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INTRODUCTION 
 
Adult stem cells (SCs), which reside in various tissues 
and organs, are critical for homeostasis maintenance 
and tissue regeneration. Nevertheless, SCs are prone to 

entering a senescent state during aging [1]. Accordingly, 
the aging of SCs is crucially implicated in individual 
aging [2, 3]. Individual aging, aging of tissues and 
organs, and the occurrence of age-related diseases, such 
as diabetes, atherosclerosis, and Alzheimer’s disease 
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ABSTRACT 
 
In vitro replicative senescence affects MSC characteristics and functionality, thus severely restricting their 
application in regenerative medicine and MSC-based therapies. Previously, we found that MSC natural 
senescence is accompanied by altered intracellular nicotinamide adenine dinucleotide (NAD+) metabolism, in 
which Nampt plays a key role. However, whether Nampt influences MSC replicative senescence is still unclear. 
Our study showed that Nampt expression is down-regulated during MSC replicative senescence. Nampt 
depletion via a specific Nampt inhibitor FK866 or Nampt knockdown in early passage MSCs led to enhanced 
senescence as indicated by senescence-like morphology, reduced proliferation, and adipogenic and osteogenic 
differentiation, and increased senescence-associated-β-galactosidase activity and the expression of the 
senescence-associated factor p16INK4a. Conversely, Nampt overexpression ameliorated senescence-associated 
phenotypic features in late passage MSCs. Further, Nampt inhibition resulted in reduced intracellular NAD+ 

content, NAD+/NADH ratio, and Sirt1 activity, whereas overexpression had the opposite effects. Exogenous 
intermediates involved in NAD+ biosynthesis not only rescued replicative senescent MSCs but also alleviated 
FK866-induced MSC senescence. Thus, Nampt suppresses MSC senescence via mediating NAD+-Sirt1 signaling. 
This study provides novel mechanistic insights into MSC replicative senescence and a promising strategy for the 
severe shortage of cells for MSC-based therapies. 
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have been attributed to SC senescence [4-8]. Hence, 
methods to rejuvenate senescent SCs need to be 
developed. 
 
Because of the distinct advantages of enhanced self-
renewal, multi-lineage differentiation and the avoidance 
of ethical controversy, adult bone marrow mesenchymal 
SCs (MSCs) are ideal seeding cells for tissue 
engineering and regenerative medicine. Primary cells 
cultivated in vitro have a finite proliferation capability 
termed Hayflick limit before they terminally 
differentiate and cease to proliferate, but the cells are 
still viable and metabolically active [9, 10]. This 
condition is defined as replicative senescence, a 
telomere-based mechanism, as opposed to stress-
induced senescence, which is achieved by exposing 
cells to a range of sublethal harmful agents such as 
toxins, radiation, chemotherapy, and oxidants [11-14]. 
Regardless of the donor’s age, MSCs cultured in vitro 
will inevitably senesce with an increasing number of 
passages, and this has adverse effects on the 
amplification and functionality of cells. Ultimately, this 
contributes to the paucity of seeding cells for SC-based 
therapies and severely restricts their application in basic 
scientific research, tissue repair, autotransplantation, 
and the treatment of clinical diseases. However, the 
molecular mechanisms underlying MSC replicative 
senescence are still not fully elucidated.  
 
The mammalian aging theory “NAD+ world” proposed 
in 2009 suggests that nicotinamide phosphoribosyl-
transferase (Nampt), known as the rate-limiting enzyme 
in the NAD+ salvage pathway, directly determines 
NAD+ levels and silent information regulator 2 ortholog 
(Sirt1) activity, which play crucial roles in cell 
metabolism, cellular senescence, cell cycle 
maintenance, and individual aging [15, 16]. Nampt 
over-expression in mouse embryonic fibroblast (MEF) 
cells can slow down cellular senescence by upregulating 
Sirt1 activity. The consequent progressive decline in 
Nampt can promote cellular senescence through the 
NAD+-Sirt1 pathway in retinal pigment epithelium 
(RPE) [17, 18]. Therefore, Nampt regulation has been 
recognized as an essential approach to slowing down 
aging. Although so far research on Nampt-mediated 
cellular senescence has focused mainly on somatic cells 
[19-21], scientific investigation on whether Nampt 
influences SC senescence has been scarce and the 
functional effects of Nampt on MSC senescence await 
specific clarification. 
 
In our previous study, we demonstrated that senescence 
is associated with a passage-dependent reduction in 
Nampt expression, which occurred when MSCs were 
serially expanded in vitro. Consistently, in a rat model 
of aging, Nampt expression was significantly lower in 

MSCs obtained from aged rats than in those acquired 
from young rats [22]. These findings suggested that 
Nampt likely plays a pivotal role in the regulation of 
MSC senescence. In addition, we previously discovered 
that the Nampt–NAD+–Sirt1 axis might participate in 
MSC osteoblast cell fate determination and that Nampt 
might serve as a marker of intracellular NAD+ 
metabolism [23]. Therefore, we hypothesized that the 
regulatory effects of Nampt on MSC replicative 
senescence might be related to NAD+ metabolism by 
mediating NAD+–Sirt1 signaling pathway. In the 
current study, we investigated the functional effects of 
Nampt on MSC senescence through pharmacological 
inhibition and gene manipulation. In addition, the 
possible regulatory mechanism of Nampt was further 
explored by measuring intracellular NAD+ content, 
NAD+/ NADH ratio, and Sirt1 activity.  
 
RESULTS 
 
Senescence-associated alterations in MSCs at late 
passage are associated with reduced Nampt 
expression and attenuated NAD+-Sirt1 signaling       
 
In the present study, we generated senescent MSCs via 
serial expansion in vitro. Rat MSCs at early passage 
(EP, P3) and late passage (LP, P10) displayed obvious 
morphological differences. MSCs at EP grew well and 
exhibited the elongated spindle shapes, whereas MSCs 
at LP displayed senescence-like morphology with 
irregular shapes, enlarged and flattened cell bodies, and 
noticeable particles in the cytoplasm. Quantitative 
analysis of cell morphology revealed that the cell aspect 
ratio gradually decreased, whereas the cell surface area 
progressively increased with passages (Fig. 1A). 
Senescence-associated-β-galactosidase (SA-β-gal) stain-
ing is the most widely used method for assessing 
senescence [24-26]. As shown in Fig. 1B, a small 
number of blue-stained MSCs were observed at EP, 
whereas this population was augmented at LP. 
Quantitative analysis indicated that the ratio of SA-β-
gal-positive cells in LP MSCs was significantly 
elevated when compared to that in EP MSCs. These 
results demonstrated that LP MSCs displayed the 
senescent changes unlike EP MSCs, and replicative 
senescence occurred with increasing passages.   
 
To determine the potential role of Nampt in MSC 
replicative senescence, we detected its expression by 
Real-time quantitative polymerase chain reaction (RT-
qPCR) and western blotting. At both mRNA (Fig. 1C) 
and protein (Fig. 1D) levels, Nampt expression was 
significantly decreased in LP MSCs compared to that in 
EP cells. Based on the NAD+ world theory, declined 
Nampt expression is linked to the age-related down-
regulation of intracellular NAD+ levels and Sirt1 
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deacetylase activity [27]. Accordingly, we next 
examined NAD+-Sirt1 signaling pathway in both cells. 
The results indicated that intracellular NAD+ content 
(Fig. 1E), NAD+/NADH ratio (Fig. 1F), Sirt1 protein 
expression (Fig. 1G) and Sirt1 deacetylase activity (Fig. 
1H) in LP MSCs were substantially lower than those in 
EP MSCs. Taken together, our data showed that Nampt 
might be involved in the regulation of MSC replicative 
senescence via NAD+-Sirt1 signaling.       

Nampt depletion induces MSC senescence at early 
passage  
 
To investigate whether Nampt directly affects MSC 
senescence, we first evaluated the effect of a specific 
Nampt inhibitor, FK866, on MSC senescence. We 
found that at concentrations higher than 12.5 nM, 
FK866 exerted a cytotoxic effect on young EP MSCs 
(P3) (data not shown). Therefore, P3 MSCs were treated 

 
 

Figure 1. Senescence-associated variations in mesenchymal stem cells (MSCs) and measurement of Nampt expression 
and NAD+-Sirt1 signaling. (A) Morphological characteristics of young MSCs at early passage (EP, P3) and replicative senescent MSCs 
at late passages (LP, P10) (Scale bar = 20 µm) and analysis of cell aspect ratio and cell surface area. (B) SA-β-gal staining (scale bar = 50 
µm) and quantitative analysis of SA-β-gal-positive cells. (C) Nampt mRNA expression determined by RT-qPCR. (D) Nampt protein 
expression determined by western blotting. (E, F) Detection of intracellular NAD+ concentration (E) and NAD+/ NADH ratio (F). (G, H) 
Sirt1 protein expression evaluated by western blotting (G) and detection of Sirt1 deacetylase activity (H); n = 3 independent 
experiments. *P < 0.05, **P < 0.01. 
 
 



www.aging-us.com 3508 AGING 

with 10 nM FK866 in subsequent experiments. In the 
presence of FK866, P3 MSCs presented senescent 
morphology with enlarged and flattened cell bodies, 
blurred cell borders, and clearly visible particles in the 
cytoplasm (Fig. 2A). The cell aspect ratio was markedly 
reduced, and the cell surface area was enlarged (Fig. 
2A). In addition, cell proliferation declined (Fig. 2B) 
and the population doubling time (PDT) was 
significantly prolonged after FK866 treatment (Fig. 2C). 
Cell cycle analysis revealed that FK866 induced cell 
cycle arrest in G1 phase, and the S-phase fraction (SPF) 

and proliferative index (PI) were lower in the FK866 
group than those in the vehicle group (Fig. 2D). 
Multilineage differentiation is one of the most important 
hallmarks of SCs; therefore, we next tested whether 
FK866 could influence MSC osteogenic and adipogenic 
differentiation. After the treatment of FK866, matrix 
mineralization was reduced as indicated by Alizarin red 
S staining (Fig. 2E), and lipid droplet formation was 
diminished as indicated by oil red O staining (Fig. 2F). 
Quantitative analysis indicated that MSC osteogenesis 
and adipogenesis were significantly attenuated by the 

 
 

Figure 2. The specific Nampt inhibitor FK866 induces cellular senescence. (A) Morphological appearance (scale bar = 20 µm) 
and quantification in young EP MSCs (P3) when treated with FK866. (B) Cell growth curves. (C) Population doubling time (PDT). (D) 
Evaluation of cell cycle by flow cytometry, and analysis of S-phase fraction (SPF) and proliferation index (PI). (E) Osteogenic 
differentiation of MSCs determined by Alizarin Red S staining (scale bar = 50 µm). (F) Adipogenic differentiation of MSCs determined by 
Oil red O staining (Scale bar = 20 µm). (G) SA-β-gal staining of MSCs (scale bar = 50 µm) and quantification. (H) mRNA expression of the 
senescence marker p16INK4a; n = 3 independent experiments. *P < 0.05, **P < 0.01. 
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addition of FK866. Furthermore, both SA-β-gal activity 
(Fig. 2G) and p16INK4A expression (Fig. 2H) were 
evidently elevated in the FK866 group compared to 
those in the vehicle group.  
 
To confirm the effect of Nampt depletion on MSC 
senescence, we next generated Nampt-deficient MSCs 
via viral transduction of Nampt shRNA (shNampt) into 
P3 MSCS. The transduction efficacy was evaluated by 
RT-qPCR and western blotting. We discovered that 

Nampt expression at both mRNA (Fig. 3A) and protein 
(Fig. 3B) levels showed a significant reduction 
compared to that in cells transduced with non-targeting 
control shRNA (shcon) lentiviral particles. Accordant 
with the effect of FK866, Nampt deficiency in P3 MSCs 
induced senescence-like morphological alterations, 
including a reduced cell aspect ratio and enlarged cell 
surface area (Fig. 3C). Moreover, cell proliferation 
slowed down (Fig. 3D) and the PDT was increased by 
approximately 5-fold (Fig. 3E). The majority of cells 

 
 

Figure 3. Nampt gene silencing exacerbates MSC senescence. (A) Gene expression of Nampt in young EP MSCs (P3) after Nampt 
knockdown as demonstrated by RT-qPCR. (B) Protein levels of Nampt as detected by western blotting. (C) Senescent morphology (scale 
bar = 20 µm) and quantification. (D) Logarithmic proliferation in Nampt-deficient MSCs. (E) Cell population doubling time (PDT). (F) 
Detection of cell cycle and analysis of both S-phase fraction (SPF) and proliferation index (PI). (G) Osteogenic differentiation of MSCs 
(scale bar = 50 µm). (H) Adipogenic differentiation of MSCs (scale bar = 20 µm). (I) SA-β-gal staining (scale bar = 50 µm) and 
quantification. (J) Gene expression of senescence-related factor p16INK4a; n = 3 independent experiments. *P < 0.05, **P < 0.01. 
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were arrested in G1 phase, and both SPF and PI were 
notably repressed (Fig. 3F). In addition, both osteogenic 
(Fig. 3G) and adipogenic (Fig. 3H) differentiation 
potentials were significantly diminished after 
knockdown of Nampt, as indicated by decreased bone 
matrix mineralization and reduced intracellular lipid 
droplets. Furthermore, SA-β-gal activity in Nampt-
depleted MSCs was markedly enhanced (Fig. 3I), and 
p16INK4A expression was elevated (Fig. 3J). Taken 
together, the above data suggested that Nampt depletion 

in young MSCs via either pharmacological inhibition or 
gene silencing can promote or accelerate MSC 
senescence. 
 
Nampt repletion alleviates MSC senescence at late 
passage 
 
Considering that Nampt was expressed at low levels in 
senescent LP MSCs (P10), we examined whether MSC 
senescence could be attenuated by enforcing Nampt 

 
 

Figure 4. Nampt overexpression alleviates MSC senescence. (A) Nampt mRNA expression determined by RT-qPCR in senescent 
LP MSCs (P10) after Nampt overexpression. (B) Nampt protein expression examined by western blotting. (C) Cellular morphology (scale 
bar = 20 µm) and quantification. (D) Logarithmic proliferation in Nampt-overexpressing MSCs. (E) Cell population doubling time (PDT). 
(F) Detection and analysis of cell cycle. (G) Observation of osteogenesis (scale bar = 50 µm) and quantification. (H) Observation of 
adipogenesis (scale bar = 20 µm) and quantification. (I) SA-β-gal staining (scale bar = 50 µm) and quantification. (J) Gene expression of 
the senescence-related factor p16INK4a; n = 3 independent experiments. *P < 0.05, **P < 0.01. 
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expression. For this purpose, P10 MSCs were 
transduced with lentivirus expressing Nampt (LV-
Nampt) and the lentiviral vector (LV-Vector). As 
indicated by the results of RT-qPCR and western 
blotting, Nampt was successfully over-expressed at both 
mRNA (Fig. 4A) and protein (Fig. 4B) levels. 
Moreover, cellular morphology was notably altered by 
Nampt overexpression (Fig. 4C). Senescent cells with 
enlarged and flattened cell bodies became substantially 
smaller and slenderer, and the cell borders became 
distinct. The cell aspect ratio markedly increased, 
whereas the cell surface area prominently decreased. On 
the other hand, Nampt-replenished MSCs grew faster 
(Fig. 4D), and the PDT was shortened (Fig. 4E). The 
percentage of cells arrested in G1 phase was also 
markedly reduced by Nampt repletion, and both SPF 
and PI were up-regulated (Fig. 4F). Of note, matrix 
mineralization was largely enhanced (Fig. 4G) and lipid 
droplet formation was improved (Fig. 4H) following 
Nampt overexpression. Quantitative analysis indicated 

that osteogenesis and adipogenesis in senescent LP 
MSCs were significantly augmented after increasing 
Nampt expression. Moreover, both SA-β-gal activity 
(Fig. 4I) and p16INK4A expression (Fig. 4J) in Nampt 
over-expressed MSCs were substantially inhibited 
compared to those in cells transduced with the vector. 
These data suggested that Nampt overexpression in 
senescent MSCs results in the alleviation of cellular 
senescence, indicating that Nampt replenishment can 
suppress or delay MSC senescence. 
 
Nampt-regulated MSC replicative senescence is 
mediated by NAD+–Sirt1 signaling  
 
It has been elucidated that Nampt can decrease age-
related MSC senescence via the NAD+-Sirt1 axis [22]. 
In the present study, our results above have already 
proved that Nampt plays a regulatory role in MSC 
replicative senescence. To further find out the 
underlying mechanisms in this process, we attempted to 

 
 

Figure 5. Nampt regulation on MSC senescence is linked to the NAD+–Sirt1 signaling pathway. (A, B, C) Intracellular NAD+ 

content (A) NAD+/ NADH ratio (B) and Sirt1 deacetylase activity (C) were measured when Nampt was suppressed by either FK866 
treatment or gene silencing. (D, E, F) Effect of Nampt overexpression on intracellular NAD+ content (D) and NAD+/ NADH ratio (E), as 
well as Sirt1 deacetylase activity (F); n = 3 independent experiments. *P < 0.05, **P < 0.01. 
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investigate whether Nampt regulation on MSC 
replicative senescence was also mediated by NAD+–
Sirt1 signaling pathway. To this end, we next examined 
the alterations in NAD+-Sirt1 signaling resulted from 
Nampt depletion and repletion in MSCs. As shown in 
Fig. 5, although there was no significant change in Sirt1 
protein expression after FK866 treatment or Nampt 
overexpression in MSCs (Supplementary Figure 1A and 
B), Nampt deficiency via either knockdown or FK866 
led to significantly lower intracellular NAD+ content 
(Fig. 5A), NAD+/NADH ratio (Fig. 5B) and lower Sirt1 
activity (Fig. 5C) than those in the control group (shcon 
or Vehicle). However, Nampt overexpression 
conversely resulted in markedly elevated intracellular 
NAD+ content (Fig. 5D) and NAD+/NADH ratio (Fig. 
5E), as well as increased Sirt1 deacetylase activity (Fig. 
5F). These findings revealed that the mechanisms 
underlying Nampt-regulated MSC replicative 
senescence are linked to the NAD+–Sirt1 signaling 
pathway. 
 

NAD intermediates treatment attenuates MSC 
senescence via enhancing NAD+ biosynthesis and 
Sirt1 activity  
 
To further verify that Nampt-regulated MSC senescence 
was associated with NAD+–Sirt1 signaling, we assessed 
the effects of different exogenous intermediates in the 
NAD+ salvaging pathway on MSC senescence. First, 
senescent LP MSCs were treated with different 
concentrations of NAD intermediates or Vehicle. As 
shown in Fig. 6A, the ratios of SA-β-gal-positive cells 
as well as p16INK4A mRNA expression were markedly 
decreased after treatment with 100 µM nicotinamide 
(NAM), 100 µM nicotinamide mononucleotide (NMN), 
100 µM NAD, or 5 µM resveratrol (RSV). In addition, 
intracellular NAD+ content (Fig. 6B), NAD+/NADH 
ratio (Fig. 6C), and Sirt1 activity (Fig. 6D) in senescent 
LP MSCs were significantly elevated in response to the 
addition of NAD intermediates.  
 

 
 

Figure 6. Exogenous intermediates participated in NAD+ biosynthesis ameliorates MSC replicative senescence. (A) SA-β-
gal staining and p16INK4A mRNA expression of senescent LP MSCs in the presence of Vehicle (DMSO treated) , 100 µM NAM, 100 µM 
NMN, 100 µM NAD, and 5 µM resveratrol (RSV) (scale bar = 50 µm) and quantification. (B, C, D) Effect of NAD intermediates treatment 
on NAD+ content (B) and NAD+/ NADH ratio (C), as well as Sirt1 deacetylase activity (D); n = 3 independent experiments. *P < 0.05, **P 
< 0.01. 
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Next, we also assessed the roles of different NAD 
intermediates in FK866-induced MSC senescence. SA-
β-gal staining and quantitative analysis showed that the 
percentages of SA-β-gal-positive cells in young EP 
MSCs increased after treatment with FK866, and 
p16INK4A mRNA expression also showed an upward 
trend in FK866-induced MSCs, whereas the addition of 
NAD intermediates, NAM, NMN, NAD, and RSV, 
significantly alleviated the augmented β-gal-positive 
cells and p16INK4A expression induced by FK866 (Fig. 
7A). Furthermore, NAD intermediates remarkably up-
regulated FK866-induced reduction in the intracellular 
NAD+ content (Fig. 7B), as well as NAD+/NADH ratio 
(Fig. 7C), and Sirt1 activity (Fig. 7D). These data 
demonstrated that the supplementation of NAD 
intermediates could not only rescue replicative 
senescent MSCs but also ameliorate FK866-induced 
MSC senescence via preserving NAD+ levels and Sirt1 
activity, further confirming that Nampt postpones MSC 
senescence via NAD+-Sirt1 mediation.   

DISCUSSION 
 
Since Nampt was first reported to possess enzymatic 
activity in 1957 [28], its functions in individual aging, 
inflammation, cell metabolism, and other process have 
been intensively investigated [29-33]. In particular, 
there is abundant evidence that Nampt is closely related 
to cellular senescence in somatic cells. In mice, Nampt 
expression in the hippocampus decreased with aging, 
and treatment of FK866 lowered the intracellular NAD+ 
level in rat neuronal cells and induced cell death, which 
suggested that Nampt might regulate age-related brain 
diseases [34]. Van der Veer et al. [19] reported that 
Nampt over-expression attenuates replicative 
senescence and extends the life expectancy of human 
vascular smooth muscle cells, whereas FK866 induced 
premature senescence in these cells. Nonetheless, the 
relationship between Nampt and SC senescence is not 
well studied. The current study showed that Nampt 
mRNA and protein expression were significantly 

 
 
 

Figure 7. NAD intermediates treatment attenuates FK866-induced MSC senescence. (A) Evaluation of SA-β-gal staining and 
p16INK4A expression in young EP MSCs with FK866 pre-treatment in the presence of Vehicle (DMSO treated), 100 µM NAM, 100 µM 
NMN, 100 µM NAD, and 5 µM RSV (scale bar = 50 µm) and the quantitative analysis of the percentages of SA-β-gal positive cells and 
p16INK4A mRNA expression. (B, C, D) Effect of NAD intermediates treatment on NAD+ content (B) and NAD+/ NADH ratio (C) , as well as 
Sirt1 deacetylase activity (D) after pre-treating with FK866; n = 3 independent experiments. *P < 0.05, **P < 0.01. 
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decreased in senescent LP MSCs compared to that in 
young EP MSCs, which is consistent with our previous 
data (not shown). In adult neural stem/progenitor cells, 
specific deletion of Nampt impairs cell proliferation and 
self-renewal during aging [35]. In addition, we 
previously showed that senescence in MSCs from aged 
rats contributes to the dramatic decrease in Nampt 
expression compared to that in young cells, during 
physiological senescence [22]. Thus, we speculated that 
Nampt might play a crucial regulatory role in MSC 
senescence.  
 
Ample evidence suggests that senescent SCs have 
distinct features, including apparent morphological 
alterations, declined cell proliferation, and irreversible 
cell cycle arrest [36, 37]. To test our hypothesis, we 
modulated Nampt expression through gene 
manipulation and pharmacological inhibition. Nampt 
depletion in young EP cells induced senescence-like 
alterations, including enlarged cell surface area and 
reduced cell aspect ratio. Cell proliferation significantly 
declined with the majority of cells arrested in G1 phase. 
These observations suggested that Nampt depletion 
gives rise to not only senescence-associated changes in 
morphology but also age-related alterations in 
biological characteristics. Another significant feature of 
adult SCs is their multi-lineage differentiation potential. 
Recently, Liu et al. reported that osteogenic and 
adipogenic differentiation of adipose-derived SCs 
gradually declined due to replicative senescence after 
serial passage in vitro [38]. Consistent herewith, our 
results showed that Nampt depletion inhibits 
osteogenesis and adipogenesis in young MSCs. Kim et 
al. found that continuous cultivation in vitro affects 
human MSC lineage fate determination by favoring 
adipogenesis at the expense of osteogenesis during 
aging, which partly contrasts our findings [39]. The 
discrepant findings might be attributed to model species 
variation and different cell culture and differentiation 
conditions. Studies confirming the effect of aging on 
lineage fate determination and comparing MSC 
adipogenesis and osteogenesis have not been performed 
to date, and further research is warranted.   
 
Classic senescence-related SC markers, such as SA-β-
gal activity and expression of the senescence-related 
factors p16INK4A and p21WAF1/CIP, are commonly probed 
at cellular and mRNA levels to analyze cellular 
senescence [40, 41]. To verify MSC replicative 
senescence at LP, we first carried out SA-β-gal staining. 
The SA-β-gal-positive cell fraction was significantly 
more abundant in Nampt-deficient MSCs than that in 
control cells, suggesting that Nampt suppression could 
induce or accelerate cellular senescence. Other 
biological indicators of cellular senescence include 
p16INK4A and p21WAF1/CIP, which are cell-cycle related 

genes that participate in cell cycle modulation and 
function in a senescence-associated regulatory pathway 
[42-44]. Li et al. demonstrated that p21WAF1/CIP and 
p16INK4A expressions are elevated in aged muscle SCs 
compared to the levels in young cells [45]. In line 
herewith, we previously found that p16INK4A and 
p21WAF1/CIP levels were up-regulated in MSCs obtained 
from old rats compared to the levels in MSCs from 
young rats, with p16INK4A expression showing the most 
potent response [22]. After serial passages, p16INK4A 
mRNA expression was significantly up-regulated in 
senescent MSCs, although we did not find significant 
changes in p21WAF1/CIP mRNA levels (data not shown). 
Moreover, accumulating studies have clarified that 
p16INK4A serves as a reliable bio-marker to distinguish 
senescent cells, playing an important role in cellular 
senescence [46-49]. Therefore, in the current study, we 
examined SA-β-gal staining and p16INK4A expression in 
detail as biological indicators to assess senescence. In 
line with the results of SA-β-gal staining and 
quantitative analyses, p16INK4A expression was 
heightened in young MSCs after FK866 treatment or 
Nampt knockdown, which might account, at least in 
part, for MSC senescence induced by Nampt 
deprivation. We also analyzed Nampt-overexpressing 
LP MSCs. In contrast to depletion, Nampt repletion in 
senescent LP MSCs suppressed replicative senescence 
as evidenced by morphological, functional, and 
molecular changes, further strengthening our finding 
that Nampt exerts regulatory functions during the 
process of MSC replicative senescence. 
 
The theory of aging in mammals proposed by Imai 
states that Nampt–NAD+–Sirt1 axis modulates aging, in 
which Nampt catalyzes the first step in transforming 
NAM and phosphoribosyl pyrophosphate into NMN 
[15]. Subsequently, NAD+ is synthesized by NMN 
adenylyltransferase (Namnt) using NMN and ATP [15, 
27, 50]. Nampt indirectly regulates Sirt1 activity by 
influencing NAD+ biosynthesis, and subsequently, Sirt1 
deacetylates many age-related signaling molecules [16, 
51, 52]. Koltai et al. suggested that the age-related 
downregulation of intracellular NAD+ is associated with 
decreased Nampt expression [53]. Sirt1, a class III 
histone deacetylase, is one of the most important anti-
aging proteins and the best-known member of the 
sirtuin family, which regulates cellular senescence [54, 
55]. In aged rodents, Sirt1 levels reportedly decrease 
significantly in the several tissues like liver, kidneys, 
heart, and lungs [56, 57]. The enzymatic deacetylase 
activity of this NAD+-dependent longevity factor has 
been suggested to be modulated by the intracellular 
NAD+ content [51]. In our current study, both Sirt1 
protein expression and Sirt1 activity in LP MSCs were 
substantially lower than those in EP MSCs. However, 
there was no significant change in Sirt1 protein  
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expression after FK866 treatment or Nampt over-
expression in MSCs, whereas Nampt deficiency or 
adequate levels led to decreased or increased Sirt1 
activity, respectively. The results were in line with our 
previous findings, indicating that the enzymatic activity 
is more important than the expression for Sirt1 
functions [58-60]. Based on this notion, we 
hypothesized that Nampt could modulate intracellular 
NAD+ concentrations and Sirt1 activity in MSCs at EP 
or LP. As expected, NAD+ concentrations as well as 
NAD+/ NADH ratio were decreased, and Sirt1 activity 
was inhibited upon interference with Nampt expression 
in young MSCs. Accordingly, Nampt overexpression 
contributed to the accumulation of intracellular NAD+ 
level as well as NAD+/ NADH ratio, and also elevated 
Sirt1 activity in senescent MSCs. These results were in 
accordance with our previous findings in aged rats. 
NAM and NMN are important intermediates that are 
involved in enzymatic reactions during NAD+ 
biosynthesis. NAM, the amide form of vitamin B3, is a 
bi-functional molecular mediator that can either fuel 
NAD+ production or inhibit Sirt1 deacetylase activity; 
as such, it has contradictory roles in regulating cellular 
senescence. In particular, NAM can fuel NAD+ 
production at low doses and inhibit Sirt1 deacetylase at 
high doses [61]. In the current study, both replicative 
senescent MSCs and FK866-induced senescent cells 
were treated with different exogenous NAD 
intermediates, including NAM in the low concentration 
range (100 µM), 100 µM NMN, 100 µM NAD, and 5 
µM of the Sirt1 activator RSV. Moreover, we verified 
that supplement of NAD intermediates could not only 
rescue replicative senescent MSCs but also ameliorate 
FK866-induced MSC senescence via preserving NAD+ 
levels and Sirt1 activity, further confirming that Nampt 
delays MSC senescence via the NAD+-Sirt1 axis. Our 
results were consistent with published data showing that 
NAM, an important NAD+ precursor, diminished 
FK866-induced cell senescence in human fibroblastic 
Hs68 cells [62]. The intermediate product, NMN, is the 
downstream effector of Nampt in the NAD+ salvage 
pathway, and exogenous NMN can increase 
intracellular NAD+ synthesis, which in turn can 
upregulate the diminished Sirt1 activity caused by aging 
[63]. However, in the current study, we used an 
exogenous NAD+ in vitro assay. Little is known about 
whether NAD+ from the cell lysate added to the reaction 
mixture is sufficient to increase the NAD+ concentration 
and alter Sirt1 activity. Therefore, the exact mechanism 
related to increased Sirt1 activity in an in vitro assay 
following NAD+ manipulation deserves deeper 
exploration in the future. 
 
Overall, our data comprehensively validate the 
contention that Nampt has regulatory effects on MSC 
replicative senescence. Further, Nampt-mediated NAD 

synthesis and Sirt1 deacetylase activity are critical 
determinants of MSC senescence and the exogenous 
intermediates participated in NAD metabolism can 
delay or rescue Nampt-mediated MSC senescence. Our 
findings not only provide a foundation for further work 
to disclose the molecular mechanisms underlying SC 
senescence but might also aid in the development of 
promising strategies to delay MSC senescence and 
prevent age-related diseases. Further investigations 
concerning utilizing relevant animal models to 
understand the precise mechanisms involved in Nampt-
mediated regulation on MSC senescence are in 
progress.  
 
MATERIALS AND METHODS 
 
Ethics Statement 
 
This study was conducted in accordance with the ethical 
standards, the Declaration of Helsinki, and national and 
international guidelines, and was approved by the 
authors’ institutional review boards. 
 
MSC isolation and culture  
 
MSCs from healthy, male, 1–2-month-old Wistar rats 
were isolated by the whole bone marrow adherent 
method, as previously described [22]. All animal 
experimental procedures used were consistent with the 
ethical standards of the Ethic Committee of Jilin 
University (permit number: SYXK 2013-0005). Cells 
were maintained in Dulbecco’s modified Eagle’s 
medium with nutrient mixture F-12 (DMEM-F12; 
Gibco, USA) with 10% fetal bovine serum (FBS, 
Gibco) 100 U/mL penicillin, and 100 μg/mL 
streptomycin. The culture medium was replaced every 3 
days. MSCs were consecutively expanded up to P10. 
MSCs at P3 (EP) and P10 (LP) were used in subsequent 
experiments. 
 
Cell growth assays and population doubling time 
 
The proliferative capacity of MSCs was assessed by the 
cell counting method. Briefly, 5 × 103 cells were seeded 
into 24-well culture plates and were counted daily by 
trypan blue exclusion for 1 week. Cell growth curves 
were generated to analyze cell growth kinetics. PDT 
was calculated as previously described [22, 23]. Briefly, 
7 × 105 cells were seeded in a 10-cm dish and cultured. 
When cells reached 80% confluency, they were 
harvested and counted. PDT was calculated according 
to the following formula: PDT = Ct / ln(Nf / Ni) / ln(2), 
where Nf is the number of harvested cells, Ni is the 
number of seeded cells, and Ct is the culture time.  
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Cell cycle analysis 
 
For cell cycle analysis, 1 × 106 cells were harvested and 
fixed in 70% ethanol at 4 °C overnight. After 
centrifugation, the cell pellets were washed three times 
with ice-cold phosphate-buffered saline (PBS). Then, 
the pellets were incubated with 100 μL of RNaseA at 37 
°C for 30 min. Next, the cells were incubated with 200 
μL propidium iodide at 4 °C for at least 15 min. DNA 
content was analyzed using a FACS Calibur (BD 
Biosciences, USA) with Cell Quest software, and the 
SPF and PI were calculated.   
 
Adipogenic and osteogenic differentiation assays 
 
To detect multilineage differentiation potential, MSCs 
were cultivated in adipogenic or osteogenic culture 
medium for 2–3 weeks, as previously described [23]. 
Oil red O staining was used to show lipid droplets after 
adipogenic induction, and Alizarin red S staining was 
conducted to observe bone matrix mineralization after 
osteogenic induction. To quantify the retention of Oil 
red O, stained adipocytes were extracted with 4% Igepal 
CA630 (Sigma-Aldrich, USA) in isopropanol for 15 
min. Further, to quantify mineralization, 10% 
cetylpyridinium chloride (Sigma-Aldrich) was added 
for 30 min at room temperature (RT). Respective 
absorbance values were measured using a kinetics 
ELISA reader (Spectra MAX 250, Molecular Devices) 
at 490 nm and 560 nm for final quantitative analysis.  
 
Senescence-associated β-galactosidase activity assay 
 
To assess MSC senescence, SA-β-gal staining was 
conducted using a senescent cell histochemical staining 
kit (Beyotime, China), following the manufacturer’s 
instruction. Briefly, cells were fixed in fixation buffer 
for 15 min at RT, washed twice with PBS, and 
incubated in Staining Solution Mix for 12–14 h. Then, 
the percentage of β-galactosidase-positive cells was 
determined using a bright-field microscope 
(OLYMPUS, Japan), assessing at least 200 cells in ten 
different microscopic fields.  
 
FK866 and NAD intermediates treatment 
 
To determine the optimal concentration of FK866 
without inducing robust cellular toxicity, 3,000 cells 
were seeded in 96-well plates and incubated in a 
humidified incubator at 37 °C for 24 h. Thereafter, the 
cells were treated with different concentrations of 
FK866 (0–100 nM; Sigma-Aldrich) for 72 h before the 
addition of CCK8 solution (10 µL/well). After 
incubation at 37 °C for 1 h, the absorbance at 450 nm 
was measured with a microplate reader. Subsequently, 
senescent LP MSCs were cultured in the presence or 

absence of different exogenous NAD intermediates, 
including 100 µM nicotinamide (NAM), 100 µM 
nicotinamide mononucleotide (NMN), 100 µM NAD, 
and 5 µM of Sirt1 activator resveratrol (RSV) for 48 h. 
For FK866-induced cellular senescence, young EP cells 
were pre-treated with complete medium containing 10 
nM FK866 or Vehicle (DMSO) for 24 h, and then the 
cells following FK866 treatment were respectively 
exposed to 100 µM NAM, 100 µM NMN, 100 µM 
NAD, and 5 µM RSV for 48 h. Afterward, cells were 
collected for SA-β-gal assay, NAD+ and NAD+/NADH 
measurement, Sirt1 activity assay, and protein 
expression studies. 
 
Lentiviral transduction of MSCs 
 
Prior to transduction, 1.5 × 104 MSCs at P3 or P10 were 
seeded in 24-well plates and incubated at 37 °C 
overnight. Then, the cells were transduced with the 
purchased lentiviral particles encoding Rat Nampt or 
control vector, or with shNampt or non-targeting shCon 
(GeneChem, China) in the presence of 5 μg/mL 
polybrene (GeneChem) for 10 h. Seventy-two hours 
after transduction, EGFP expression was observed 
under a fluorescence microscope (OLYMPUS, Japan) 
and transduction efficiency was evaluated by RT-qPCR 
and western blotting. 
 
Gene expression analysis 
 
Total RNA was extracted from MSCs using TRIzol 
(Takara, China). cDNA was synthesized using an RNA 
PCR Kit (AMV) Ver.3.0 (Takara). mRNA levels were 
measured by RT-qPCR using TransStart Top Green 
qPCR SuperMix (TRANS, China) with an ABI 7300 
Real-Time PCR System (Applied Biosystems, USA). 
Rat-specific primers were synthesized, and included: β-
actin: forward 5′-GGAGATTACTGCCCTGGCTCCTA-
3′, reverse 5′-GACTCATCGTACTCCTGCTTGCTG-3′; 
Nampt: forward 5′-AGGGGCATCTGCTCATTTGG-3′, 
reverse 5′-TGGTACTGTGCTCTGCCGCT-3′; Sirt1: 
forward 5′-GCAGGTTGCAGGAATCCAAA-3′, reverse 
5′-GGCAAGATGCTGTTGCAAAG-3′; p16INK4A: for-
ward 5′-AAACACTTTCGGTCGTACCC-3′, reverse, 5′-
GTCCTCGCAGTTCGAATC-3′. The thermal cycling 
protocol included pre-incubation at 95 °C for 2 min, 
followed by 40 cycles of amplification at 95 °C for 15 s 
and annealing for 30 s at 60 °C, and a final extension at 
72 °C for 5 min. Data were normalized to the 
expression of β-actin using the 2−ΔΔCt method. 
 
Western blot analysis 
 
Total protein was extracted from MSCs using RIPA 
lysis buffer (Beyotime, China) supplemented with 
proteinase inhibitors. Protein concentrations were 
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determined with a BCA Protein Assay Kit (Beyotime). 
Then, 25 μg of each protein sample was separated by 
12% SDS-PAGE and transferred onto PVDF 
membranes (Millipore, USA) by electroblotting, after 
which nonspecific binding to the membrane was 
blocked with 5% non-fat milk for 1–2 h at RT. Then, 
the membranes were probed with anti-Sirt1 (1:1000, 
Upstate, USA), anti-Nampt (1:1000, BETHYL, USA), 
and anti-β-actin (1:1500, Abcam, UK) antibodies 
diluted in Tris-buffered saline. After incubation at 4 °C 
overnight, the membranes were incubated with anti-
rabbit IgG secondary antibody. The protein blots were 
visualized using an Electro-Chemi-Luminescence 
detection system (JENE, UK) and quantified with 
ImageJ software. 
 
Quantification of intracellular NAD+ and 
NAD+/NADH ratio  
 
Intracellular NAD+ concentrations were determined 
using the NAD+/NADH Quantification Colorimetric Kit 
(BioVision, USA), in accordance with the 
manufacturer’s instructions. Briefly, 400 μL NADH/ 
NAD+ Extraction Buffer was added to 2 × 105 cells 
frozen at −80 °C for 20 min and thawed at RT for 10 
min. Then, half of the supernatants were directly 
transferred to a 96-well plate, and the other half were 
heated in a water bath at 60 °C for 30 min before the 
detection of NADt (NADH and NAD+) and NADH, 
respectively. Next, 98 μL of NAD+ Cycling Buffer and 
2 μL of NAD+ Cycling Enzyme Mix were gently mixed 
and added to each well for incubation at 37 °C for 5 
min. Then, 10 μL of NADH Developer was added for 2 
h, and the optical density at 450 nm was read using a 
multi-well spectrophotometer. The NAD+ and NADH 
amount, and NAD+/NADH ratio in each sample were 
calculated and normalized by cell numbers. A standard 
curve was performed with the NADH standards 
included in the kit.   
 
Sirt1 deacetylase activity assay 
 
Sirt1 deacetylase activity was measured using a SIRT1 
assay kit (Sigma-Aldrich) following the manufacturer’s 
instructions. Total protein was extracted, and protein 
concentrations were measured as described above. Next, 
20 μL of protein extract was gently and uniformly 
blended with a mixture of 15 μL Assay Buffer and 5 μL 
NAD+ solution. Then, 10 μL SIRT1 Substrate Solution 
was added to the mixture, which was incubated at RT 
for 10 min. After the addition of 5 μL of developing 
solution, the samples were incubated at 37 °C for 10 
min. Fluorescence was read at 450 nm (excitation 360 
nm) using a plate reader, and Sirt1 activity was 
calculated and normalized by protein content. A  

standard curve was generated on the basis of the 
Standard Solution contained in the kit. 
 
Statistical analysis 
 
All experiments were performed three times 
independently. Two groups were compared by a two-
tailed Student’s t-test. All experimental data are 
expressed as the mean ± standard deviation, and 
differences were considered significant at P < 0.05. 
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SUPPLEMENTARY MATERIAL 
 

 
 
 

Supplementary Figure 1. Determination of Sirt1 protein expression by Western blotting. (A) The effect of the specific 
Nampt inhibitor FK866 on Sirt1 protein expression in young EP MSCs. (B) The protein levels of Sirt1 in senescent LP MSCs when 
Nampt was over-expressed; n = 3 independent experiments. N.S., not significant. 
 


