
Received: 3 January 2017 Revised: 20 February 2017 Accepted: 6 March 2017
DO
I: 10.1111/cmi.12737
M I C ROR E V I EW
Inhibition of type I interferon induction and signalling by
mosquito‐borne flaviviruses

Stephanie L. Cumberworth* | Jordan J. Clark* | Alain Kohl | Claire L. Donald
MRC‐University of Glasgow Centre for Virus

Research, Glasgow, Scotland, UK

Correspondence

Claire L. Donald, MRC‐University of Glasgow

Centre for Virus Research Glasgow, G61 1QH,

Scotland, UK.

Email: claire.donald@glasgow.ac.uk

Funding Information

United Kingdom Medical Research Council,

Grant/Award Number: MC_UU_12014 and

MR/N017552/1
*These authors contributed equally to this publicat

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

This is an open access article under the terms of th

the original work is properly cited.

© 2017 The Authors Cellular Microbiology Publish

Cellular Microbiology. 2017;19:e12737.
https://doi.org/10.1111/cmi.12737
Summary
The Flavivirus genus (Flaviviridae family) contains a number of important human pathogens,

including dengue and Zika viruses, which have the potential to cause severe disease. In order

to efficiently establish a productive infection in mammalian cells, flaviviruses have developed

key strategies to counteract host immune defences, including the type I interferon response.

They employ different mechanisms to control interferon signal transduction and effector

pathways, and key research generated over the past couple of decades has uncovered new

insights into their abilities to actively decrease interferon antiviral activity. Given the lack of

antivirals or prophylactic treatments for many flaviviral infections, it is important to fully

understand how these viruses affect cellular processes to influence pathogenesis and disease

outcome. This review will discuss the strategies mosquito‐borne flaviviruses have evolved to

antagonise type I interferon mediated immune responses.
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1 | INTRODUCTION

The Flavivirus genus (Flaviviridae) encompasses a myriad of viruses

transmitted by blood‐feeding arthropod species, several of which

represent emergent or re‐emergent pathogens. Important examples

include Zika (ZIKV), dengue (DENV), yellow fever (YFV), Japanese

encephalitis (JEV), and West Nile (WNV) viruses. Human flavivirus

infections are responsible for significant morbidity and mortality

worldwide, eliciting a spectrum of manifestations: from asymptomatic

infections to mild flu‐like symptoms, or more severe complications

such as encephalitis and haemorrhagic fever. Furthermore, congenital

developmental deficits, and neurological syndromes have been associ-

ated with ZIKV infections, a previously neglected member of the genus

(Cao‐Lormeau et al., 2016; de Oliveira & Da Costa Vasconcelos, 2016;

Fauci & Morens, 2016; Gould & Solomon, 2008; Mackenzie, Gubler, &
ion.
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Petersen, 2004; Oehler et al., 2014; Ventura, Maia, Bravo‐Filho, Gois,

& Belfort, 2016).

Flaviviruses are enveloped viruses and possess an 11 kb single

stranded, positive sense RNA genome, encoding a single open reading

frame flanked by highly structured 5′ and 3′ untranslated regions

(UTRs; Lindenbach, Murray, Thiel, & Rice, 2013). During infection,

the viral polyprotein is processed to yield three structural (C: capsid,

prM: premembrane, E: envelope) and seven nonstructural proteins

(NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5; Figure 1a). In

addition, all flaviviruses investigated have been shown to produce

subgenomic flavivirus RNA (sfRNA), a nongene product generated

from incomplete degradation of genomic RNA by the 5′‐3′

exoribonuclease, XRN1 (Clarke, Roby, Slonchak, & Khromykh, 2015;

Donald et al., 2016; Pijlman et al., 2008; Roby, Pijlman, Wilusz, &

Khromykh, 2014).

Type I interferon (IFN‐I) is crucial in the fight against virus infec-

tions. Upon activation, the host's IFN‐I response establishes an antiviral
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FIGURE 1 (a) Organisation of the flavivirus
genome. The flavivirus genome is composed
of a single‐stranded, positive‐sense RNA, of
approximately 11 kb. The single open reading
frame contains the three structural proteins
(C: capsid, prM: premembrane, E: envelope)

and seven nonstructural (NS) proteins (NS1,
NS2A, NS2B, NS3, NS4A, NS4B, and
NS5). These are flanked on either side by
highly structured 5′ and 3′ untranslated
regions. The gene products are generated
from the single polyprotein by co‐ and
posttranslational cleavage. This also results in
the production of the 2K peptide between
NS4A and NS4B. (b) Structure of ZIKV
subgenomic flavivirus RNA (sfRNA), as
predicted following structural studies and
RNA folding analysis. Although the structure
of sfRNA varies for different flaviviruses, they
all contain similar motifs. All flavivirus sfRNAs
contain stem loop (SL) and dumbbell (DBL)
structures, which consist of conserved
nucleotides capable of forming pseudoknots
(PK). PK are represented by lines. Two sfRNAs
of differing size are produced during ZIKV
infection due to the stalling of XRN1 at the SL
structures. Predicted sfRNAs: stalling at SL1
produces xrRNA1 (red box), and xrRNA2
(blue box) is produced by stalling at SL2
(Akiyama et al., 2016; Donald et al., 2016)
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state within the target cell and signals to neighbouring cells. In order to

mount a successful innate immune response, eukaryotic organisms

must first be able to detect the invading pathogen. This is achieved

through the use of a variety of receptors, known as pathogen recogni-

tion receptors (PRRs), which are located on both the cell surface and

within the cytoplasm. These receptors detect peptides or nucleotides

derived from the pathogen, which are known as pathogen associated

molecular patterns (PAMPs). There are several families of PRRs, but

the most important for flavivirus infections are Toll‐like receptors

(TLRs) and RIG‐I like receptors (RLRs) (Munoz‐Jordan & Fredericksen,

2010; Suthar, Aguirre, & Fernandez‐Sesma, 2013). TLRs are membrane

bound and, in humans, the TLR family contains 10 members, each of

which detects specific PAMPs. Of importance during flavivirus infec-

tions are TLR7 and TLR8, which identify single‐stranded RNA (ssRNA),

as well as TLR3, which detects double stranded RNA (dsRNA) produced

during viral replication. As most viruses produce dsRNA during replica-

tion, TLR3 is triggered during the majority of infections. With the

exception of TLR3, all TLRs signal through an intermediate protein,

MyD88, which eventually leads to activation of the NF‐ĸb, MAPK,

ERK, and JNK pathways. Conversely, TLR3 signals through a MyD88

independent pathway, which results in the recruitment of TRIF. This

then signals through the TRAF3 and RIP1 signalling pathways to acti-

vate the transcription factors IFN‐regulatory factor (IRF)‐3, NF‐ĸB,

and AP‐1 to stimulate the IFN‐I pathway (Uematsu & Akira, 2007).

Also involved in the detection of cytoplasmic dsRNA are the

RLRs: RIG‐I and Melanoma Differentiation‐Associated protein 5

(MDA5) (Kato et al., 2006). RIG‐I binds to the 5′‐phosphorylated
ends of dsRNA molecules, whereas MDA5 binds internally. Both

contain a DExD/Hbox helicase domain and a C‐terminal domain,

which are involved in the binding of viral dsRNA. In addition, they

possess tandem N‐terminal caspase recruitment domains (CARDs),

which interact with mitochondrial antiviral‐signalling protein

(MAVS), the intermediate signalling molecule located on the outer

membrane of mitochondria. This then signals through IRF3/7 to

activate the transcription of I IFNs (Gack, 2014; Reikine, Nguyen, &

Modis, 2014).

I IFNs bind to the IFN‐α receptor (IFNAR), a heterodimeric

transmembrane receptor consisting of two subunits, IFNAR1 and

IFNAR2. This results in the recruitment and activation of tyrosine

kinases, Janus kinase (JAK1), and tyrosine kinase 2 (Tyk2), through

auto‐ and trans‐ phosphorylation. These recruit and phosphorylate

the cytoplasmic transcription factors, signal transducer and activation

of transcription (STAT) 1 and 2. STAT2 is activated by Tyk2, which is

proceeded by the recruitment and phosphorylation of STAT1 by

JAK1. The activated STAT1/2 proteins heterodimerise, translocate

to the nucleus and associate with IRF‐9 to form the interferon‐

stimulated gene factor 3 (ISGF3) complex. ISGF3 binds to the IFN‐

stimulated response element (ISRE), which directly induces an

antiviral state through the production of several hundred IFN

stimulation genes (ISGs) (Ivashkiv & Donlin, 2014; Schneider, Chevillotte,

& Rice, 2014; Schoggins et al., 2011).

Recent findings have also suggested that in addition to

RIG‐I/MAVS and IFN‐I signalling pathways, the cGAS‐STING pathway

is involved in restricting flavivirus infections (Gack & Diamond, 2016;



TABLE 1 Summary of type 1 interferon inhibitory activities of
flaviviral nonstructural proteins and sfRNA.

Interferon
antagonist Virus Activity

NS2A DENV Inhibition of the JAK/STAT signalling
pathway by decreasing STAT1
phosphorylation

KUNV Suppression of IFN‐β transcription

NS4B DENV Completely blocks interferon signalling
(in combination with NS2A and NS4A)

DENV,
YFV,
WNV

Inhibition of the JAK/STAT signalling
pathway by decreasing STAT1
phosphorylation

YFV Interacts with STING to block RIG‐I
stimulation

NS2B‐NS3 DENV Cleaves MITA or STING
Inhibits IFN production by interacting

directly with IκB kinase ε, disrupting
RIG‐I signalling, blocking serine 386
phosphorylation, and inhibiting IRF3
nuclear translocation

NS5 DENV Targets STAT2 for ubiquitin mediated
proteasomal degradation involving
interactions with UBR4

ZIKV Induces ubiquitin mediated proteasomal
degradation of STAT2

YFV Binds and inhibits STAT2 following
IFN‐I induced phosphorylation of
STAT1, requires
K6 ubiquitination

WNV Inhibits STAT1 phosphorylation
JEV Blocks Tyk2 phosphorylation

sfRNA DENV‐2 Sequesters G3BP1, G3BP2, and CAPRIN1,
Binds and inhibits TRIM25

ZIKV Inhibits IFN‐I response downstream of
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Ma & Damania, 2016). Known to be involved in the detection of DNA

viruses, it exhibits activity against particular positive sense RNA viruses

which do not involve DNA intermediates as part of their life cycle.

Studies involving WNV have illustrated that cGAS (cyclic GMP‐AMP

synthase) knockout mice were more susceptible to infection and

suggested that in the absence of cGAS, base levels of certain antiviral

ISGs are reduced, causing the cell to be more permissive to infection

(Schoggins et al., 2011; Schoggins et al., 2014). Similarly, silencing of

stimulator of IFN genes (STING) resulted in enhanced DENV replication

due to a decrease in the induction of proinflammatory cytokines (Aguirre

et al., 2012; Yu et al., 2012). The importance of the role of the cGAS‐

STING pathway in RNA virus restriction is illustrated by the inhibitory

function of different viral proteins to prevent pathway activation as both

DENV and YFV inhibit the activity of STING through interactions with

NS2B‐NS3 and NS4B, respectively (Aguirre et al., 2012; Ishikawa, Ma,

& Barber, 2009; Yu et al., 2012).

To facilitate propagation, viruses have evolved mechanisms to

subvert host responses such as those mediated by IFN‐I (Randall &

Goodbourn, 2008; Versteeg & Garcia‐Sastre, 2010). Similarly,

flaviviruses have developed several strategies involving one or more

of their nonstructural proteins, in addition to sfRNA, as specific

IFN‐I antagonists to surmount these host immune responses;

although, the viral effectors and mechanisms may differ between

viruses (Table 1). It is important to recognise the factors, which

underlie these immune evasion strategies in order to understand

how they impact disease pathogenesis and for focused vaccine

development. Herein, we review select flavivirus encoded products

and their IFN‐I antagonist capabilities.

RIG‐I & MDA5

WNV Inhibits IFN‐I response through unknown
mechanism

JEV Inhibits IRF‐3 phosphorylation and nuclear
localisation

Note. DENV = dengue virus; IFN = interferon; IFN‐I = type I interferon;
IRF = IFN‐regulatory factor; JAK = Janus kinase; JEV = Japanese encepha-
litis virus; KUNV = Kunjin virus; NS = nonstructural; sfRNA = subgenomic
flavivirus RNA; STAT = signal transducer and activation of transcription;
STING = stimulator of the IFN genes; TRIM = tripartite motif‐containing
protein; Tyk2 = tyrosine kinase 2; UBR4 = ; Ubiquitin protein ligase E3
component N‐Recognin 4; WNV = West Nile virus; YFV = yellow fever
virus; ZIKV = Zika virus.
1.1 | NS2A

The flavivirus NS2A protein is small (20 kD), hydrophobic, and associ-

ated with the endoplasmic reticulum. It is a multifunctional protein

with roles in virion assembly (Kummerer & Rice, 2002; Leung et al.,

2008), RNA replication (Mackenzie, Khromykh, Jones, & Westaway,

1998; Rossi, Fayzulin, Dewsbury, Bourne, & Mason, 2007), membrane

permeabilisation (Chang et al., 1999), and dissemination from infected

mosquito midguts (Mcelroy, Tsetsarkin, Vanlandingham, & Higgs,

2006). It has also been shown to act as an interferon antagonist, which

has been described for WNV (Liu et al., 2006), Kunjin virus (KUNV, a

WNV variant) (Liu, Chen, Wang, Huang, & Khromykh, 2004; Liu

et al., 2005), and DENV‐2 (Munoz‐Jordan, Sanchez‐Burgos, Laurent‐

Rolle, & Garcia‐Sastre, 2003). During DENV infection, it is known to

reduce IFN‐α/β signalling through inhibition of the JAK/STAT signal-

ling pathway to impede the induction of ISGs. Individual expression

of NS2A, as well as NS4B and NS4A, facilitated the replication of an

IFN‐sensitive virus, GFP‐tagged Newcastle disease virus (NDV‐GFP),

with NS4B being the most potent. The combined action of DENV‐2

NS2A along with NS4A and NS4B was sufficient to block IFN signalling

completely through a reduction in STAT1 phosphorylation, prohibiting

its nuclear localisation and preventing IFN‐β promoter driven tran-

scription from two ISREs (Munoz‐Jordan et al., 2003). Research on

KUNV has shown that a single amino acid substitution (A30P) is

responsible for the suppression of IFN‐β transcription both in vitro

and in vivo, and results in diminished virulence in mice (Liu et al.,
2004; Liu et al., 2006; Melian et al., 2013). Infection by viruses contain-

ing this mutation are highly attenuated, and the production of IFN‐I is

swift and continuous, allowing them to establish a productive infection

in IFN competent cell lines; however, the exact mechanism and cellular

target of its control are unknown (Liu et al., 2006).
1.2 | NS2B‐NS3

The NS2B protein interacts with NS3 to form a stable complex which

functions as a serine protease (Falgout, Pethel, Zhang, & Lai, 1991).

Studies have illustrated that the NS2B‐NS3 protease of DENV

interferes with IFN‐I induction via cleavage of MITA/STING (Aguirre

et al., 2012; Yu et al., 2012). Furthermore, through the direct

interaction and modulation of IκB kinase ε, an important kinase

involved in IFN‐I induction, DENV NS2B‐NS3 disrupts RIG‐I signaling,
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blocks serine 386 phosphorylation and nuclear transport of IRF3

thereby decreasing IFN production (Anglero‐Rodriguez, Pantoja, &

Sariol, 2014).
1.3 | NS4B

NS4B is known to be an important IFN‐I signalling antagonist during

DENV‐2 infections by inhibiting the JAK/STAT pathway. It functions

by antagonising STAT1 phosphorylation and inhibiting its nuclear

localisation thus preventing ISG induction. This activity has been doc-

umented for both YFV andWNV showing conservation between these

mosquito‐borne viruses (Munoz‐Jordan et al., 2003; Munoz‐Jordan

et al., 2005). The N‐terminal 2K signal peptide sequence of NS4B

(Figure 1a) has also been indicated as critical to IFN inhibition;

although, it can be substituted for another signal peptide with no

impact on NS4B function (Munoz‐Jordan et al., 2003). The activity of

NS4B depends upon its insertion into the ER membrane following

NS4A/NS4B cleavage by the NS2B‐NS3 serine protease. Although

its specific mechanism has not yet been established, the initial 125

amino acids alone are required for IFN‐I inhibition. In particular, amino

acids 77–103 are suggested to interact with cytoplasmic components

involved in IFN stimulation and may be important for antagonistic

activity (Munoz‐Jordan, 2010; Munoz‐Jordan et al., 2003). Alterna-

tively, in WNV NS4B residues E22 and K24 have been shown to be

key to IFN suppression (Munoz‐Jordan et al., 2003). Unlike DENV,

YFV NS4B blocks RIG‐I through an interaction with STING (Ishikawa

et al., 2009). This highlights strain‐specific variations used for IFN

suppression between different flaviviruses.
1.4 | NS5

NS5 is the largest, most conserved protein amongst flaviviruses. It con-

fers two enzymatic activities via the N‐terminal methyltransferase

domain, implicated in producing the viral RNA 5′ cap with N7 and 2′‐

O methylation, and the C‐terminal RNA dependant RNA polymerase

(RdRp), which replicates viral RNA (Chang et al., 2016; Davidson,

2009). The methyltransferase activity of NS5 offers some protection

for the virus by producing capped viral RNA, enabling host RNA

mimicry. Methylation at the N7 and 2′‐O sites disguises viral RNA from

cytoplasmic PRRs that recognise single‐stranded RNA possessing a

terminal 5′ triphosphate—a signature of “foreign” RNA—and prevents

identification by IFN‐induced protein with tetratricopeptide repeats 1

(IFIT1) (Chang et al., 2016; Daffis et al., 2010; Decroly, Ferron, Lescar,

& Canard, 2011; Jensen & Thomsen, 2012; Kimura et al., 2013; Szretter

et al., 2012). In addition to these enzymatic functions, NS5 has been

described as a potent flavivirus IFN‐I antagonist (Best, 2017). Despite

its highly conserved nature, the mechanisms by which it dampens the

IFN‐I response vary substantially; although, STAT inhibition has been

described as common mode of action for some flaviviruses.

NS5 inhibition of STAT1/2 activation or translocation prevents the

upregulation of ISGs and the establishment of an antiviral state. DENV

NS5 binds and degrades STAT2 by targeting it for Ubiquitin‐mediated

proteasomal degradation (Ashour, Laurent‐Rolle, Shi, & Garcia‐Sastre,

2009; Mazzon, Jones, Davidson, Chain, & Jacobs, 2009). Ectopic

expression of NS5 alone was not sufficient to induce STAT2
degradation. It has been shown that NS5 maturation via N‐terminal

cleavage is required for STAT2 depletion, although the role that this

plays is unclear (Ashour et al., 2009). Degradation is not dependent

on the terminal amino acid residue as both plasmid expressed NS5 with

a terminal methionine, as well as NS5 produced during a native

infection with a terminal glycine are functional (Ashour et al., 2009).

Ubiquitin protein ligase E3 component N‐Recognin 4 (UBR4) has been

identified as binding to DENV NS5 and promoting STAT2 degradation.

DENVNS5 acts as a bridge betweenUBR4 and STAT2, but this appears

to be specific to DENV and is not seen with YFV or WNV (Morrison

et al., 2013). The first 10 amino acids of DENV NS5 are required for

UBR4 binding, and threonine and glycine at positions 2 and 3 respec-

tively were identified as critical for UBR4 binding and STAT2 degrada-

tion (Ashour et al., 2009; Morrison et al., 2013). These residues are

conserved in all DENV serotypes but not in other flaviviruses (Morrison

et al., 2013). Furthermore, it was found that the NS5‐UBR4 interaction

is independent of STAT2. UBR4 lacks an ubiquitin ligase catalytic

domain, and therefore it has been suggested to act as a scaffold for

ubiquitination to target STAT2 for proteasomal degradation (Morrison

et al., 2013). More recently, ZIKV has also been shown to bind and

deplete STAT2 via proteasomal degradation. However, unlike DENV,

this is independent of the production of an authentic NS5 N‐terminus

and UBR4 interaction (Grant et al., 2016). The interaction between

NS5 and STAT2 as well as the suppression of described as a host

species specific affect for both ZIKV and DENV. NS5‐STAT2 binding

is abolished in mouse model systems possessing intact IFN signalling

pathways, and this significantly impedes virus infection (Ashour et al.,

2010; Grant et al., 2016). The converse is observed in mice lacking an

intact IFN system where infections are lethal. Therefore, virus–host

interactions at the level of IFN‐I antagonism have significant

implications in the development of suitable infectious model systems.

Similar to DENV, the extreme N‐terminus of YFV also contains a

motif required for NS5‐STAT2 interactions and subsequent inhibition

(Laurent‐Rolle et al., 2014). Curiously, the YFV NS5‐STAT2 interaction

and resulting IFN‐I antagonism is dependent on stimulation with IFN‐I;

a mechanism thus far unique to YFV in the flavivirus genus (Laurent‐

Rolle et al., 2014). YFV NS5 does not target STAT2 for proteasomal

degradation unlike DENV. Instead, IFN‐I induced phosphorylation of

STAT1, in addition to K63‐linked polyubiqutination via E3 ligase

Tripartite motif‐containing protein 23 (TRIM23) at K6 of NS5, is

required to bind STAT2 and prevents ISGF3 interaction with the IRSE

promoter (Laurent‐Rolle et al., 2014).

The NS5 of virulent WNV strain NY99 has been shown to be a

potent inhibitor of IFN through the inhibition of STAT1 phosphoryla-

tion (Laurent‐Rolle et al., 2010). Transient expression of WNV NY99

NS5 alone was sufficient to rescue NDV‐GFP replication in IFN treated

cells, whereas expression of KUNV NS5 did not (Laurent‐Rolle et al.,

2010). This study was performed in tandem with both virulent and

attenuated forms of JEV NS5 protein and suggested the IFN antago-

nist activity of NS5 appeared to be associated with strain virulence

(Laurent‐Rolle et al., 2010). Mutagenesis studies of WNV NY99

demonstrated a single amino acid mutation (F653S) dampens the

capability of NS5 to suppress IFN‐β mediated STAT1 phosphorylation

and ISRE‐dependent gene expression, whereas the inverse mutation,

S653F, in KUNV augments IFN suppression by NS5 (Laurent‐Rolle
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et al., 2010). This WNV residue, together with W382, VI631/632, and

W651, which are also shown to be important in IFN‐I suppression, lies

within a structural pocket identified in Langat virus to map to the indis-

pensable RdRp domain (Park, Morris, Hallett, Bloom, & Best, 2007).

The action of JEV NS5 presents an alternative mechanism of IFN‐I

signalling inhibition through a Tyk2 phosphorylation blockade. This

induces the cytoplasmic retention of STAT1/2 and prevents IRSE

driven transcription (Lin, Chang, Yu, Liao, & Lin, 2006). No direct

physical association between JEV NS5 and IFN‐I signalling molecules

Tyk2, STAT1, or JAK1 has been demonstrated. Instead the use of

protein tyrosine phosphatases ablates NS5 mediated inhibition of

IFN‐I signalling, suggesting that JEV NS5 may act through cellular

tyrosine phosphatases to exert antagonistic affects (Castillo Ramirez

& Urcuqui‐Inchima, 2015; Lin et al., 2006).
1.5 | Flavivirus subgenomic RNA (sfRNA)

Whilst it has been known for over a decade that flavivirus nonstruc-

tural proteins play important roles in the evasion and antagonism of

the host immune response, the antagonistic properties of sfRNA has

more recently came to light. sfRNA is produced during the course of

flavivirus infection of vertebrate cells as a result of incomplete diges-

tion of the 3'UTR by the cellular exonuclease, XRN1 (Clarke et al.,

2015; Pijlman et al., 2008; Roby et al., 2014). The production of these

small RNAs, which are typically around 500 nt, has been shown to be

specific to flaviviruses (Akiyama et al., 2016; Donald et al., 2016; Lin,

Chang, & Chang, 2004; Liu, Chen, & Khromykh, 2003; Moon et al.,

2015; Pijlman et al., 2008; Schnettler et al., 2012; Schnettler et al.,

2014; Schuessler et al., 2012).

Work from the Khromykh laboratory, demonstrated the structure

and mechanism through which sfRNA is generated (Pijlman et al.,

2008). RNA correlating to the relative size of the 3′ UTR was detected

in both vertebrate and invertebrate cells infected with various

flaviviruses or derivative replicons. Due to the absence of an internal

promoter and the apparent reliance on host cell machinery, it was

hypothesised that a cellular exoribonuclease may be responsible for

its production (Pijlman et al., 2008). This was later shown to be due

to stalling by XRN1 (Chapman, Moon, Wilusz, & Kieft, 2014).

The construction of mutant viruses incapable of producing sfRNA

demonstrated that the generation of intact sfRNA was necessary for

effective viral growth and pathogenicity in cell culture and mice

(Pijlman et al., 2008). Whilst the mechanism for this was unclear,

sfRNA was proposed to play a modulatory role in the host antiviral

response. Indeed, IFN‐β promoter activity was reduced in cells

infected with JEV or transfected with JEV‐derived sfRNA (Chang

et al., 2013). In these cells, sfRNA inhibited the phosphorylation and

nuclear localisation of IRF‐3; although, the mode of action is still to

be determined. Furthermore, sfRNA‐deficient WNV and YFV, which

replicate poorly in interferon competent cells, are able to replicate suc-

cessfully in cells deficient in major factors involved in the IFN response

(Funk et al., 2010; Schuessler et al., 2012; Silva, Pereira, Dalebout,

Spaan, & Bredenbeek, 2010). sfRNA‐deficient WNV was also found

to be more sensitive to IFN pretreatment; however, replication was

rescued in the presence of INFAR neutralising antibodies. Therefore,
sfRNA must interact with the IFN‐I response in infected cells

(Schuessler et al., 2012).

During DENV infection, it has been shown that sfRNA antagonises

a group of proteins, G3BP1, G3BP2, and CAPRIN1, which have

previously been implicated in modulating viral infection through the

regulation of several ISGs and ISG mRNA translation (Bidet, Dadlani,

& Garcia‐Blanco, 2014; Cobos Jimenez et al., 2015; Humoud et al.,

2016; Katsafanas & Moss, 2004). It was also found that DENV‐2

sfRNA colocalises and interacts with G3BP1, G3BP2, and CAPRIN1.

A chimeric YFV‐DENV sfRNA that lacked stem loop II (SL‐II) but

contained the equivalent YFV structures was shown to have lower

binding affinity to G3BP1, and when compared withWT DENV sfRNA,

was unable to reduce the transcription of host ISGs. It was suggested

that DENV sfRNA sequesters G3BP1, G3BP2, and CAPRIN1, thereby

preventing the upregulation of ISG expression. Interestingly, this

interaction was not found in experiments using DENV‐3, KUNV, or

YFV‐17D 3'UTRs, highlighting that the mechanisms through which

sfRNA antagonises the IFN response are highly divergent between

other flaviviruses (Bidet et al., 2014). Indeed, ZIKV sfRNA has recently

been shown to function as both a RIG‐I and MDA5 agonist and

demonstrates broader antagonistic activity compared to DENV‐2,

which affects RIG‐I only (Donald et al., 2016).

Structural analysis and RNA‐fold predictions have been used to

determine the structure of sfRNAs. Studies mapping the extensive

secondary structures of MVEV and DENV sfRNAs revealed particular

three‐way helix junction conformations that are required for XRN1

stalling and preservation of the integrity of the RNA (Chapman,

Costantino et al., 2014; Chapman, Moon et al., 2014). The crystal

structure ofMVEV indicates a ring‐like structure in SL‐II, throughwhich

the 5′ end of the XRN1‐resistant RNA protrudes.When XRN1 encoun-

ters this structure, it attempts to pull the 5′ end of the sfRNA through

this ring, causing the structure to tighten and the enzyme to stall

(Chapman et al., 2014). In the case of ZIKV sfRNA, it has been

determined that two XRN1‐resistant RNAs (xrRNAs) are produced

during infection. Referred to as xrRNA1 and xrRNA2, these are

produced as a result of XRN1 stalling at SL‐I and SL‐II, respectively

(Figure 1b). This differential sfRNA production may be the result of

cellular mechanisms; however, the significance of this is unclear

(Akiyama et al., 2016). Such data will be very useful for analysing the

mechanism of this IFN antagonist further (Akiyama et al., 2016; Donald

et al., 2016).

TRIM25, a modulator of the IFN‐I response, has also been

identified as a target of DENV sfRNA (Manokaran et al., 2015).

TRIM25 functions as an E3 ligase, which adds poly‐ubiquitin chains

to the amino‐terminal CARDs of RIG‐I (Gack, 2014). This is thought

to facilitate the interaction of RIG‐I with MAVS, thus modulating

downstream signalling of the IFN‐I response. TRIM25 and MAVS were

also shown to interact with DENV sfRNA; however, although TRIM25

was found to be enriched for bound sfRNA, MAVS was not

(Manokaran et al., 2015).
2 | CONCLUDING REMARKS

The vertebrate IFN response is vital to restrain a number of pathogenic

infections, including flavivirus infections. Investigations into
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flavivirus–host cell interactions have identified a number of important

molecular components involved in counteracting this response and

contributing to viral pathogenesis and disease development. The

evolution of specific IFN‐I response antagonists to subvert the host

immune response at definitive stages of the cascade have long

reaching effects in terms of viral growth kinetics and fitness, many of

which are still to be fully investigated. In particular, enhancing our

understanding of sfRNA interactions with cellular immune responses

represents an exciting new field of study that may greatly impact our

understanding of medically important flavivirus infections. Research

has shown that different flaviviruses use different approaches to

counteract host innate immune responses, and a better understanding

of these interactions is important for the development of effective

prophylaxis and anti‐viral therapeutics that will both inhibit the spread

of these emerging infections and improve medical outcomes.
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