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Abstract: Alpha-lipoic acid (α-LA) is a disulfide compound and one of the most effective antioxidants.
Many studies have indicated positive effects of α-LA in the prevention of pathologic conditions
mediated by oxidative stress, such as cardiovascular diseases. However, the therapeutic potential
of α-LA for the heart has not been explored with regards to the ventricles and atria. The aim of our
study was to evaluate the effects of α-LA on oxidative stress parameters and inflammation in the
ventricles and atria of the heart in rats under LPS-induced oxidative stress. Wistar rats were divided
into 4 groups: I—control (received 2 doses of 0.2 mL of 0.9% NaCl i.v., 0.5 h apart); II—α-LA (received
0.2 mL of 0.9% NaCl and 0.5 h later received α-LA 60 mg/kg b.w. i.v.); III—lipopolysaccharide (LPS)
(received 0.2 mL of 0.9% NaCl and 0.5 h later received LPS 30 mg/kg b.w. i.v.); and IV—LPS + LA
(received LPS 30 mg/kg b.w. i.v. and 0.5 h later received α-LA 60 mg/kg b.w. i.v.). Five hours later,
the rats were euthanized. The hearts were surgically removed and weighed to estimate heart edema.
The ventricular and atrium tissue was isolated to measure levels of TNF-α, IL-6, superoxide dismutase
(SOD), thiobarbituric acid reactive substances (TBARS), hydrogen peroxide (H2O2), total sulfhydryl
groups (-SH), total glutathione (tGSH), reduced glutathione (GSH), glutathione disulfide (GSSG),
and the GSH/GSSG ratio. LPS significantly increased TNF-α, IL-6, TBARS, and H2O2 levels and
decreased SOD, -SH groups, tGSH, the GSH/GSSG ratio, and GSH levels in rat ventricles and atria
while α-LA administered after the injection of LPS significantly decreased TNF-α, IL-6, TBARS, and
H2O2 levels. α-LA also increased SOD and -SH group levels and ameliorated the glutathione redox
status when compared to the LPS group. Our data suggest that α-LA administration 30 min after
LPS infusion may effectively prevent inflammation and oxidative stress in the ventricles and atria.

Keywords: alpha-lipoic acid; oxidative stress; ventricles; atria; cardiac damage

1. Introduction

Oxidative stress is caused by overexpression of reactive oxygen species (ROS), includ-
ing hydroxyl radicals, superoxide anion, and hydrogen peroxide (H2O2), and has been
documented to play a crucial role in the pathogenesis of cardiovascular diseases [1–4].

The heart has one of the highest oxygen consumption rates in the body and is highly
susceptible to ROS [5]. Atria and ventricles are particularly susceptible to oxidative
stress [6].

In many experimental models, oxidative stress and inflammation are induced by
lipopolysaccharide (LPS) (a wall component of Gram-negative bacteria) [7].

Multiple mechanisms are implicated in LPS-induced cardiac damage. These involve
different cell types and anatomical structures in the heart, including cardiomyocytes,
and vasculature. Excessive levels of ROS can damage cardiac tissue through oxidation
of lipids, proteins, and DNA, compromising mitochondrial structure and performance,
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enzyme function, and intracellular signaling [8]. Consequently, this contributes to cardiac
remodeling, apoptosis, and eventually necrosis [9].

Studies suggest that oxidative stress can increase heart susceptibility to arrhythmias,
and their prevention or attenuation can abolish proarrhythmic factors [10]. A variety of
experimental studies have indicated that oxidative stress is implicated in the pathogenesis
of heart failure (HF), atrial fibrillation (AF), and ischemic heart disease (IHD) [11–13]. AF
development and perpetuation depend on the electrophysiological and structural substrates
of atria [14].

Oxidative stress is regarded as an initiator of inflammation and a consequence of
inflammatory responses. Inflammation causes myocardial dysfunction, which leads to
endothelial dysfunction. Inflammatory markers, such as interleukin 6 (IL-6) and tumor
necrosis factor-α (TNF-α), are released from cells of failing myocardium and from endothe-
lial cells [15,16].

Experimental evidence suggests that antioxidant treatment may induce beneficial
effects on cardiovascular damage caused by inflammation and oxidative stress [17–19].

One of the most important antioxidants is alpha-lipoic acid (α-LA). It is a disulfide
compound that can quench free radicals and indirectly recirculate cellular antioxidants. α-
LA is used as a cofactor of the mitochondrial respiratory enzymes pyruvate dehydrogenase
and α-ketoglutarate dehydrogenase [20]. Many studies have reported the effectiveness
of α-LA in the prevention of oxidative stress-mediated pathologic conditions [21,22]. In
addition, α-LA exhibits anti-inflammatory effects by downregulating the expression of
redox-sensitive proinflammatory proteins, including TNF-α, Il-6, and inducible nitric
oxide synthase [23,24]. α-LA exhibits significant antioxidant activity by protecting against
oxidative damage and inflammation in several diseases, including cardiovascular disorders.

The antioxidant properties of α-LA were demonstrated in rats submitted to sepsis.
α-LA was able to reduce oxidative stress in the heart and other organs, including the liver
and kidney, after sepsis [25]. α-LA attenuated the oxidative stress response in experimental
models of heart failure and muscle injury [26]. It prevented the development of cardiac
hypertrophy and both attenuated and delayed the onset of diastolic dysfunction.

The therapeutic effect of α-LA was associated with decreased TBARS levels and
nucleic acid oxidation, and α-LA prevented the expression of adhesion molecules in the
cardiac vascular endothelium [27].

Studies have demonstrated an association between the supplementation of α-LA and
a decreased cardiovascular risk in humans and rats [28–30].

Because of its antioxidant abilities, α-LA could be considered a therapeutic factor for
the treatment of cardiovascular diseases, induced by oxidative stress.

Previously, we demonstrated that the antioxidant α-LA treatment reduced oxidative
stress and prevented inflammation in the heart [31]. Until now, the antioxidant effect of
α-lipoic acid within various areas of the heart has not been demonstrated.

However, we wanted to identify differences between the atria and the ventricles
regarding parameters of inflammation and oxidative stress, and whether α-LA acts in a
similar way in these two areas of the heart. This provides an insight into the structures of
the heart and prompts an investigation, in more detail, into the mechanisms of action of
α-LA in different areas of the heart.

Therefore, the current study aimed to investigate changes in the ventricles and atria
caused by LPS-induced oxidative stress and also investigate the potential benefits of α-LA
for the ventricles and atria.

2. Materials and Methods
2.1. Chemicals and Reagents

α-Lipoic acid and lipopolysaccharide (Escherichia coli LPS 026:B6; lyophilized powder
chromatographically purified by gel filtration, protein content < 1%) were purchased from
Sigma Aldrich Chemical Co. (St. Louis, MO, USA). α-Lipoic acid was solubilized in 3 M
NaOH-supplemented physiologic solution and buffered to 7.35–7.45 pH by adding 0.5%
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HCl. Commercial rat kits were used to evaluate TNF-α; IL-6; SOD; TBARS; total, reduced,
and oxidized glutathione; and GSH/GSSG ratio assays.

All other reagents were provided by Sigma Aldrich Chemical Co. (St. Louis, MO,
USA) or POCH (Gliwice, Poland).

2.2. Animals and Treatments

This study was approved by the Ethics Committee of the Medical University of Lodz,
Poland, permission number 7/LB699/2014, and was conducted according to the guidelines
of the Declaration of Helsinki.

This experiment was performed on male Wistar rats weighing 260–280 g. The animals
were acquired from the Medical University of Lodz animal quarters and were housed
3–4 per cage in standard laboratory conditions: 12 h light/dark cycles at a temperature of
22± 2 ◦C and 55± 5% air humidity. The rats were given free access to a standard laboratory
diet and water ad libitum. After 1 week of acclimatization, 32 rats were randomly divided
into 4 groups (n = 8), as follows:

Group I—received 2 doses of 0.2 mL of 0.9% NaCl, 0.5 h apart, and served as a control.
Group II—received 0.2 mL of 0.9% NaCl and 0.5 h later received α-LA (60 mg/kg b.w.).
Group III—received 0.2 mL of 0.9% NaCl and 0.5 h later received LPS (30 mg/kg b.w.).
Group IV—received LPS (30 mg/kg) and 0.5 h later received α-LA (60 mg/kg b.w.).
Intravenous administration of LPS represents an in vivo model of systemic inflamma-

tion in humans. All compounds were injected into the tail vein and after this administration,
each group of animals was observed for a period of 5 h. The animals were sacrificed under
ketamine/xylazine anesthesia.

The heart was removed, rinsed with cold isotonic saline, and the atrium and ventricle
were excised. Then, ventricular and atrium tissue was stored at −80 ◦C for preparation of
the homogenates used for biochemical assessment, including oxidative stress markers and
inflammatory cytokines.

2.3. Homogenization of Tissues

First, 50 mg portions of cardiac tissue from the left ventricle and/or left atrium were
cut into small pieces and homogenized in 2 mL of ice-cold PBS with protease inhibitors (in
a glass homogenizer). The resulting suspension was subjected to two freeze-thaw cycles
to further break cell membranes. The homogenates were centrifuged for 5 min at 5000× g
at 4 ◦C. After centrifugation, the supernatant was separated and applied to determine the
oxidative stress markers and inflammation-associated cytokines.

2.4. Inflammatory Markers
2.4.1. Determination of TNF-α and IL-6

The commercial rat ELISA kit (R&D Systems, Minneapolis, MN, USA) was used to
evaluate TNF-α whereas for IL-6, the Cloud-Clone Corp. (Houston, TX, USA) High Sensi-
tive Enzyme-linked Immunosorbent Assay Kit (HEA079Ra, Houston, TX, USA) was used.

These markers were measured according to the manufacturer’s instructions. TNF-
α and IL-6 concentrations were determined from the standard curves and expressed in
pg/mg protein.

2.4.2. Changes in the HW (Heart Weight)/BW (Body Weight) Ratio

The hearts were rinsed with cold 0.9% NaCl, dried, and weighed to estimate heart
edema. The ratios of heart weight to body weight (HW/BW) were measured and used as
an index of heart edema.
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2.5. Oxidative Stress Markers
2.5.1. Determination of Superoxide Dismutase (SOD)

The enzymatic activity of SOD was determined using a commercially available ELISA
test kit containing a monoclonal antibody specific for rat SOD (Cloud-Clone Corp., No.
SEB960Ra, Houston, TX, USA), following the manufacturer’s instructions.

2.5.2. Determination of Lipid Peroxidation Products (Thiobarbituric Acid Reactive
Substances—TBARS)

Thiobarbituric acid reactive substances (TBARS) were measured in cardiac tissue
from the ventricle and atrium using the Cayman Chemical TBARS Assay Kit (Item No.
10009055-96, Minneapolis, MN, USA), following the manufacturer’s instructions.

2.5.3. Estimation of Tissue Hydroxyl Peroxide Content (H2O2)

Hydrogen peroxide (H2O2) generation in homogenates was measured using the
HRP/HVA systems. First, 50 mg of frozen tissue fragments were homogenized with
2 mL of 1.15% KCl. Then, 10 µL of homogenate were placed in 2 Eppendorf tubes. In one
tube, the reaction mixture for the calibration curve of H2O2 was added, which contained
phosphate-buffered saline (PBS) (pH 7.0) and horseradish peroxidase (HRP) (1 U/mL)
containing 400 µmol homovanillic acid (HVA). In the second tube, we placed PBS and
1 U/mL HRP to determine H2O2.

Both tubes were simultaneously incubated for 60 min at 37 ◦C. Subsequently, PBS and
0.1 M glycine-NaOH buffer (pH 12.0) with 25 mM EDTA were added to each Eppendorf
tube to stop the enzymatic reaction. Excitation was set at 312 nm and emission was
measured at 420 nm (Perkin Elmer Luminescence Spectrometer, LS-50, Norwalk, CT, USA).
Readings were converted to the H2O2 concentration using the regression equation prepared
from 3 series of calibration experiments with 10 increasing H2O2 concentrations (range
10–1000 µM).

2.5.4. Measurement of Total Sulfhydryl Groups (-SH)

Total sulfhydryl groups measurement was performed using Ellman’s method [32].
As a chromogen, to measure thiol levels, Ellman’s reagent (5,5′-dithiobis-(2-nitrobenzoic)
acid, DTNB) was used. The absorbance of the obtained solution was measured at 412 nm
using the Perkin Elmer Luminescence Spectrometer LS-50 (Norwalk, CT, USA). The total
concentration of thiol groups was calculated from the regression equation prepared from
3 repeats of increasing concentrations of glutathione (2–200 µM). Concentrations of -SH
groups were expressed as µM.

2.5.5. Total Glutathione (tGSH), Reduced Glutathione (GSH), Oxidized Glutathione
(GSSG), and Total Glutathione/Oxidized Glutathione Assays (GSH/GSSG)

To measure total (GSH total) and oxidized state (GSSG) of glutathione, the tissue
sample was divided in two parts. Both parts were homogenized in the same way (in buffer
containing 50 mM phosphate and 1 mM EDTA). The only difference was the addition of a
scavenger (2-vinylpyridinium) to the GSSG sample. Scavenger complexes with GSH and
prevents it from reacting with the dye and interfering with the measurement of GSSG.

The total glutathione was analyzed using the Cayman Chemical Glutathione Assay
kit (Item No. 703002-96, Ann Arbor, MI, USA). All steps were performed according to
the manufacturer’s instructions. Before assaying the total glutathione level, the pH of the
samples was increased with TEAM Reagent. Standards and samples were added to the
wells together with Assay Cocktail (mixture of MES Buffer, Cofactor, Enzyme, and DTNB).
After the incubation step, the total glutathione level was measured.

The reduced glutathione (GSH), oxidized glutathione (GSSG), and total glutathione/
oxidized glutathione ratio (GSH/GSSG) were determined using the Abnova GSH/GSSG
Assay kit (Item No. KA3779, Minneapolis, MN, USA). All steps were performed according
to the manufacturer’s instructions. Standards and samples were added to the wells together
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with Working Reagent (mixture of Assay Buffer, GR Enzyme, NADPH, and DTNB) and the
GSH/GSSG level was measured.

2.6. Statistical Analysis

The data are presented as mean ± SEM from 8 animals in each group. The statistical
significance was evaluated by ANOVA followed by the Duncan’s multiple range test as
post-hoc. Values of p < 0.05 were adopted as significant.

3. Results
3.1. Assessment of TNF-α and IL-6

As shown in Figures 1 and 2, the LPS challenge caused a marked increase in the levels
of TNF-α and IL-6 in both the atria and ventricles compared to the control and LA group
(p < 0.05). TNF-α and IL-6 levels appeared to be significantly reversed after LA treatment
(p < 0.01) in both the ventricles and atria.
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LA. LA—alpha lipoic acid, LPS—lipopolysaccharide.



Antioxidants 2022, 11, 734 6 of 15

There were no significant differences in the TNF-α and IL-6 levels between the atria
and ventricles in each group. As expected, administration of LA after LPS significantly
reversed the inflammatory changes in the rat ventricles and atria.

3.2. Evaluation of Heart Edema

In LPS-induced rats, the HW/BW ratio was markedly higher when compared to
control rats (p < 0.01), which implied progression of advanced heart edema. Administration
of LA after LPS challenge ameliorated LPS-induced heart edema (p < 0.001) (Table 1). The
results suggest that α-LA attenuated heart edema.

Table 1. Changes in the HW (heart weight)/BW (body weight) ratio in the control, LA, LPS, and
LPS + LA groups.

Group HW/BW (mg/g)

Control 2.63 ± 0.17

LA 2.81 ± 0.20

LPS 3.68 ± 0.32 *

LPS + LA 2.97 ± 0.29 #
* p < 0.01 vs. control, LA; # p < 0.001 vs. LPS. Values are expressed as mean ± S.E.M., n = 8 in each group.

3.3. SOD Activities

To determine if a redox change systemically occurs as a result of LA administration,
SOD activity in the ventricles and atria was measured. As shown in Figure 3, SOD activity
was significantly decreased in the LPS group (both in the ventricles and atria) while
LA treatment significantly increased SOD enzyme activities compared to the LPS group
(p < 0.05).
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Although the SOD values were similar between the control and LA groups, slightly
higher SOD values were observed in the LA group than in the control group (p < 0.01).

There were no significant differences in the SOD activity between the rat atria and
ventricles in each group.
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3.4. TBARS Evaluation

TBARS was used to quantify the degree of lipid peroxidation in ventricular and
atrial tissues.

TBARS values differed in the LPS groups between the ventricles and atria, indicating
that the ventricles generated higher lipid peroxidation compared to the atria.

Statistically significantly higher TBARS levels were found in both LPS groups (in both
the ventricles and atria) as compared to the control group (p < 0.05).

The TBARS level in the LPS + LA groups was statistically significantly lower than in
the LPS groups (p < 0.01). In conclusion, there was a significant increase in the TBARS level
in the LPS group, which was restored after LA treatment (Figure 4) (in both the ventricles
and atria).
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3.5. Effect of LA on LPS-Induced H2O2 Levels

To investigate the endogenous generation of ROS, H2O2 was measured in rat ven-
tricular and atrial homogenates. As shown in Figure 5, LPS caused a marked increase in
the H2O2 level in rat tissues when compared to the control and LA groups (p < 0.05). LA
effectively inhibited LPS-induced ROS generation in ventricular and atrial homogenates,
compared with the LPS group (p < 0.01). This effect indicates mitigation of oxidative
damage to the heart by LA.
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Figure 5. Effect of LA, LPS, and LPS + LA on H2O2 generation in ventricular and atrial homogenates.
Results are shown as mean ± S.E.M. n = 8. * p < 0.05 vs. control, LA; # p < 0.01 vs. LPS; & p < 0.05 vs.
control, LA. LA—alpha lipoic acid, LPS—lipopolysaccharide.

The H2O2 values differed in the LPS group between the ventricles and atria, indicating
that the atria showed a higher concentration of ROS compared to the ventricles.

3.6. Assessment of Sulfhydryl Groups (-SH)

As shown in Figure 6, administration of LPS significantly decreased the level of -SH
groups in ventricular and atria homogenates compared with the control and LA groups
(p < 0.05). Administration of LA 30 min after LPS infusion resulted in a significant increase
in the -SH group content when compared to the LPS group (p < 0.01).
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Figure 6. Effect of LA, LPS, and LPS + LA on sulfhydryl groups (-SH) content in ventricular and atrial
homogenates. Results are shown as mean ± S.E.M. n = 8. * p < 0.05 vs. control, LA; # p < 0.01 vs. LPS;
and & p < 0.05 vs. control, LA; ** p < 0.05 vs. control. LA—alpha lipoic acid, LPS—lipopolysaccharide.

Interestingly, the results demonstrated significant increases in the -SH groups content
in the ventricular and atrial homogenates after administration of LA compared to the
control group (p < 0.05). The -SH values differed in the LPS and LPS + LA groups between
the ventricles and atria. In the atria, the -SH content in the LPS group was higher than in
the ventricles. However, in the LPS + LA group, the -SH content in the atria was lower than
in the ventricles.

3.7. Assessment of Glutathione

Oxidative stress in the tissue involves the GSH system. Therefore, levels of total GSH
(tGSH), oxidized GSH (GSSG), reduced GSH, and the GSH/GSSG ratio were measured.
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Table 2 shows the levels of tGSH, GSH, GSSG, and the GSH/GSSG ratio in ventricular
homogenates of the control and experimental groups of rats, whereas Table 3 presents these
parameters in atria homogenates.

Table 2. Ventricles status of glutathione metabolism in the control, LA, LPS, and LPS + LA groups.

Parameters Control LA LPS LPS + LA

Total GSH (µM) 89.6 ± 5.03 82.7 ± 16.9 14.82± 2.2 ***,## 129.63 ± 16.4 *

GSH (µM) 72.8 ± 6.9 59.2 ± 5.8 5.96 ± 2.4 *** 101.52 ± 5.9 **

GSSG (µM) 22.5 ± 4.2 6.76 ± 0.7 20.4 ± 2.3 && 20.83 ± 2.1

GSH/GSSG
(redox status) 3.7 ± 1.2 7.38 ± 0.6 0.31 ± 0.12 #,& 4.87 ± 0.35 **

* p < 0.01 vs. LPS; ** p < 0.001 vs. LPS; *** p < 0.01 vs. control; # p < 0.05 vs. control; ## p < 0.02 vs. LA; & p < 0.001
vs. LA; && p < 0.01 vs. LA. Values are expressed as mean ± S.E.M., n = 8 in each group.

Table 3. Atria status of glutathione metabolism in the control, LA, LPS, and LPS + LA groups.

Parameters Control LA LPS LPS + LA

Total GSH (µM) 85.9 ± 4.923 79.8 ± 17.1 13.9 ± 2 ***,## 119.92 ± 15.9 *

GSH (µM) 71.2 ± 6.5 58.3 ± 5.2 5.4 ± 2.1 *** 99.82 ± 5.7 **

GSSG (µM) 20.9 ± 3.9 6.02 ± 0.6 19.9 ± 2.3 && 20.23 ± 2

GSH/GSSG
(redox status) 3.5 ± 1.1 6.96 ± 0.5 0.29 ± 0.11#,& 4.06 ± 0.34 **

* p < 0.01 vs. LPS; ** p < 0.001 vs. LPS; *** p < 0.01 vs. control; # p < 0.05 vs. control; ## p < 0.02 vs. LA; & p < 0.001
vs. LA; && p < 0.01 vs. LA. Values are expressed as mean ± S.E.M., n = 8 in each group.

In the LPS group, the GSH level (an indicator of antioxidant capacity) was significantly
decreased compared to the control and LA groups (p < 0.01) and it was associated with
increased GSSG (p < 0.01). The GSH/GSSG ratio, which reflects the intracellular glutathione
redox balance, was also significantly decreased in the LPS group compared to the control
and LA groups (p < 0.05). In the LPS + LA group, both the reduced GSH level and the
GSH/GSSG ratio were increased compared to the LPS group (p < 0.001).

There were no significant differences in the glutathione levels in the atria and ventricles
in each group.

4. Discussion

In recent years, antioxidants have become elements of therapies aiming at improving
cardiac damage in the prevention of cardiovascular diseases (CVDs), such as heart failure,
atrial fibrillation, and ischemic heart disease.

The properties of α-LA, in particular its antioxidant potential, have been widely
revised in many studies [33–36]. There is evidence showing that α-LA has therapeutic
activity in the regression of oxidative stress associated with CVDs [37–39].

The aim of the present study was to analyze and compare changes in the ventricles
and atria during the development of acute inflammation and oxidative stress induced by
LPS in rats and demonstrate the pivotal action of α-lipoic acid as an antioxidant.

Oxidative stress is associated with overproduction of ROS and reduced cardiac antioxi-
dant capacity [40,41]. Due to its high toxicity, LPS is considered the most potent initiator for
activating inflammatory mediators and factors of oxidative stress [42]. Oxidative stress can
disrupt cardiac mitochondrial activity through induction of damage to mitochondrial DNA,
lipids, and proteins. It can also impair cardiomyocytes and activate several mitochondria
apoptotic signaling pathways [43].

Since LPS can induce inflammation and leads to the development of oxidative stress
in rats, this experimental model was used to induce cardiac damage.
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In the present study, the administration of LPS to rats resulted in the development
of inflammation and oxidative stress in the ventricles and atria. This effect was indicated
by an increase in the TBARS, H2O2, TNF-α, and IL-6 concentration and a decrease in the
concentration of total sulfhydryl groups, SOD, and GSH. In LPS-induced rats, the HW/BW
ratio was markedly higher when compared to control rats, which implies advanced heart
edema. This effect was a result of increased production of ROS.

However, we found no significant differences in the inflammatory parameters between
the atria and ventricles, but differences were found in the oxidative parameters. The TBARS
values differed in the LPS groups between the ventricles and atria, which indicates that the
ventricles generated higher lipid peroxidation compared to the atria.

In turn, with regards to H2O2 generation, it was higher in the atria than in
the ventricles.

Previous studies have reported that the concentration of proinflammatory mediators
is higher in the left ventricle than in other parts of the rat heart. However, it is associated
with chronic inflammation or prolonged exposure to oxidative stress, for example, in AF.
In a failing heart, oxidative stress correlates with left ventricular dysfunction [44]. There is
evidence that inflammation is involved in atrial remodeling in AF [45]. Our study presented
a model of acute inflammation, which induces equally strong activation of proinflammatory
factors in both the atria and ventricles. We suppose that differences would be more visible
after longer exposure to oxidative stress.

The results of many experimental models correspond with the results we obtained in
our study, in which we confirmed that ROS generated by oxidative stress increase the levels
of oxidation markers. In one of these studies, the H2O2 level was increased in rat atria
stimulated by a high pacing frequency [46]. These results suggest that a high concentration
of H2O2 in the rat atria is associated with intracellular ROS formation in response to a high
pacing frequency.

Proinflammatory factors adversely affect the cardiomyocyte structure, endothelium,
and heart functions. Moreover, TNF-α activates the nuclear factor kappa B (NF-κB) of
cardiomyocytes, which increases the expression of adhesion molecules and further pro-
motes inflammatory injury to cardiomyocytes [47]. Chronic inflammation can lead to
oxidative stress.

Other studies have indicated that TNF-α downregulates glutamate receptors and
cardiomyocyte contractile proteins and causes cell death and apoptosis [48]. It can lead to
the development of HF, which is associated with a loss of myocardial contractile forces and
increased susceptibility to arrhythmias.

Our data indicate that oxidative stress significantly inhibits SOD, which is possibly
caused by a decreased concentration of this enzyme. This in turn is caused by enhanced
lipid peroxidation under oxidative stress conditions. Similarly, other authors have indicated
that elevated lipid peroxidation in oxidative stress may result from decreased activities of
antioxidant enzymes [49].

In the present study, the decrease in the content of -SH groups after LPS administration
also suggests an increased formation of ROS in the rat ventricles and atria. Similarly,
another study revealed that reduced contents of the sulfhydryl group may be attributed to
overproduction of ROS (superoxide) [50]. In another study, cadmium-induced oxidative
damage increased levels of lipid peroxidation and structural alterations in the heart [51].
Furthermore, heart damage induced by cyclophosphamide decreased levels of glutathione,
malondialdehyde (MDA), and calcium (Ca+2) in the heart [52]. In turn, the diminished level
of GSH in cells increases oxidative stress in mitochondrial fractions and tissues. In our study,
we observed decreased GSH levels and an increased GSSG concentration during oxidative
stress (both in the ventricles and atria). Moreover, it was shown that administration of
LPS decreased the intracellular ratio of GSH/GSSG, which indicates that LPS altered the
antioxidant capacity and thiol redox state in the rat ventricles and atria.

It is well known that α-LA is a direct antioxidant produced from octanoic acid in
mitochondria. Endogenous levels of plasma LA are reported to be 1–25 ng/mL in healthy
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humans, and so far, no clinical symptoms specific for lipoic acid deficiency in humans and
animals are known [53]. α-LA is able to directly scavenge reactive oxygen species, and
may provide antioxidant protection through transition metal chelation, and regeneration
of reduced forms of some endogenous antioxidants (vitamin E and C and glutathione).
The mechanism of α-LA’s action is related to modulation of the signaling transduction of
several pathways, such as nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-kB) and mitogen-activated protein kinases (MAPKs) [3].

Reports from the literature show that α-LA can be used in various disorders related to
oxidative stress [54–56].

In our experimental model, the antioxidant properties of α-LA were manifested by
decreased inflammatory and oxidative parameters in the rat ventricles and atria. α-LA
showed a higher effect on the ventricles in relation to the -SH and TBARS concentration.

Furthermore, α-LA significantly restored the reduced GSH level and ameliorated the
GSH/GSSG ratio, suggesting that the mechanism underlying α-LA’s action is a regeneration
of GSSG to GSH. GSH plays an important role in the protection of vitamin E and C
levels and is involved in an enzymatic detoxification reaction for ROS as a cofactor or
coenzyme [57,58].

The results obtained in our study are in accordance with the works of other
authors [59,60]. It was also shown that α-LA, via its anti-inflammatory properties, de-
creased TNF-α and IL-6 levels in many tissues, including cardiac tissue [61,62].

α-LA is considered to be a powerful antioxidant compared to other antioxidants,
including vitamins A, E and C, and coenzyme Q10; flavonoids; and acetyl-L-carnitine.
One study compared the effectiveness of α-LA with the effectiveness of vitamin C in NO-
mediated vasodilation in diabetic patients. Parameters of lipid peroxidation were measured
and correlated with endothelial function tests. α-LA was found to be a better antioxidant
than vitamin C [63].

Some experimental studies have indicated a synergist effect of α-LA with other antiox-
idants. It has been shown that acetyl-L-carnitine and α-LA play an important role in normal
mitochondrial function, and that reduced levels of these compounds are associated with
increased mitochondrial oxidant production [64]. α-LA protected cardiac mitochondrial
complexes from NO-induced damage.

The authors of another study tested mitochondrial function in an acute model of
endotoxemia and the effect of α-LA as a therapeutic strategy. It was shown that α-LA
prevents oxidative stress and mitochondrial dysfunction [65].

In the present work, the rat model of oxidative stress induced by LPS in the ventricles
and atria was demonstrated (Figure 7). α-LA, as an antioxidant, was administered after the
LPS challenge. α-LA reduced inflammatory and oxidative stress in the rat ventricles and
atria with equal effectiveness. However, in this study, we did not assess histopathological
changes in the heart nor proinflammatory and oxidant parameters in the blood, which
represent limitations. Thus, further studies are necessary to compare other parameters
related to this issue.
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5. Conclusions

Based on these studies, it can be concluded that α-LA is an ideal antioxidant in the
prevention of oxidative stress development in the ventricles and atria because it alleviates
lipid peroxidation, scavenges free radicals, and enhances the synthesis of antioxidants
containing -SH groups and GSH.

However, further research is needed to explain the mechanism of action of α-LA in
oxidation-stressed ventricular and atrial tissues.
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