily; but there is
no clear counterpart for the P-map, which is needed to
overcome the identifiability issue for the semiparametric
generalization. 2. The performance of PB-transformations
depends on a good estimation of S, the shape of the covari-
ance matrix of the observations. Currently, our moment-
based estimator only works for problems with just one
random intercept, which is only appropriate for rela-
tively simple longitudinal experiments. It is a challenging
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problem to estimate the complex covariance structure
for general LMER models (e.g., one random intercept
plus several random slopes), and we think it can be a
nice and ambitious research project for us in the near
future.

Numerically, the PB-transformed ¢-test provides the
same test statistic and degrees of freedom as those from
the paired ¢-test for perfectly paired data and the regres-
sion ¢-test for i.i.d. data. In this sense, the PB-transformed
t-test is a legitimate generalization of these two classi-
cal tests. The rank-based test is slightly different from the
classical ones, since we used a ¢-distribution approxima-
tion instead of a normal approximation for the rank-based
statistic. The ¢-distribution approximation is preferred for
correlated data because the effective sample size may be
small even in a large dataset [21].

Recall that the PB-transformation is designed in a way
that the transformed data have the desired first and sec-
ond order moments. For non-normal distributions, the
transformed samples may not have the same higher order
moments. Note that, the P-map is currently defined in
part by Eq. (11), the minimum action principle. Without
this constraint, we will have some extra freedom in choos-
ing the P-map. In the future development, we will consider
using this extra freedom of orthogonal transformation to
minimize the discrepancy of higher order moments of the
transformed samples for the semiparametric distribution
family. This would require an optimization procedure on a
sub-manifold of the orthogonal group, which may be com-
putationally expensive. The advantage is that, by making
the higher order moments more homogeneous across the
transformed data, we may be able to further improve the
statistical performance of the PB-transformed Wilcoxon
test.

In this study, we presented an example in RNA-
seq data analysis. In recent bioinformatics research,
advanced methods such as normalization and batch-effect
correction were developed to deal with data hetero-
geneities in bio-assays. While most of these approaches
are focused on the first moment (i.e. correction for bias
in the mean values), our approach provides a differ-
ent perspective based on the second order moments
(i.e. the covariance structure). The dramatic computa-
tional efficiency boost of our method also opens the
door for investigators to use the PB-transformed tests
for ultra-high-dimensional data analysis, such as longi-
tudinal studies of diffusion tensor imaging data at the
voxel-level [39-41], in which about one million hypothe-
ses need to be tested simultaneously. Finally, we think
the PB-transformed Wilcoxon test can also be used in
meta-analysis to combine results from several studies
with high between-site variability and certain correlation
structure due to, e.g., site- and subject-specific random
effects.
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Additional file

Additional file 1: This file contains: a) proofs of the main theorems; b)
details of the moment-based correlation estimator; ) details of simulation
design; and d) additional information about the real data analysis. (PDF
3523 kb)
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