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Abstract

SNPs associated with disease susceptibility often reside in clusters of gene enhancers, or super 

enhancers. Constituents of these enhancer clusters cooperate to regulate target genes, and often 

extend beyond the linkage disequilibrium blocks containing GWAS risk SNPs. We identified 

“outside variants”, defined as SNPs in weak LD with GWAS risk SNPs that physically interact 

with risk SNPs as part of the target gene’s regulatory circuitry. These outside variants explain 

additional target gene expression variation beyond that of GWAS associated SNPs. Additionally, 

the clinical risk associated with the GWAS SNPs is considerably modified by the genotype of the 

outside variant. Collectively, these findings suggest a potential model whereby outside variants and 

GWAS SNPs that physically interact in 3D chromatin collude to influence target transcript levels 

as well as clinical risk. This model offers an additional hypothesis for the source of missing 

heritability of complex traits.

Introduction

Transcriptional regulatory elements are hotspots for genetic predisposition to disease. Single 

nucleotide polymorphisms (SNPs) associated with disease susceptibility by genome-wide 

association studies (GWAS) are heavily enriched in putative cell type-specific regulatory 
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elements, mostly enhancers, demarcated through ChIP-seq studies of signature histone 

marks and associated transcription factors1–6. Of the heritability estimates for common 

disease made by GWAS studies, variants in regulatory elements are estimated to account for 

79%7. The enrichment is particularly pronounced in regions of enhancer clusters, which 

have been described as super enhancers8,9, stretch enhancers10 and multiple enhancer variant 

(MEV) loci5. Enhancer clusters involve multiple, robust, cell type-specific enhancers 

arranged in cis and are often located near genes that function to establish and/or maintain 

cellular identity8–11. At enhancer clusters associated with disease-risk, it has been proposed 

that multiple SNPs distributed across the individual enhancer constituents cooperatively 

influence enhancer activity and effect expression of the target gene5,12–18.

Regulatory variants associated with disease susceptibility often impact target transcript 

levels, and expression quantitative trait loci (eQTL) studies have had great success in 

identifying functional variants. GWAS variants are enriched for eQTLs19–21 and this 

enrichment is particularly pronounced amongst eQTLs in tissues relevant to the pathogenesis 

of a given disorder22. However, to date eQTLs have not been identified for the majority of 

GWAS loci19–21,23,24. There are a variety of possible explanations: eQTLs may only be 

apparent in very specific cell types or conditions, or the effect sizes are too weak and large 

samples sizes are therefore required for their detection. An alternative explanation is that 

physical interactions among enhancer SNPs, dictated by higher-order chromatin folding at 

enhancer clusters, impact target transcript levels. Indeed, analysis of three-dimensional 

genomic architecture has demonstrated that multiple enhancers that are all part of a gene’s 

regulatory circuitry physically interact with one another and collectively engage a target 

promoter to facilitate transcription25,26. The SNPs within a gene’s regulatory circuit could 

cooperate in various ways to impact target gene expression, including additively27,28, 

synergistically29, conditionally29–33, epistatically or through currently unknown modalities 

that are locus and cell-context dependent. Regardless of the modality, SNPs within 

physically interacting enhancers could exert effects on target gene expression that may be 

missed through traditional eQTL analyses. Furthermore, given that a gene’s regulatory 

circuitry is independent of haplotype block structure, it is possible that SNPs in weak LD 

with GWAS risk SNPs, but within the same regulatory circuit, participate in the regulation of 

target gene expression and influence the overall clinical risk to disease.

Results

Regulatory circuitry at GWAS loci extends beyond LD blocks

Compared to randomly sampled SNPs, SNPs associated with risk to six autoimmune 

diseases, rheumatoid arthritis, systemic lupus, Crohn’s disease, multiple sclerosis, ulcerative 

colitis and celiac disease are highly enriched in active gene enhancer elements in B-

lymphoblasts, as well as B cells and T cells (which share a common regulatory landscape at 

risk loci)1,5. We identified high confidence interactions from B lymphoblast high resolution 

Hi-C data that associated putative regulatory elements (demarcated by H3K4me1) with 

promoters for 170 GWAS loci. For 78% of these loci, promoters associated with putative 

regulatory elements containing GWAS SNPs were also associated with regulatory elements 

that contained “outside variants”, i.e, SNPs in weak linkage disequilibrium with the GWAS 
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linked SNPs (Supplementary Fig. 1a). An example is shown in Figure 1a, where Hi-C 

interactions associate multiple sclerosis risk SNP rs9282641 with the CD86 promoter. The 

CD86 promoter is also physically associated with an additional putative regulatory element 

(dotted box) that contains variants that are in weak LD with the GWAS SNP (D’<0.5 and 

r2<0.1). Thus the regulatory circuitry of CD86 extends beyond the haplotype block from 

which the GWAS association arose.

Given the limitations in resolution of Hi-C, we also employed a computational method, 

PreSTIGE5, to identify potential gene targets of putative regulatory elements containing risk 

SNPs at 112 autoimmune disease-associated loci in B lymphoblasts. Consistent with our 

findings using Hi-C-defined interactions, for 79% of loci we evaluated, putative regulatory 

elements containing risk SNPs were predicted to regulate target genes in cooperation with 

regulatory elements containing outside variants. An example is shown in Figure 1b, where 

the multiple sclerosis risk SNP rs7191700 is predicted to target SOCS1. SOCS1 is also 

predicted to be controlled by additional regulatory elements containing outside variants 

(dotted boxes).

Finally, we compared haplotype structure at risk loci to super enhancers; clusters of active 

gene regulatory elements that are proposed to act cooperatively on target gene expression8,9. 

We detected outside variants at 49% of risk loci containing super enhancers. An example is 

shown in Figure 1c, where a super enhancer containing a lupus associated SNP rs13277113 

extends 17-kb beyond the associated block and contains outside variants. Thus, regardless of 

how regulatory circuitry was defined, either by using Hi-C interactions, computationally 

predicted enhancer-gene interactions, or super enhancers, DNA variants that are part of a 

common regulatory circuitry but are in weak LD of the risk locus were frequently observed 

(Supplementary Fig. 1b,c).

Physical interactions between SNPs impact gene expression

We next sought to determine if outside variants affect the levels of target gene expression. 

We utilized B lymphoblast transcriptome data along with corresponding SNP genotype data 

from 373 Europeans34. Given that there are diverse modalities by which multiple enhancers 

function, and these modalities are locus-dependent, we developed a two-tiered eQTL-based 

approach, whereby individuals were first stratified based on the genotype of GWAS linked 

variants, (risk versus non-risk), and then further subdivided based on the genotype of the 

outside variants (Fig. 2a). The two-tiered stratification approach is designed to be agnostic to 

the interaction modality of enhancers within a cluster, be it additive, epistatic, synergistic or 

a novel uncharacterized mechanism. The approach evaluates the impact of the outside 

variant on each GWAS genotype (e.g. non-risk/non-risk, non-risk/risk and risk/risk) 

separately and without regard to its effect in the context of the other GWAS genotypes. The 

approach is designed to capture variants that account for additional variation in gene 

expression beyond the effect of variants in tight LD (LOD >2 and D’ >0.6) with the GWAS 

allele. We started with the multiple sclerosis-associated SYK (spleen tyrosine kinase) locus 

on chromosome 9. SYK plays an important role in ITAM-mediated signaling transduction 

from B-cell receptors to downstream cellular functions35. We identified an outside variant 

(rs3904534) that lies in a putative regulatory element that is both computationally predicted 
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to regulate SYK and determined through Hi-C analyses to be physically associated with the 

SYK promoter (Fig. 2b). There was no significant difference in SYK expression based on 

the genotype of the risk locus alone (Fig. 2c, left). When individuals homozygous for the 

risk allele were further stratified by the genotype of the outside variant, a significant 

difference in SYK transcript levels was observed (Fig. 2c, right).

We expanded our two-tiered eQTL-based strategy to evaluate the impact of outside variants 

defined by our three methods of determining the chromatin regulatory circuitry for a total of 

186 GWAS loci (see methods, Supplementary Fig. 2). We then compared P-values 

calculated from quantifying the effects of outside variants on target gene levels to random 

permutations and found that the outside variant genotype frequently alters transcript levels 

(Fig. 2d). 24–34% of all evaluated GWAS loci involved at least one outside variant 

significantly associated with gene expression (Supplementary Fig. 2g Table S1, methods). 

Hereafter we refer to these as “functional outside variants”. These estimates were based on 

two different methods for multi-test correcting: false discovery rate (FDR) and generation of 

null p-value distributions from permutations for each locus (methods)36,37. Outside variants 

were identified regardless of the approach used to define regulatory circuitry and the rates 

were comparable between all three methods. 61% of the functional outside variants were not 

previously identified as independent eQTLs (Supplementary Fig. 3).

Functional outside variants share key features of enhancers

We hypothesized that outside variants altered the effect of GWAS alleles on target transcript 

levels by altering enhancer function within shared regulatory circuits. Using publicly 

available datasets from 27–68 B lymphoblast cell lines, we compared chromatin features 

associated with functional outside variants to those of disease-associated variants38–40. 

Example loci are shown in Figure 3a and while some inter-individual variability was evident, 

we detected enrichment for DHS, H3K4me1 and H3K27ac across individuals for outside 

variant rs7158350 and GWAS linked variant rs9275184. Similar enrichment was observed 

across all loci with functional outside variants (Fig. 3b). 85% of functional outside variants 

were enriched for H3K27ac, H3K4me1 and DNase hypersensitivity in more than two-thirds 

of all cell lines analyzed.

We also analyzed B lymphoblast ChIP-seq datasets from >75 unique transcription factors41. 

Both functional outside variants and GWAS linked variants were bound by transcription 

factors significantly more often than expected (Fig. 3c). 77% of functional outside variants 

were located within 1-kb of TF binding sites mapped through ChIP-seq studies (Fig. 3d). By 

comparison, 12% of randomly selected SNPs were located within 1-kb of TF binding sites. 

Factors most frequently bound at outside variants were those with known roles in mounting 

immune responses and hematopoiesis, including RUNX3, PU.1, and EBF142–44 (Fig. 3e). To 

directly evaluate enhancer activity at outside variants, we cloned eight functional outside 

variant loci, and two control regions into luciferase reporter constructs and evaluated 

enhancer function of these regions in B lymphoblasts (Supplementary Fig. 4, Table S2). 

Seven of eight functional outside variant enhancer loci significantly enhanced luciferase 

activity compared to the two controls. We evaluated five of these eight loci for differential 

enhancer activity based on the outside variant genotype. Four showed a significant 
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difference in luciferase activity (Fig. 3f,g). Altogether, the results suggest that outside 

variants functionally modify target transcript levels by altering enhancer activity in the B 

lymphoblast lineage.

Outside variants alter clinical risk to disease

We set out to test if functional outside variants modify clinical disease risk. We utilized data 

generated by the Wellcome Trust Case Control Consortium45–48 to evaluate the impact of 

functional outside variants on clinical risk to multiple sclerosis, Crohn’s disease, ulcerative 

colitis and rheumatoid arthritis. We compared the clinical risk for each GWAS SNP and 

functional outside variant independently, to the clinical risk associated with each genotype 

combination. An example is shown in Figure 4a. We stratified the multiple sclerosis and 

control populations based on the genotype of the GWAS SNP, rs13333054, and found 

individuals homozygous for the risk SNP to have an odds ratio of 1.18 (leftmost column). 

We also stratified individuals solely by the genotype of the outside variant, rs12445129 and 

found an odds ratio of 1.12 for the TT genotype (bottom row). When we determined the 

odds ratio based on the genotype of both variants, we found an increase in clinical risk to 

1.77 for individuals homozygous for the GWAS risk SNP and homozygous for the outside 

variant T-allele. Thus, the genotype of the outside variant alters the clinical risk associated 

with the locus.

Outside variant rs2760912 was found to significantly alter the impact of multiple sclerosis 

GWAS SNP rs806321 on expression of lymphocytic leukemia associated RNA-gene 

DLEU1. Inheriting the outside variant G-allele was associated with increased transcript 

levels (Fig. 4b, top). Likewise, individuals homozygous for the risk SNP and outside variant 

G-allele had a notable increase in risk to disease (Fig. 4b, bottom). Outside variant 

rs1800872 was found to significantly alter the impact of ulcerative colitis GWAS SNP 

rs3024505 on IL19 target transcript levels. In this instance, decrease in expression of IL19 
was correlated with an increase in clinical risk (Fig. 4c). To evaluate the significance of the 

impact of the outside variant on clinical risk, we performed permutation analysis whereby 

individuals of each GWAS genotype (risk/risk, risk/non-risk and non-risk/non-risk) were 

randomly assigned an outside variant genotype while maintaining outside variant allele 

frequency. Thus the contribution of the GWAS SNP to risk was preserved in order to 

evaluate the ability of the outside variant to alter clinical risk (methods, grey boxplots Fig. 

4b–d). Utilizing this metric, outside variants rs12445129, rs2760912, and rs1800872 (Fig. 

4a–c) were found to significantly alter clinical risk (P<0.01). We expanded these analyses to 

include all functional outside variants detected across all four traits. The impact of functional 

outside variants on clinical risk for each significant GWAS locus (P<0.01) is shown in 

Figure 4d. In total, 73.5% of the GWAS loci evaluated were associated with a functional 

outside variant that significantly altered the clinical risk associated with the locus (P<0.05, 

55% at P<0.01) (Fig. 4e).

While the majority of functional outside variants were observed to alter clinical risk, outside 

variants were not previously associated with these disorders by conventional GWAS. To 

evaluate why, we determined their impact on risk independent of the GWAS genotype. For 

less than one-quarter of the GWAS loci associated with one or more functional outside 
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variants, at least one outside variant reached genome-wide significant association with risk 

when evaluated independently. The majority of these variants were the result of imputation 

analysis (methods) and were therefore not evaluated by the previous GWA studies. Another 

possibility is that outside variants are just below genome-wide significance and would be 

associated with clinical risk in larger cohorts. 21.4% of GWAS loci were associated with a 

functional outside variant that reached intermediate association with risk independently (1E–

3 ≥ P > 1E–8). Thus for many of these GWAS loci (57%), the impact of the functional 

outside variant on risk appears to be contingent on the genotype of the GWAS locus.

Outside variants may explain additional heritability

We sought to evaluate the overall impact of functional outside variants on disease 

heritability. The co-localization of disease susceptibility loci amongst autoimmune 

diseases49,50 suggests these disorders may involve disruption of common pathways. Thus, 

we utilized functional outside variant loci associated with risk to all six autoimmune 

disorders to estimate genetic relationship matrices and narrow-sense heritability (h2g) for 

each trait (methods). We compared the heritability explained by the GWAS lead SNPs of all 

functional outside variant loci to the heritability explained when GWAS lead SNPs and 

functional outside variants are jointly modeled. Functional outside variants increased the 

total heritability explained by 2.6-fold for rheumatoid arthritis (P<0.03), 5-fold for ulcerative 

colitis (P<1E–4) and 3.8-fold for multiple sclerosis (P<1E–30) (Fig. 4f). Functional outside 

variants also increase h2g (the fraction of phenotypic variance explained by the SNPs) 

significantly more than is expected based on the genomic coverage of functional outside 

variants. Gusev et al. previously demonstrated that inclusion of local variants increases the 

total heritability attributed to GWAS loci51. Functional outside variants explain significantly 

more heritability than local controls for both ulcerative colitis and multiple sclerosis 

(Supplementary Fig. 5, UC P<0.03, MS P<1E–30). Thus functional outside variants are a 

distinct set of local variants that can account for a substantial increase in total heritability 

explained.

Evaluation of “third variants” at outside variant loci

Our results suggest that multiple SNPs within the same regulatory circuit may cooperate to 

influence expression and clinical risk. Alternatively, a single variant that is partially linked to 

both the GWAS and outside variant may be responsible for the observed effects. For 

example, SNPs recently identified as interacting and in statistical epistasis with one another 

were subsequently shown to also be in low LD with a single, “third SNP”. The presence of 

the third SNP calls into question whether the two interacting SNPs actually drive the effect 

on expression, or if the effect is driven solely by the single “third” SNP that is in LD with 

each of the interacting SNPs. We systematically looked for evidence of third SNPs at all loci 

containing functional outside variants. We first curated a list of “candidate third SNPs” by 

selecting all known common SNPs within 500-kb of gene targets with functional outside 

variants. A total of 158,083 SNPs were identified, averaging 4,863 SNPs per gene 

(Supplementary Table 3). At every locus, we identified a third variant that at least nominally 

correlated with expression. However, the third SNP was often insufficient to fully account 

for the effect of the outside variant. For example, after segregating individuals with the same 

third variant genotype, the outside variant often accounted for additional variation in gene 
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expression (Supplementary Fig 6–7). We further tested whether any of the third variants 

could account for the effects on both gene expression and clinical risk. We found that the 

third SNP accounted for effects on both gene expression and clinical risk for ~13% (7/53) of 

genes evaluated. These loci were associated with risk to disease at a genome-wide P value 

threshold of <10−8. Because imputation can sometimes result in underestimation of effect 

sizes52,53, we also performed the analysis at less stringent thresholds. At an uncorrected P 

value of < 0.001, for 57% of outside variant gene targets, we did not identify a common SNP 

that could account for the effects of outside variants on both expression and risk. We also 

determined that the majority of third SNPs were not contained within open chromatin, nor 

did they overlap with either of the two canonical enhancer histone marks, H3K4me1 and 

H3K27ac (Supplementary Fig. 8). Based on this analysis, outside variants appear to account 

for both clinical risk and gene expression more often than any single third variant alone. We 

note however, that our analysis does not consider potential third variants that could be 

located >500-kb from the gene target, are poorly represented by the GWAS panel, or may 

have low minor allele frequencies.

Discussion

Some GWAS loci harbor a single causal variant that lies in an enhancer and influences 

spatiotemporal expression of the target gene54–57. However other GWAS loci, particularly 

those with enhancer clusters or “super enhancers”, contain multiple functional enhancer 

variants in LD that collude to impact target gene expression5,12–16,18,58,59. Here we 

demonstrate that the individual constituents of enhancer clusters physically interact and are 

rarely in LD, prompting the hypothesis that LD is perhaps not the best way to identify 

variants that explain disease heritability. We tested this hypothesis by integrating 

autoimmune-associated GWAS SNPs with epigenomic maps of regulatory elements, Hi-C 

chromatin interaction maps, and transcriptomic datasets. We identified numerous functional 

“outside variants” in weak LD with GWAS loci but lie within constituent enhancers of 

shared target genes and influence both target gene expression and the clinical risk to disease. 

The outside variants may as much as triple the total heritability explained, although one 

limitation is that these estimates are based on the widely used additive model of heritability 

and therefore may not account for the contribution of epistatic effects. Our findings 

emphasize the importance of chromatin state and a gene’s regulatory circuitry as a key 

determinant of heritable disease risk. Based on these findings, it is tempting to speculate that 

outside variants explain missing heritability for other GWAS traits besides the autoimmune 

disorders studied here, and that new disease-risk associations can be revealed by studying 

SNPs that interact in 3D chromatin to regulate gene expression.

Online Methods

Definition of chromatin regulatory circuits

We utilized high-depth GM12878 Hi-C datasets (1.2 billion paired-end reads60) to define 

Hi-C chromatin interactions. Both sequences from paired-end reads were aligned to hg18 

independently using bowtie261. Hi-C analysis package available through Homer62 was 

utilized to define significant interactions between genomic loci at 10-kb resolution (P < 
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2.5E–5). H3K4me1-enriched loci were called using BWA63 and MACS64. We identified Hi-

C significant interactions for which there was a transcription start site in one locus that was 

paired to an H3K4me1 ChIP peak in the other. These pairs were utilized to define the list of 

H3K4me1 putative enhancer sites that were associated with the same gene target, i.e. define 

the chromatin regulatory circuitry of each locus. Computational prediction of enhancer-gene 

interactions was also utilized to define chromatin regulatory circuitry. The PreSTIGE 

(Predicting Specific Tissue Interactions of Genes and Enhancers) algorithm was used to 

predict enhancer-gene interactions from GM12878 H3K4me1 ChIP-seq and RNA-seq data 

as previously described5. Briefly, PreSTIGE utilizes a comparative analysis across multiple 

tissues types to identify enhancers and gene with concordant cell type-specificity within a 

defined linear domain. Super enhancers previously defined for GM128788,9 were also 

utilized to define chromatin regulatory circuits. All genes within 100-kb of super enhancers 

were evaluated in transcriptional analysis.

Definition of outside variants for transcriptional analysis

GWAS variants associated with multiple sclerosis, celiac disease, Crohn’s disease, ulcerative 

colitis, systemic lupus and rheumatoid arthritis in European populations were downloaded 

from NHGRI’s catalog of GWAS variants65. SNPs in tight LD (LOD > 2 and D’ > 0.6) with 

GWAS SNPs were defined as linked variants. All GWAS SNPs in tight LD with variants 

found in protein-coding regions were excluded from all subsequent analyses. Noncoding 

linked variants were compared to chromatin regulatory circuits (defined above) to identify 

potential gene targets. All common variants within putative enhancers associated with these 

gene targets were identified. Variants in tight LD with GWAS SNPs were removed (LOD > 

2 and D’ > 0.6) to create a list of candidate outside variants. This list was further pruned by 

removing all candidate variants that were in tight LD (LOD > 2 and D’ > 0.6) with a third 

variant that was in tight LD (LOD > 2 and D’ > 0.6) with a GWAS SNP. Thus there was no 

overlap between the variants in tight LD with the GWAS risk SNPs and those in tight LD 

with the putative outside variants (diagram in Supplementary Figure 2a). The resultant r2, D’ 

and LOD scores for GWAS and outside variant pairs are described in Supplementary Fig. 

2c–f. Finally, only alleles (GWAS SNP + linked variants + outside variant genotypes) 

present in >1% of the gene expression panel (373 individuals) were utilized (Supplementary 

Fig. 2) in order to ensure sufficient power.

Impact of outside variants on target transcript levels

We obtained publicly available genotypes and RNA-seq from B lymphoblasts of 373 

European individuals34. The reported PEER normalized expression was utilized to control 

for technical variance34. We first stratified this panel by the genotype of the GWAS 

haplotype (lead SNPs + all linked variants) and then divided each GWAS genotype subgroup 

by the genotype of the outside variant. Transcript levels of gene targets defined by regulatory 

circuitry analysis were compared (Wilcox-test) to determine the impact of the outside 

variant genotype on expression for each GWAS genotype (risk/risk, risk/non-risk, non-risk/

non-risk). The P-values generated were pruned so that outside variants that stratified 

individuals into the same groups were only represented once in the construction of QQ-plots.
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Definition of functional outside variants

Permutation analysis was utilized in order to define outside variants that significantly impact 

the effect of GWAS alleles on target transcript levels. Permutations randomly associated an 

individual’s genotypes to a different individual’s RNA-seq profile. Thus, the linkage 

disequilibrium and allele frequencies were maintained, but association with gene expression 

was randomized (5,000 permutations). Multiple test correction was performed with two 

methodologies. The number of significant tests for each permutation was compared to the 

number of significant tests in the non-randomized data in order to define the false discovery 

rate (FDR) for each p-value threshold. Alternatively, the lowest p-value generated for each 

GWAS haplotype (risk/risk, non-risk/risk and non-risk/non-risk) was identified for all 

GWAS loci. The lowest p-values from each of the 5,000 permutations were utilized to 

generate an expected distribution for each locus and haplotype. P-values below the 1st 

percentile of the expected distribution for the locus were defined as significant (referred to as 

permutation P<0.01). ‘Functional outside variants’ include variants that were determined as 

significant by the FDR methodology (q < 0.10) or permutation methodology (P<0.01).

Chromatin state of outside and linked variants

H3K4me1 and H3K27ac B lymphoblast ChIP-seq and B lymphoblast DNase Hypersensitive 

data were aligned to hg18 using BWA63. RPKMs (reads per kilobase per million mapped 

read) were calculated for the 1-kb region surrounding functional outside variants and GWAS 

linked variants and results were quantile-normalized across individuals for each mark.

Luciferase reporter assay

GM11993 and GM12005 B lymphoblast cell lines, mycoplasma-negative, were obtained 

from Coriell Institute Biorepository. Eight functional outside variant loci (~1–2 kb, 

Supplementary Table 2) were cloned from B lymphoblast cell lines that were heterozygous 

for the outside variant allele of interest into a luciferase reporter construct (pGL4 from 

Promega) for which the luciferase gene was driven by the ubiquitous mSox9 promoter. 

Sanger sequencing was utilized to identify the genotype of the outside variant allele in each 

clone (Supplementary Fig. 4). Two control loci, ~1–2 kb regions with no expected enhancer 

activity in B-lymphoblasts, were also cloned into the same construct to generate size-

matched constructs to control for basal promoter activity. Reporter constructs were 

transfected into B lymphoblast cell line GM12005 using the transfection reagent DMRIE-C 

(Life Technologies). As an internal control, a renilla luciferase plasmid (pRL-SV40 from 

Promega) was co-transfected. After five hours, transfection reagents were replaced with 

fresh media. 24-hours post transfection, cells were harvested and luciferase reporter levels 

were compared to renilla reporter activity using Dual-Luciferase Reporter Assay System 

(Promega).

Odds ratio analysis

Primary GWAS data was obtained from Wellcome trust case control consortium for multiple 

sclerosis (9,772 cases, 2,679 controls), Crohn’s disease (1,753 cases, 1,461 controls), 

ulcerative colitis (2,366 cases, 2,679 controls) and rheumatoid arthritis (1,865 cases, 1,461 

controls). Quality control and filtering of SNPs and individuals was performed as previously 
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described45–48. Imputation analysis was performed for all functional outside variant loci 

associated with these disorders using IMPUTE266 and an integrated reference panel from 

1000 Genomes (Phase 1)67. Imputation output was filtered to include only genotypes with a 

probability greater than 0.90, while the remaining two genotypes had probabilities less than 

0.3. Odds ratios were calculated for individuals who were stratified by the lead SNP 

genotype, outside variant genotype or by the genotype of both variants. To determine which 

outside variants significantly altered clinical risk, permutation analysis was utilized. 

Permutations were performed such that individuals (cases and controls) of each GWAS 

genotype (risk/risk, risk/non-risk and non-risk/non-risk) were randomly assigned an outside 

variant genotype while maintaining the allele frequency of the outside variant. The 

distributions of the resulting odds ratios were then utilized to define a p-value for each odds 

ratio.

Narrow-sense heritability

GWAS lead SNPs associated with functional outside variants for all six autoimmune traits 

were utilized to determine genetic relationship matrices (GRM) utilizing GCTA. GCTA 

restricted maximum likelihood analysis68,69 was then utilized to determine the proportion of 

phenotypic variance explained by each SNP subset. h2g estimates are reported on a liability-

scale that estimates European disease prevalence of 0.25% for Crohn’s Disease, 0.5% for 

rheumatoid arthritis, 0.28% for ulcerative colitis and 0.13% for multiple sclerosis. We 

performed two sample z-tests to compare h2g estimates from jointly modeling GWAS lead 

SNPs only to h2g estimates from jointly modeling GWAS lead SNPs and functional outside 

variants. We also calculated the null expected h2g based on the fraction of the genome 

represented by the inclusion of outside variants in the heritability estimates. As previously 

described51, h2
null = h2

lead SNPs + x*(total h2g − h2
lead SNPs), where x is the fraction of the 

genome covered by the outside variants. Z-tests were also performed to compare h2g 

estimates from jointly modeling GWAS lead SNPs and functional outside variants to the null 

expected heritability estimates.

To investigate whether the increase in heritability was specific to outside variants, we 

compared outside variants to “local controls.” Local control variants were defined for each 

GWAS locus by three requirements. Control variants (1) were within 200-kb of GWAS lead 

SNP (2) did not lie within the regulatory circuitry defined using any of the three methods 

(see above) and (3) had r2 < 0.3 with all variants in tight LD (LOD>2, D’>0.6) with GWAS 

SNPs or outside variants. Given the proximity of these controls, many are in tight LD with 

one another. To compare these controls to outside variants we employed LD pruning. From 

the list of potential control SNPs, we removed the SNP with the most LD partners (r2>0.3) 

one at a time, until no SNP pairs with r2 > 0.3 remained. We pruned the outside variant list 

by the same method. We selected 1,000 random subsets of controls, such that the number of 

controls per locus was proportionate to the number of functional outside variants for that 

locus. We compared the heritability distribution generated from 1,000 randoms and found 

the both UC and MS outside variants explain significantly more heritability than the local 

controls (UC: P=0.004 and MS: P<0.001).
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Analysis of “third variant” hypothesis

We identified all known common SNPs within 500-kb of gene targets with functional 

outside variants. Individuals were stratified based on the genotype of “third” SNPs and 

expression levels were compared by Mann Whitney Wilcoxon test. All genotypes present in 

>1% of the 373-individual panel were assessed. A total of 158,083 SNPs were evaluated, 

averaging 4,863 SNPs per gene (Supplementary Table 3). In Supplementary Figures 6 and 7, 

we present three different p-value thresholds for evaluating the impact of the third variant on 

expression. These threshold include (1) multi-test correction (MTC) for the total number of 

Mann Whitney Wilcoxon tests performed for the analysis (P-value <7.5E–8) (2) multi-test 

correction for the number of tests performed for the given gene (P-value threshold varies per 

gene, corrected P<0.05) (3) multi-test correction for 10 tests (P-value < 5E–3) utilized to 

demonstrate loci with third variants that have modest effects.

We next asked whether the third variant is sufficient to explain the observed effect of the 

outside variants and GWAS allele. In order to evaluate this, we applied our two-tiered 

approach and stratified first by the genotype of each third variant. We then asked, given the 

effect of the third variant, can the outside variant or GWAS allele explain additional 

variation in gene expression? (diagram Supplementary Fig. 6). If the third SNP is sufficient 

to explain the observed effect, further stratification of individuals with the same third SNP 

genotype would not distinguish cohorts with significantly different transcript levels. We 

applied this approach to all third SNPs that achieved each of the three thresholds of 

significance. The number of genes for which the outside variant or GWAS allele could 

explain more variance for every significant third SNP were counted (i.e. if the outside 

variant or GWAS allele could not explain additional variance for all third SNPs, then that 

locus was considered to be potentially explained by the third SNP and this SNP carried 

through to the evaluation on clinical risk).

We next assessed whether the remaining third SNPs were associated with clinical risk. To 

test this, we took all third SNPs that correlated with expression (at the three significance 

thresholds) where the outside variant or GWAS allele could not account for additional 

variation and quantified their effect on clinical risk. For this analysis we evaluated loci 

associated with risk to four traits, multiple sclerosis, ulcerative colitis, rheumatoid arthritis 

and Crohn’s disease. Approximately, two-thirds of the potential third SNPs were imputed 

(methods) in the respective study. For the two most stringent p-value thresholds, at least one 

third SNP was represented on the appropriate GWAS panel for each gene. For one outside 

variant locus associated with rheumatoid arthritis (gene target FLVCR2), three third SNPs 

that had nominal association with an effect on expression (P<5E–3, uncorrected) were 

detected. None of these third SNPs were successfully imputed in the RA GWAS panel. This 

gene was excluded from the analysis (Supplementary Figure 6 and 7, bottom row).

We also compared third variants to DNase Hypersensitivity, H3K4me1 and H3K27ac 

profiles for B-lymphoblasts (GM12878). We evaluated all third variants that have the 

potential to explain the effect of outside variants on expression (see Supplementary Fig 6 

and 7, third arrow) and quantified the proportion that overlapped with regions significantly 

enriched for each marker (called peaks) of active chromatin (Supplementary Fig. 8).

Corradin et al. Page 11

Nat Genet. Author manuscript; available in PMC 2017 March 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Regulatory circuitry of GWAS loci frequently extends beyond the boundaries of 
haplotype blocks
(a) Example of multiple sclerosis risk locus where Hi-C identifies physical interactions of 

the CD86 promoter with linked variants (black box), those in LD with the GWAS SNP 

rs9282641, and outside variants (dashed box), and those inherited independently from the 

GWAS SNP (left). Proportion of autoimmune-GWAS loci containing outside variants 

(D’<0.5 and r2<0.1 with GWAS SNP) for Hi-C identified enhancer-gene interactions (right, 

n= 412 total GWAS loci). (b) Example of a multiple sclerosis risk locus where the gene 

target SOCS1 is predicted to be regulated by enhancers (highlighted in grey) that contain 
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variants linked to GWAS SNP rs7191700 and outside variants (left). Proportion of GWAS 

loci containing outside variants for PreSTIGE defined enhancer-gene interactions (right, 

n=156 total GWAS loci). (c) Example of a super enhancer lupus risk locus that contains both 

variants linked to GWAS SNP rs13277113 and outside variants (left). Proportion of GWAS 

loci containing outside variants for super enhancer loci (right, n= 159 total GWAS loci).
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Figure 2. Physical interactions between outside variants and GWAS alleles impact target gene 
expression
(a) Two-tiered eQTL-based strategy to evaluate impact of outside variants on target 

transcript levels. Significant difference in RMI2 transcript levels is observed amongst 

individuals based on the genotype of the GWAS SNP rs4783055 (blue). The genotype of 

outside variant, rs1019551 explains additional variation in transcript levels (green) (b) The 

SNP rs290986 is associated with multiple sclerosis and is located in a putative enhancer 

element regulating SYK. rs3904534 is an “outside variant” that lies in an enhancer that 

regulates SYK. This interaction is both predicted by PreSTIGE and identified by Hi-C. (c) 
Individuals were stratified by the genotype of the GWAS locus, and the levels of SYK in B 
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lymphoblasts were plotted (mean ± SEM). Individuals homozygous for the risk allele (blue 

box) were further stratified by the genotype of the outside variant. Outside variant, 

rs3904534, significantly alters the effect of the GWAS allele on SYK levels (Wilcox-test, 

**P<1.2E–6). (d) QQ plot showing distribution of P values for all tested interactions 

between outside variants and GWAS-linked loci on target transcript levels for Hi-C 

interactions (left), PreSTIGE predicted interactions (center), and super enhancers (right).
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Figure 3. Functional outside variants share signature features of enhancer elements
(a) B lymphoblast DNase-seq and ChIP-seq signal (RPKMs, reads per killobase per million 

mapped reads) surrounding functional outside variant rs7158350 (top) and GWAS linked 

variant rs9275184 (bottom) across a panel of individuals. Plotted are median and 

interquartile range of RPKMs for DHS (n=68), H3K4me1 (n=27) and H3K27ac (n=28). (b) 
RPKMs are shown for each functional outside variant locus (rows) for B lymphoblast cell 

lines (columns) profiled for DNase HS (left), H3K4me1 (center) and H3K27ac (right). 

Columns are sorted independently for each outside variant. Grey denotes below threshold of 

enrichment. (c) Proportion of outside variants (green) linked variants (blue), and randomly 
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selected variants (grey) that lie in transcription factor binding sites (TFBS) identified 

through B lymphoblast TF ChIP-seq (Fisher’s exact test, *P<1E–4). (d) Distance of outside 

variants (green) linked variants (blue) and random control variants (grey) relative to the 

center of the nearest ChIP-seq identified TFBS. (e) Transcription factors that are most 

frequently bound at outside variant loci (green) and linked variant loci (blue). (f) Luciferase 

reporter activity for outside variant loci (green) and non-B-cell control enhancers and empty 

vector control enhancers (grey) (one-way ANOVA, *P<1E–4, mean ± SEM shown for 6 

replicates) (g) Luciferase reporter activity (relative to co-transfection renilla control) for both 

alleles (red and green) at outside variant loci (t-test *P<0.01 **P<0.003, mean ± SEM).
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Figure 4. Outside variants alter clinical risk
(a) Example of odds ratio calculations for multiple sclerosis risk locus rs13333054. Odds 

ratios calculated considering only the lead GWAS SNP (leftmost column), only the outside 

variant (bottom row), and utilizing the genotype of both variants (square). (b) (Top) Impact 

of outside variant rs2760912 on DLEU1 transcript levels (wilcox-test, **P<0.002, ***<1E–

5). (Bottom) Odds ratio for all individuals homozygous for the multiple sclerosis GWAS 

SNP rs806321 (blue) and odds ratios determined when homozygous individuals are 

stratified based on the outside variant genotype (green) compared to the expected 

distribution of odds ratios (median and quartiles (boxplot bars), 10–90th percentile 
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(whiskers), *P<0.007). (c) Same as in (b) for ulcerative colitis GWAS locus rs3024505. (d) 
Odds ratios for all individuals with the same GWAS genotype compared to the odds ratios 

when individuals are stratified by the genotype of the outside SNP. (Right) Expected 

distribution of odds ratios (median and quartiles (boxplot bars), 10–90th percentile 

(whiskers)) compared to the most significant odds ratio from each row (diamonds, P<0.01). 

(e) Proportion of GWAS loci (n=49) for which an outside variant significantly alters clinical 

risk. MS = multiple sclerosis, UC = ulcerative colitis, CD = Crohn’s disease and RA = 

rheumatoid arthritis. (f) Narrow sense heritability (h2g ± standard error) explained by GWAS 

lead SNPs associated with functional outside variants (blue), the null expectation based on 

genomic coverage of outside variants (black) and h2g explained when lead SNPs are jointly 

modeled with functional outside variants (green) (two-sample z-test, *P<0.003, ** P<1E–

30).
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