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Abstract

The oncolytic adenovirus Delta24-RGD represents a new promising therapeutic agent for patients with a malignant glioma
and is currently under investigation in clinical phase I/II trials. Earlier preclinical studies showed that Delta24-RGD is able to
effectively lyse tumor cells, yielding promising results in various immune-deficient glioma models. However, the role of the
immune response in oncolytic adenovirus therapy for glioma has never been explored. To this end, we assessed Delta24-
RGD treatment in an immune-competent orthotopic mouse model for glioma and evaluated immune responses against
tumor and virus. Delta24-RGD treatment led to long-term survival in 50% of mice and this effect was completely lost upon
administration of the immunosuppressive agent dexamethasone. Delta24-RGD enhanced intra-tumoral infiltration of F4/80+
macrophages, CD4+ and CD8+ T-cells, and increased the local production of pro-inflammatory cytokines and chemokines. In
treated mice, T cell responses were directed to the virus as well as to the tumor cells, which was reflected in the presence of
protective immunological memory in mice that underwent tumor rechallenge. Together, these data provide evidence that
the immune system plays a vital role in the therapeutic efficacy of oncolytic adenovirus therapy of glioma, and may provide
angles to future improvements on Delta24-RGD therapy.
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Introduction

Patients harboring a malignant glioma have a dismal prognosis.

Despite current therapy consisting of surgery, chemotherapy and

radiotherapy, the median survival of glioblastoma (GBM, grade IV

glioma) patients is 14.6 months [1]. New treatment modalities are

necessary to improve this prognosis. Oncolytic viruses (OV),

capable of replicating specifically in cancer cells, have shown

promising results in various cancer models [2–5] and the first

clinical trials have shown safety and feasibility of this treatment

option [6–10]. The oncolytic adenovirus Delta24-RGD has shown

potent antitumor activity in various preclinical studies [11–14] and

is currently under investigation in phase I/II trials for recurrent

glioblastomas [15,16]. The backbone of this human serotype 5

adenovirus has a 24 base-pair deletion in the E1A gene,

abrogating E1A binding to the retinoblastoma protein (RB) and

rendering the virus tumor-specific. Additionally, an RGD peptide

inserted into the fiber-knob allows the virus to anchor directly to

aVb3 and aVb5 integrins, therewith improving infectability of

integrin-positive GBM cells [14,17].

Recent literature points toward the importance of the immune

response during oncolytic therapy and evidence is accumulating

that the immune response is essential for achieving therapeutic

effects with virotherapy [18–24]. In fact, OVs have been reported

to aid the immune system in mounting an anti-tumor response

[19,20,22,24,25]. Conversely, it has been shown that the immune

response hampers the efficacy of viral therapy by attacking the

virus, and that by suppressing the immune system, viral replication

and anti-tumor efficacy is enhanced [18,21,26]. Due to the

presumed species-specificity of human adenoviruses, the efficacy of

Delta24-RGD has in the past been assessed exclusively in human

xenografts in immuno-compromised animal models [5,27–29].

However, the use of these models precludes studies into the role of

the immune system in adenoviral oncolytic virotherapy.

To address the above aspects for the Delta24-RGD virus in

glioma, we implemented the immune competent syngeneic GL261

glioma model to investigate the role of the immune system during

Delta24-RGD treatment of intracranial glioma. We show that

Delta24-RGD can replicate and induce cytotoxicity in the murine

glioma cell line GL261 [30] and therefore can be used as a model

to study the contribution of the immune system in oncolytic

adenoviral therapy of glioma. Our results demonstrate for the first

time that Delta24-RGD treatment induces anti-viral and anti-

tumor immune responses, resulting in long-term survival and

lifetime protection against tumor rechallenge.
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Results

Delta24-RGD Induces Cytotoxicity In vitro and
Neutralizing Antibodies In vivo

To evaluate the susceptibility of murine GL261 cells to Delta24-

RGD infection, GL261 cells were infected with a virus concen-

tration range of 200–800 Multiplicity of Infection (MOI). This

resulted in a dose-dependent decrease in cell viability, with

approximately 50% cell death with MOI 200 Delta24-RGD at

day 6 (figure 1A). As an indicator of viral replication of Delta24-

RGD in GL261 cells in vitro, viral E1A levels were determined by

qPCR between 24–96 hr post-infection at MOI 100, showing an

approximate 100-fold increase in E1A copies in the cells and a 10-

fold increase in the supernatants between 48 and 96 hr (figure 1B).

In vivo replication was assessed by injection of Delta24-RGD into

intracranial GL261 tumors. Analysis of tumors revealed the

presence of adenoviral hexon at 96 hr and 14 days post injection,

suggesting ongoing viral activity for at least 2 weeks (figure 1C).

One of the hallmarks of anti-viral immunity is the production of

neutralizing antibodies against the virus. To evaluate this in our

model, sera were sampled from mice that received intratumoral

Delta24-RGD-injection. The infection efficiency of the luciferase-

encoding adenoviral vector Ad-luc-RGD was assessed on A549

cells in the presence or absence of mouse serum obtained at 48, 96

hours, 7 or 14 days post treatment (figure 1D). At 48 hours, no

inhibition of viral infection was observed. Starting at 96 hours,

neutralizing antibodies in the sera of virus-treated mice inhibited

the infection, albeit at variable levels between the mice At 7 and 14

days, high levels of neutralizing antibodies were present in all

mice, completely blocking adenoviral infection (figure 1D). Sera

derived from PBS-treated mice did not inhibit Ad-luc-RGD

infection (results not shown).

Immunosuppressive Treatment Inhibits In vivo Efficacy of
Delta24-RGD

To assess the therapeutic activity of Delta24-RGD in an

immune competent model, mice bearing intracranial GL261

tumors were locally injected with 108 infectious units (iu) Delta24-

RGD, which induced a significant survival benefit with 50% of the

treated mice (n = 8) experiencing long-term survival (figure 2A, red

line compared to PBS group, blue line P,0.0003). Interestingly,

the survival benefit induced by Delta24-RGD treatment was

completely abolished upon daily administration of the immune

suppressive agent dexamethasone (green line, p,0.0028 com-

pared to virus alone, red line, figure 2A). Dexamethasone alone

had no effect on tumor growth (purple line), and did not induce

toxicity in control, non-tumor bearing mice (n = 4, black line,

figure 2A).

The counteracting effect of dexamethasone on survival was not

related to an inhibitory effect on virus activity in GL261 cells. The

in vitro cytotoxicity of the virus was comparable in the presence or

absence of (a dose range of) dexamethasone (figure 2B). In vivo, the

pattern of tumoral hexon staining in dexamethasone co-treated

mice (figure 2C) was similar to virus only treated mice (figure 1C).

Together, these results suggest that the immunosuppressive agent

dexamethasone does not directly affect viral activity but inhibits

the immune-mediated therapeutic efficacy of Delta24-RGD.

Delta24-RGD Induces Protective Anti-tumor Immunity
To further investigate whether the survival benefit after

Delta24-RGD treatment is immune mediated, the long-term

survivors and the dexamethasone-treated control mice from the

previous survival experiment were (re)challenged with GL261 cells

in the contralateral hemisphere. All control mice developed

tumors within 22 days while the long-term survivors from the

Delta24-RGD treatment show protection against new tumor

development (p = 0.0067, figure 3A, B). Analysis of the brains of

these long-term surviving rechallenged mice, revealed absence of

tumor cells (figure 3A). Collectively, these results indicate that

Delta24-RGD treatment elicits a therapeutic and long-lasting

protective anti-tumor immune response.

Delta24-RGD Treatment is Accompanied by Local
Production of Specific Cytokines and Chemokines

Following up on our findings of immune-mediated antitumor

activity, we further investigated the effects of Delta24-RGD on the

local production of inflammatory cytokines. In brain lysates of PBS

and Delta24-RGD treated mice, we analyzed the presence of

cytokines and chemokines. Levels of IFNc, a key cytokine in viral

infections, were found to be higher in tumor-bearing mice

compared to non-tumor bearing mice (white bars compared to

grey and black bars, figure 4A). Upon viral treatment IFNc
production was significantly upregulated compared to the control

group by 12 hr (grey bar vs black bar, p,0.05). This induction

was completely abrogated when mice were co-treated with

Figure 1. Delta24-RGD induces cytotoxicity in vitro and neu-
tralizing antibodies in vivo. A) GL261 cells were seeded and infected
in triplicate with a viral dose ranging from 200 to 800 MOI. Viability was
measured using a WST-1 assay at day 3, 6 and 8 post viral infection.
Results are expressed as mean percentage of non-treated controls. Error
bars indicate SD. B) Quantitative PCR for E1A to assess the viral load in
GL261 cells. Harvested cells and supernatant were measured after 24,
48, 72 and 96 hr. C) Immunohistochemical analysis of the adenoviral
protein hexon in intracranial GL261 tumors harvested 24, 96 hr and 14
days post virus injection. Representative images of two mice per time-
point are shown. D) Ad-luc-RGD was incubated on A549 cells in the
presence or absence of serial dilutions of mouse sera derived from
Delta24-RGD treated mice at indicated time-points. Results are
presented as percentage of control 6 SD.
doi:10.1371/journal.pone.0097495.g001
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dexamethasone (black bar vs striped bar, p,0.05). Of the acute

phase cytokines, production of IL-1b in some of the treated mice

could be detected at 12 hours (figure 4A), however this was not

significant due to high variability between mice. IL-6 production

increased more than 100 fold in response to viral treatment by 6

and 12 hours post treatment (grey bar vs black bar, p,0.0001).

Although dexamethasone co-treatment significantly diminished

this upregulation (black bar vs diagonally-striped bar, p,0.05),

substantial levels of IL-6 are still present in these mice compared to

the PBS-controls (grey bar vs diagonally-striped bar, p,0.05).

The chemokines IFNc-induced protein (IP-10, CXCL10) and

Macrophage Inflammatory Protein (MIP)-1a (CCL3), responsible

for the recruitment of lymphocytes and monocytes, respectively,

were also induced at 6 and 12 hrs post treatment (Figure 4B). This

was significant for IP-10 at 6 hrs post treatment (grey vs black bar,

p,0.05) and dexamethasone treatment did not affect this

induction. MIP-1a levels were found to be significantly upregu-

lated at 12 hrs in both virus-treated (p,0.05), and dexametha-

sone-treated (p,0.05) mice. Dexamethasone and viral treatment

increased the MIP-1a levels in only a few of the mice and therefore

did not reach statistical significance (p = 0.1129). Other cytokines

analyzed (GM-CSF, IL-2, IL-4, IL-10, IL-12 (p70), IL-13, IL-17,

VEGF and TNFa) were below detection level of the assay, or did

not exhibit any significant changes upon tumor growth or

Delta24-RGD treatment (results not shown).

Delta24-RGD Infection Attracts F4/80+ Macrophages,
CD4+ and CD8+ T-cells to the Tumor

To evaluate if the induction of cytokines and chemokines upon

Delta24-RGD treatment was followed by actual influx of immune

cells and to visualize the spatial distribution of these cells, brains

from mice were harvested for immunohistochemical analysis of

F4/80+, CD4+ and CD8+ cells at 6 hours and 14 days post

treatment. The F4/80+ staining for macrophages revealed that

these cells are present inside the tumor at 6 hours post infection

(not shown) and at 14 days both in PBS and in virus treated mice

(figure 5A). Interestingly, in dexamethasone-treated mice, both

with and without virus, F4/80+ cells accumulated at the periphery

of the tumor with no sign of tumor infiltration.

CD4+ and CD8+ cells were not observed at 6 hours post

treatment (not shown). A small increase was observed in the

staining for CD4+ cells in the tumors of Delta24-RGD treated

mice at 14 days, while very few CD4+ cells were detected in the

dexamethasone treated mice (figure 5B). An increase in the

numbers of CD8+ T cells in the Delta24-RGD-treated tumors was

noted (figure 5C). Very few or no CD8+ T cells were observed in

PBS-treated tumors and the numbers of CD8+ T cells were

decreased in dexamethasone+virus treated tumors compared to

virus alone (figure 5C).

Treatment Efficacy in a Multifocal Model
To investigate whether the immune mediated anti-tumor effects

induced by Delta24-RGD treatment could also act upon tumor

cells at a distance, a multifocal tumor model was set up. To this

end, GL261 cells were inoculated bilaterally into both hemi-

spheres. Five days after tumor implantation, Delta24-RGD

treatment (or PBS as a control) was injected unilaterally. After

14 days mice were sacrificed to investigate the influx of CD8+ T

cells. Delta24-RGD treated tumors were smaller and, as expected,

contained high numbers of CD8+ cells (figure 6A, B). Interestingly,

CD8+ infiltrates were also found in the contralateral tumor and to

a greater extent than in PBS-treated tumors (figure 6B). Despite

the influx of CD8+ T-cells in the contralateral, untreated tumor,

survival of these mice was not significantly different from PBS-

treated mice (figure 6C), presumably due to the large total tumor

load. In this model, the untreated contralateral tumor led to

symptomatic tumor burden.

Treatment-induced CD8+ T Cells Recognize Both Virus
and Tumor

To gain further insight into the Delta24-RGD-induced specific

cellular immune response, splenocytes from naı̈ve, PBS- and virus-

treated mice, harvested 48 h, 96 h, 7 days and 14 days post

treatment and were co-cultured with either the virus or GL261

tumor cells. IFNc production was assessed as a marker for CD8+
T cell activation upon antigen recognition. At 48 hours post

treatment, levels of IFNc were comparable between the groups

(results not shown). However, starting from 96 hours splenocytes

from virus treated mice had a higher production of IFNc after

Delta24-RGD co-culture, than those from naı̈ve or PBS-treated

Figure 2. Delta24-RGD treatment results in long-term survival
in the GL261 immune competent model. A) Kaplan-Meier survival
plot of C57BL/6 mice injected with GL261 cells and injected five days
later with Delta24-RGD (n= 8, red line), PBS (n = 8, blue line) or received
dexamethasone treatment (daily 7.5 mg/kg, upon day 55 (arrow) (n = 8,
light purple line) and Delta24-RGD+dexamethasone (n = 8, green line).
Non-tumor bearing mice received dexamethasone as a control for
dexamethasone toxicity (n = 4, black line). B) To test the effect of
dexamethasone on viral efficacy in vitro GL261 cells were infected in
triplicate with Delta24-RGD in the absence (light grey bar) and presence
of 0.2, 2, 20 and 200 mM dexamethasone (0.2 d to 200 d). The mean
viability is expressed as percentage of the control 6 SD (white bar). C)
In vivo staining for the adenoviral protein hexon shows a similar
staining pattern with dexamethasone (10 mg/kg/day) compared to the
control (shown in figure 1C). Representative images of two mice per
time-point are shown.
doi:10.1371/journal.pone.0097495.g002
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mice, indicating that splenocytic T cells recognize the virus

(figure 7A).

In parallel, the T cell response directed to the tumor cells was

assessed by co-culture of splenocytes with GL261 tumor cells.

Notably, splenocytes derived from virus-treated mice at day 14

produced higher levels of IFNc in GL261 co-culture compared to

splenocytes from PBS-treated or naı̈ve mice (figure 7B). No

difference in IFNc levels was observed between splenocytes

derived at earlier timepoints (figure 7B). Co-cultures of splenocytes

with lysates prepared from GL261 cells showed similar levels of

IFNc (results not shown). Together, these results indicate that local

Delta24-RGD treatment elicits a specific T cell response to both

the virus and the tumor. Moreover, viral specificity, detected at

96 hours, precedes tumor cell specificity, which is detected at 14

days.

Discussion

It is relatively unexplored thusfar to what extent oncolytic

adenoviruses induce an anti-tumor immune response and how this

contributes to the therapeutic efficacy of the virus. Clinical trials

conducted with ONYX-015, an E1B attenuated adenovirus, were

mainly focused on the direct oncolytic effect in various tumors or

provided anecdotal evidence of a lymphocytic infiltrate in glioma

after treatment [6,31,32]. Recently, the anti-tumor immune

response upon treatment with a GM-CSF-armed oncolytic

adenovirus was reported in humans [33]. This clinical study

Figure 3. Delta24-RGD induces long term anti-tumor immunity. Long term survivors (LTS, n = 4) were rechallenged with GL261 cells. A) HE
staining showing tumor growth in naı̈ve mice and the absence of tumor in the long term survivors (LTS) (magnification 1,25x (left) and 5x (right)), V is
indicating the ventricle. B) Kaplan-Meier survival plot demonstrating significant survival of rechallenged mice (log-rank test p = 0.0067).
doi:10.1371/journal.pone.0097495.g003

Figure 4. Local expression of cytokines and chemokines is upregulated after viral treatment. A) Cytokines (IFNc, IL-1b and IL-6) and B)
chemokines (IP-10 and MIP-1a) were measured in brain lysates of naı̈ve controls (white bars), PBS-treated tumor bearing controls (grey bars), Delta24-
RGD treated mice (black bars), dexamethasone co-treated controls (horizontally-striped bars) and dexamethasone-virus treated mice (diagonally-
striped bars). Mean cytokine/chemokine concentrations of two brain lysates in pg/ml 6 SD are shown (stars indicate p,0.05).
doi:10.1371/journal.pone.0097495.g004
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involved various types of cancer but not glioma. With the brain

traditionally considered as being an immunologically privileged

organ, a concept now revisited, studies into immune-mediated

therapies are of particular interest. The study presented here on

oncolytic adenoviral therapy for glioma demonstrates clear

evidence of a treatment-induced anti-tumor immune response

that contributes to therapeutic outcome.

Using an immune competent glioma model based on the

murine GL261 cells, we show that Delta24-RGD can infect,

replicate and induce cytotoxicity in these glioma cells as shown in

figure 1. Compared to human glioma cultures [5], about a 10-fold

higher MOI is required to induce cytotoxicity in the murine

GL261 glioma cells in vitro. Replication of the virus in GL261

cells is also less efficient than in human tumor cells, as has also

been described for adenoviral replication in a panel of murine

carcinoma cells [34]. Moreover, the life cycle of the virus seems

prolonged in GL261 cells; the increase in the expression of E1A

gene starts at 72 hr, while in other human glioma cell lines Delta-

24RGD has a replication cycle of approximately 48 hrs [5].

Despite this reduced oncolytic potency, it is possible to mimic and

study the induction and therapeutic benefit of an anti-tumor

Figure 5. Influx and spatial distribution of F4/80+ macrophages, CD4+ and CD8+ cells. Immunohistochemical analysis of F4/80+
macrophages (A), CD4+ cells (B) and CD8+ cells (C) at 14 days post injection. Where indicated mice received 10 mg/kg/day dexamethasone (the 2
right columns). Representative images of two mice per time-point are shown (magnification 20x).
doi:10.1371/journal.pone.0097495.g005

Figure 6. Influx of CD8+ T-cells in untreated tumor in multifocal model. A) H&E staining of multifocal tumor model showing GL261 tumors
located in both hemispheres. The right-side tumor is either treated with Delta24-RGD or PBS as a control (magnification 1,25x). B)
Immunohistochemical staining for CD8+ cells. Representative image of two mice per group is shown (magnification 20x). C) Survival analysis of
multifocal model (not significant, Log-Rank test).
doi:10.1371/journal.pone.0097495.g006
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immune response in relation to oncolytic adenovirus treatment of

intracranial glioma.

The GL261 model is moderately immunogenic, since only 40%

of mice reject the tumor when vaccinated with GL261 cells prior

to tumor injection. Vaccination post tumor injection does not

influence the tumor growth in this model [30]. Delta24-RGD was

administered in mice with established GL261 tumors five days

after tumor cell injection. At that time point the immune

suppressive environment, a known hallmark of glioma, is already

established as exemplified by the presence of regulator T-cells

[35,36]. Indeed, our results show that the intratumoral influx of

effector immune cells (CD8+ T-cells) is very limited in untreated

circumstances (figure 5C).

In immune deficient glioma models, Delta24-RGD treatment

cures up to 80% of the mice [5,14,37]. This effect is a direct result

of the oncolytic activity of the virus. In an immune competent

setting, however, interplay with the immune system is initiated. In

the GL261 model, Delta24-RGD cured 50% of mice. Moreover,

upon rechallenge, long-term survivors are protected against tumor

formation, signifying the role of a memory immune response

(figure 3). The importance of the immune system is also

highlighted when it is suppressed by daily administration of

dexamethasone, which completely abolishes the treatment efficacy

of Delta24-RGD. In vitro, dexamethasone did not reduce

Delta24-RGD-induced oncolysis (figure 2B) and staining of treated

tumors for the adenoviral protein hexon showed no difference

between virus-treated and dexamethasone+virus-treated mice

(figure 1C and 2C). Furthermore, no cytotoxic side effects of

dexamethasone were detected and tumor growth and survival in

dexamethasone treated mice did not differ from PBS-treated

control mice (figure 2A). Therefore, it is unlikely that dexameth-

asone negatively influenced viral replication or survival in this

model, and it is more probable that the immunosuppressive effects

of dexamethasone are responsible for hampering the therapeutic

efficacy of Delta24-RGD [38,39]. This is also consistent with the

reduced intratumoral influx of CD4+ and CD8+ T-cells (figure 5B,

C) and the diminished production of IFNc (figure 4A) in the brains

of dexamethasone treated mice. These results are in line with other

reports showing diminished lymphocyte infiltration in the brain

tumor area during dexamethasone treatment [40,41].

Interestingly, with dexamethasone treatment F4/80+ macro-

phages are also no longer present in the central tumoral area but

are located at the border of the tumor. This phenomenon has also

been described with cyclophosphamide administration and HSV

oncolytic virotherapy in a rat glioma model, where the peripheral

macrophages were restrained at the border of the tumor whereas

brain resident macrophages/microglial cells accumulated in the

core of the tumor [21,42]. The reported effects of dexamethasone

on tumor vascular permeability may play a role in hampering the

influx of peripheral macrophages [43]. Taken together, these

results may have implications for clinical trials testing (adenoviral)

OVs. Dexamethasone is commonly prescribed during glioma

management, albeit at lower dosages than used in the current

mouse study, and may negatively affect development of immune

anti-tumor activity. Also, the concomitant use of chemotherapy

with Delta24-RGD may warrant caution as the generalized

induction of cytopenia and immune cell depletion may hamper the

anti-tumor response elicited by Delta24-RGD treatment [44].

Treatment with Delta24-RGD creates a pro-inflammatory

environment in the tumor by the upregulation of several cytokines,

chemokines and the recruitment of F4/80+ macrophages, CD8+
and CD4+ T cells (figure 4, 5). The cytokines induced upon viral

treatment, have previously been described upon systemic or direct

injection of adenoviral vectors in the brain and are presumed to be

a direct effect of the immune response towards adenoviral capsid

proteins [45,46]. This response is regulated via the complement

system [47] and is Toll-like receptor (TRL) 2 and TRL9

dependent [48]. We hypothesize that, together, these danger

signals induced by the virus are able to tip the balance from the

immune suppressive environment induced by the glioma [36],

towards a more pro-inflammatory condition in which immune

cells are attracted to the tumor and an anti-tumor response can be

elicited. This condition is not only induced in the virus-injected

tumor, but it also able to extend to tumor cells at a distance, as is

shown in our multifocal model (figure 6). The highly infiltrative

nature of human gliomas, with individual tumor cells at large

Figure 7. Delta24-RGD treatment of GL261 glioma induces virus and tumor specific T cells. IFNc levels (in pg/ml6SD) in supernatants of
splenocytes derived at 96 hr and 7 and 14 days after treatment from naı̈ve, PBS and Delta24-RGD treated mice and cocultured with Delta24-RGD (A)
or GL261 cells (B). The IFNc levels were corrected for those produced by splenocytes cocultured with the control cell line A549.
doi:10.1371/journal.pone.0097495.g007
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distance from the tumor core, makes this an important feature of

adenoviral OV therapy. Indeed, in the multifocal model, Delta24-

RGD treatment of the tumor in the right hemisphere led to the

infiltration of CD8+ T cells in the contralateral tumor. Despite

these effects, we did not observe a survival benefit of Delta24-

RGD treatment. This is most likely due to the aggressive nature of

the GL261 model (mean survival 20 days) and the fact that the

development of a T-cell mediated anti-tumor response takes

between 7 and 14 days (figure 7). During this time period, the

untreated tumor, not affected by direct viral oncolysis, continues to

grow rapidly and animals succumb to the tumor burden.

The intratumoral influx of CD8+ cells together with the locally

increased production of IFNc, the functional T-cell response

against the tumor, and the protective immunity against tumor

rechallenge, point towards an essential role of CD8+ T-cells

during this treatment. These results urge further research into

characterization of this specific response and the development of

strategies to further enhance it. This will greatly increase

therapeutic options, e.g. by arming OVs with critical chemo- or

cytokines, combining OV treatment with either TCR-modified T-

cells [49,50] or with antibodies targeting T-cell costimulatory

molecules [51].

Methods

Cell Culture
The mouse glioma cell line GL261, obtained from NCI Tumor

Repository (Frederik, MD), the human lung carcinoma cell line

A549 (ATCC, Manassa, VA) and the 911 cell line [52] (kindly

provided by dr. RC Hoeben, Leiden University, The Netherlands)

were all maintained in Dulbecco’s Modified Eagle Medium

(Invitrogen, Carlsbad, CA) supplemented with 10% fetal calf

serum (FCS; Invitrogen) and 1% penicillin/streptomycin (Invitro-

gen).

Viruses
The human Delta24-RGD virus was previously described by

Suzuki et al 2001 [17]. The Ad-luc-RGD virus was kindly

provided by dr DT Curiel, (University of Alabama Birmingham,

Alabama). Viral stocks were produced as described previously

[53]. When cytopathic effect appeared, cells and supernatants

were pooled and the virus was purified using the AdEasy Virus

Purification Kit (Stratagene, La Jolla, CA). The virus titer was

determined on A549 cells for Delta24-RGD or 911 cells for Ad-

luc-RGD using the Adeno-X Rapid Titer Kit (Clontech,

Mountain View, CA).

In vitro Cytotoxicity and Viral Load Assay
For all experiments, GL261 cells were seeded in a flat-bottom

96-well plate (Corning, NY) at a density of 56103/well. For the

cytotoxicity test, cells were infected 24 hr after plating with

Delta24-RGD MOIs ranging from 200 to 800 in triplicate. Cell

viability was assessed at day 3, 6 and 8 using the WST-1 reagent

(Roche, Basel, Switzerland) according to the manufacturer’s

instructions. To assess the effects of dexamethasone on Delta24-

RGD oncolytic activity, 0.2, 2, 20 and 200 mM dexamethasone

(hospital pharmacy, ErasmusMC, Rotterdam, The Netherlands)

was added 24 hr prior to and simultaneously with Delta24-RGD

infection with MOI 200. To assess if Delta24-RGD was able to

replicate in GL261 cells, the viral load was determined by

quantitative PCR of the adenoviral E1A gene. Therefore, 5000

GL261 cells were infected with 100 MOI and 24, 48, 72 and

96 hours after infection, cells and supernatants were harvested

separately. The cells were lysed by 3 freeze/thaw cycles. Nucleic

acids were extracted both from the lysed cells and supernatant

using the High Pure Viral Nucleic Acid extraction kit of the

Magnapure LC (Roche Molecular Systems, Switzerland). Ampli-

fication was performed using the 2x Taqman Universal Mastermix

(Life Technologies) and primers add24-RGDfwd (59-acactaaacgg-

tacacaggaaacag-39) and add24-RGDrev (59-gccagaccagtcccatgaaa-

39) and FAM-BHQ labelled probe add24-RGDprobe (59-ccgcgga-

gactgtttctgccca-39). Real time PCR amplification was read on a

Lightcycler 480 (Roche Molecular Systems). In parallel, a

calibration curve of a Delta24-RGD stock with a known viral

particle titre was run.

Intracranial Immune Competent Mouse Model
All animal experiments described in this paper have been

conducted according to Dutch guidelines for animal experimen-

tation. All animal experiments were reviewed by and performed

with approval of the Erasmus MC Animal Ethics Committee

(DEC) of the Erasmus Medical Center, Rotterdam, The Nether-

lands (Protocols DEC EMC-1688, DEC EMC-2100 and DEC

EMC-2707). The mice were housed in individually ventilated

cages with sterile bedding, water, and rodent chow. All efforts were

made to minimize animal suffering. No more than mild or

moderate discomfort of animals was expected from the treatments,

and no unexpected discomfort was observed.

Female C57BL/6 mice (6–9 weeks old, Harlan, Horst, The

Netherlands) were stereotactically injected with

56104 GL261 cells 3 mm deep in the right hemisphere (2.2 mm

lateral, 0.5 mm posterior of bregma) as described previously [27].

In the rechallenge experiment, 56104 GL261 cells were injected

stereotactically in the left hemisphere. For the multifocal tumor

model, 56103 GL261 cells were injected in the left and right

hemisphere at the same coordinates. Dexamethasone treatment

(10 mg/kg/day or 7.5 mg/kg/day i.p. as indicated in the figure

legends) was started one day before intracranial injection with

GL261 cells. In the survival experiment animals received

dexamethasone for 55 days. Five days after GL261 injection, the

same burr hole was used to inject 108 pfu Delta24-RGD or 1,25%

glycerol (Sigma)/PBS as control. All intracranial injections (tumor

cells or virus) were performed under isofluorane inhalational

anesthesia and during and directly after the intracranial injections

mice received additional local analgesia (0.25% Bupivacaine) on

the head wound. For the early analysis timepoints mice were

euthanized at 6, 24, 48, 96 hr, 7 or 14 days post treatment by

cervical dislocation under isofluorane anesthesia. For the survival

experiments mice were monitored daily and were euthanized upon

more than 20% weight loss or when neurological symptoms

appeared. Brain, spleen and blood were harvested for further

studies.

Neutralizing Antibodies
Determination of neutralizing antibodies was done as described

by Sprangers et al [54]. Briefly, serum was collected from virus

treated mice at 48, 96 hr and 7 and 14 days post-treatment. A549

cells were plated at 104 cells in 96-well flat-bottom plates and

infected with the Ad-luc-RGD virus (MOI 100) in the presence of

a serial dilution of the sera taken at the various timepoints. After

24 hours of incubation the cells were lysed using 0.9% Triton-

X100 (Sigma-Aldrich) and total luciferase was measured using the

Luciferase Assay System (Promega) according to the manufacturer

instructions. Results are presented in RLU as percentage of

inhibition compared to control infection (A549 cells infected with

Ad-luc-RGD) levels.
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Cytokines
Proteins were isolated from snap-frozen mouse brains as

described by Datta et al [55]. In brief, the right tumor-containing

hemisphere was disrupted and the Bioplex Cell Lysis Buffer (Bio-

rad, Hercules, CA) was added. The homogenates were agitated on

ice for 30–40 minutes to allow complete lysis. The supernatants

were collected and protein concentration was determined using

the BCA Protein Assay Reagent Kit (Roche). Selected cytokines

and chemokines were measured using the Milliplex Map Mouse

Cytokine/Chemokine Magnetic Bead Panel (Millipore). Analysis

was done with the Milliplex Analyzer 3.1 xPonent System

(Millipore).

Immunohistochemistry
Cryosections of snap frozen brains were made and fixed with

ice-cold acetone. Proteins were blocked for 10 min with Protein

Block (Dako, Glostrup, Denmark) and stained with the following

primary antibodies: rat anti-mouse F4/80 (Bio-Connect, Huissen,

The Netherlands), rat anti-mouse CD4 (Biolegend, San Diego,

CA), rat anti-mouse CD8 (eBioscience, San Diego, CA) and goat

anti-adenovirus (Millipore, Billerica, MA). Secondary antibodies

ALEXA Fluor-546 rabbit anti-goat IgG (H+L) (Invitrogen) and

ALEXA Fluor-488 goat anti-rat IgG (H+L) (Invitrogen) were used

to detect the primary antibodies. All sections were counterstained

with 49,6 Diamidino – 2 – Phenylindole dihydrocholoride (DAPI)

and mounted (Vectashield, Vector Laboratories, Burlingame, CA).

Images were merged using ImageJ software (Rasband, W.S.,

ImageJ, U.S. National Institute of Health, Bethesda, Maryland,

USA, http://imagej.nih.gov/ij/, 1997–2012).

Detection of Reactive Splenocytic T Cells
T cell reactivity in spleens was monitored as described by Pouw

and colleagues [56]. In short, spleens were mechanically dissoci-

ated and erythrocytes were removed using a NH4CL solution.

Splenocytes were maintained in complete mouse medium

containing RPMI 1640 w/25 mM Hepes and L-Glutamine

(Invitrogen) supplemented with 10% FCS, 1% penicilin/strepto-

mycin, NEAA (Lonza, Basel, Switserland), 1 mM NaPyr (Invitro-

gen) and 50 mM b-mercaptoethanol (Sigma-Aldrich, St. Louis,

MO). The splenocytes were stimulated with Concanavalin A

(2.5 mg/ml, Sigma-Aldrich) and 100 U/ml human recombinant

IL-2 (Proleukin, Chiron, Amsterdam, The Netherlands) for 48

hours. To assess IFNc production, 106 stimulated splenocytes were

co-cultured with 104 GL261 cells, A549 cells, and Delta24-RGD.

Supernatants were harvested and the level IFNc was determined

with OptEIA ELISA kit II (BD Biosciences). Levels of IFNc
produced in the co-culture of splenocytes and GL261 cells were

corrected for those produced in the co-culture of splenocytes with

A549 cells and considered as background levels.

Statistical Analysis
Statistical analysis was done using the Prism Graphpad Software

(Graphpad Software Inc. La Jolla, CA). For the survival

experiments the log-rank test was used, for the other experiments

the student’s t-test. Differences were considered statistically

significant when p,0.05.
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