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Abstract—According to recent studies, the main Mpro protease of the SARS-CoV-2 virus, which is the most
important target in the development of promising drugs for the treatment of COVID-19, is evolutionarily con-
servative and has not undergone significant changes compared with the main Mpro protease of the SARS-CoV
virus. Many researchers note the similarity between the binding sites of the main Mpro protease of SARS-CoV
and SARS-CoV-2 viruses; thus, with the spreading epidemic, further studies on inhibitors of the main Mpro

protease of the SARS-CoV virus to fight COVID-19 seems logical. In the course of the study, satisfactory
QSAR models are built using simplex, fractal, and HYBOT descriptors; the Partial Least Squares (PLS),
Random Forest (RF), Support Vectors, Gradient Boosting (GBM) methods; and the OCHEM Internet plat-
form (https://ochem.eu), in which different types of molecular descriptors and machine learning methods
are implemented. The structural interpretation, which allowed us to identify molecular fragments that
increase and decrease the activity of SARS-CoV inhibitors, is performed for the obtained models. The results
of the structural interpretation are used for the rational molecular design of potential SARS-CoV-2 inhibitors.
The resulting QSAR models are used for the virtual screening of 2087 FDA-approved drugs.
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INTRODUCTION
In 2002, the global community was faced with the

SARS-CoV coronavirus, with caused an epidemic of
atypical pneumonia (severe acute respiratory syndrome).
The first cases of infection with the SARS-CoV corona-
virus were detected in Southern China, before the epi-
demic spread to 29 countries, as a result of which more
than 8000 people were infected, while 916 persons
died [1]. In 2012, the second epidemic, caused by the
spread of a coronavirus, in this case the MERS-CoV
virus, which is characterized by higher lethality, was
recorded in Saudi Arabia. By the end of August 2015,
574 persons died among the total number of infected
people (1511 patients); i.e., the lethality from the
MERS-CoV coronavirus was over 37% in contrast to
SARS-CoV, for which the lethality was estimated
at 10%.

A number of experts forecast the emergence of a
threat for the human race, which will be caused by a
new type of coronavirus [3]. The authors of this study
proposed that the new coronavirus, circulating in the
Chinese populations of horseshoe bats, will bind to
the human angiotensin converting enzyme II (ACE2)

followed by the efficient replication in the cell of the
respiratory system.

Unfortunately, the prognoses of the above-men-
tioned experts turned out to be right, and the Chinese
public health authorities recorded the first case of
infection with the new SARS-CoV-2 coronavirus on
December 8, 2019 [4]. The level of the lethality from the
new SARS-CoV-2 coronavirus is estimated to be lower
(about 7%) than for SARS-CoV and MERS-CoV;
however, it was shown that only 48 days are required
for infection of the first 1000 patients with the SARS-
CoV-2 coronavirus, while 130 days are required for
infection with SARS-CoV, and two-and-a-half years
for MERS-CoV [5].

The pandemic caused by the new SARS-CoV-2
coronavirus represents a serious medical and socio-
economic problem for all mankind.

The drug Favipiravir recommended in the Russian
Federation for the treatment of COVID-19 [6],
according to a number of researchers, has a terato-
genic effect [7]. Thus, the search and development of
highly effective and safe drugs that can stop the spread
of the COVID-19 pandemic is an urgent issue.
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Chemoinformatics methods can provide signifi-
cant assistance in reducing the time and financial
costs in repositioning and developing new drugs [8–
10]. Since the emergence of the new SARS-CoV-2
coronavirus, a number of studies using the methods of
molecular docking, molecular dynamics, and phar-
macophore analysis have been conducted in this
direction [11–22].

Currently, the molecular structure of potential
SARS-CoV-2 inhibitors is being considered from dif-
ferent points of view. The resulting diverse information
is of significant interest to the world scientific and
medical community. In the studies conducted, the
most significant target for developing drugs is the
main protease of the virus Mpro, also known as 3-chy-
motrypsin-like protease (3CLpro), which plays a key
role in replication of coronaviruses. It was found that
this enzyme, being evolutionarily conservative, did not
undergo significant changes in contrast to the main
Mpro protease of the SARS-CoV virus, which caused
an outbreak of acute respiratory syndrome in 2002–
2003 [23–27]. Previous studies also indicate the con-
servatism of the Mpro sequences and spatial Mpro struc-
tures of different types of coronaviruses [28]. At the
same time, close homologues of this enzyme have not
been identified in the human body, which has a posi-
tive effect on the specificity and a decrease in the
number of potential side effects of inhibitors of the
main Mpro protease [29].

In the study [25], a virtual screening of the Drug-
Bank library of chemical compounds was performed
based on the similarity of the binding sites of the main
Mpro protease of SARS-CoV and SARS-CoV-2 viruses
using the method of molecular docking [30]. As a
result, a list of ten potential inhibitors of the main Mpro

protease was proposed, which, according to the
authors [25], are the most promising for combating
SARS-CoV-2.

In the study [31], compounds included in the list of
drugs of traditional Chinese medicine were initially
selected. For these compounds, an assessment of their
pharmacokinetic characteristics such as adsorption,
distribution, metabolism, and excretion is given. The
most promising compounds were studied using
molecular docking. The next step was the selection of
medicinal herbs that contain at least two compounds
proposed in the course of molecular docking. As a
result of the study, the authors of [31] identified 26
medicinal herbs of Chinese medicine that are poten-
tially promising for the treatment of the COVID-19
disease caused by the SARS-CoV-2 coronavirus.

The publication [23], which presents the results of
the consensus in vitro and in silico screening, deserves
special attention. The authors studied a database of
more than 10000 compounds, for which the binding to
Mpro of the SARS-CoV-2 coronavirus was experimen-
tally measured by the method of f luorescent reso-
nance energy transfer. The most promising seven
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compounds were further investigated for their ability
to prevent the infection of cells with the SARS-CoV-2
virus. The in silico screening of these 10000 com-
pounds was performed using the Glide v8.2 and Mae-
stro software (Schrödinger). According to the consen-
sus results, the most promising were ebselen (2-phe-
nyl-1,2-benzoselenazol-3-one, CAS no. 60940-34-3),
carmofur (1-hexylcarbamoyl-5-fluorouracil, CAS no.
61422-45-5), compound TDZD-8 (2-methyl-4-
(phenylmethyl)-1,2-athiadiazolidine-3,5-dione, CAS
no. 327036-89-5), and N3 peptidomimetic, the previ-
ously proposed SARS-CoV inhibitor, which cova-
lently binds to Mpro according to the Michael reaction.

The authors of [32] conducted a virtual screening
of 1.3 billion molecules in order to identify the most
active inhibitors of the main Mpro protease of the
SARS-CoV-2 virus. In this study, the recently devel-
oped Deep Docking algorithm, which integrated classi-
cal docking and the methodological foundations for con-
structing QSAR (Quantitative Structure–Activity Rela-
tionship) models, was used; this allowed them to increase
the screening performance compared with traditional
docking methods. The authors note that the scoring
functions are determined by the used docking methods,
and the QSAR models were used to optimize the virtual
screening. Based on the results of the virtual screening, a
hit list of 1000 compounds was proposed, which is avail-
able for free download at https://drive.google.com/drive/
folders/1xgA8ScPRqIunxEAXFrUEkavS7y3tLIMN.

Using deep learning the authors performed the
study [33] in which models that describe the structure
of compounds using character strings composed
according to the rules of SMILES [34] were devel-
oped. The principle of the used prediction method is
based on a technology called natural language pro-
cessing [35], used in the analysis of human speech by
a computer, but in this case the language is a string of
characters written according to the SMILES rules and
the sequence of the target protein. In order to identify
and analyze regularities, convolutional neural net-
works were used [36]. The study predicted the activity
of inhibitors of the main Mpro protease, RNA replicase
(RNA-dependent RNA-polymerase, RdRP), heli-
case, and a number of other enzymes of the SARS-
CoV-2 virus. Molecular docking (in particular, the
AutoDock Vina v.1.1.2 program) was used for the
comparative study. As a result, the authors identified
three drugs against HIV (ritonavir, atazanavir, efa-
virenz), as well as the antiviral agent ganciclovir.

The TMPRSS2 protease (Transmembrane prote-
ase, serine 2, membrane-bound serine protease)
serves as another target for the fight against the coro-
navirus; its inhibitors can prevent the entry of the
virion into the cell [37]. However, the number of stud-
ies devoted to the computer modeling of TMPRSS2
protease inhibitors is significantly less than that of the
main Mpro protease. Thus, we can note the publication
[38], in which a virtual screening of a database con-
ITY CHEMISTRY BULLETIN  Vol. 76  No. 2  2021
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taining more than 30000 natural compounds was per-
formed using molecular docking and pharmacophore
analysis. For the selected 12 compounds, the authors
evaluated adsorption, distribution, metabolism, elim-
ination, and toxicity. The small molecule compound
geniposide (CAS no. 24512-63-8) turned out to be the
most promising.

Thus, the majority of works was carried out using
the method of molecular docking, which, like any
method of research, has limitations. In particular, the
methodological difficulties of docking are associated
with considering conformations of the ligand, the
choice of methods for constructing the scoring func-
tion, and the f lexibility of receptors. The main meth-
ods of molecular docking and their inherent limita-
tions are described in detail in the reviews [39–41].

QSAR is an alternative method of computer drug
development, which has successfully solved various
problems [42]. The literature contains information on
the similarity of the binding sites of the main Mpro pro-
tease of SARS-CoV and SARS-CoV-2 viruses, which
were confirmed in the course of independent studies
[23–27]. In relation to this, we assumed that the
assessment of potential SARS-CoV-2 inhibitors
during drug development can be realized using QSAR
models of SARS-CoV inhibitors.

The authors of [43] developed a QSAR model of
SARS-CoV inhibitors using 3D-QSAR methods
(CoMFA, CoMSIA), the limiting feature of which is
the ambiguity of the three-dimensional alignment of
the structures of the studied compounds [44]. In
another study [45], 33 QSAR models of SARS-CoV
inhibitors were developed, but the authors did not
provide indicators of their predictive ability, assessed
using compounds of the test sample.

In accordance with the fifth principle of QSAR
modeling, developed by the OECD expert group [46],
the interpretation of the obtained models is desirable.
In the reviewed publications [43, 45], there is no struc-
tural interpretation of the QSAR models, which does
not allow conducting molecular design and limits the
use of simulation results for studying the mechanisms
of biological reactions [47].

Recently, a study was published [48] in which
acceptable QSAR models of inhibitors of the main
Mpro protease of the SARS-CoV virus, which were
developed using PaDEL and Dragon descriptors, and
the method of multiple linear regression (MLR) were
proposed in the search for effective drugs against
COVID-19. Using the developed QSAR models, the
authors conducted a virtual screening of more than
50 000 different compounds in order to identify the
most active inhibitors of the main Mpro protease of the
virus. Based on the proposed regression equations,
namely, the contributions of some significant descrip-
tors, the authors of [48] analyzed the effect of the
structural features of the studied compounds on a
change in the inhibitory activity.
MOSCOW UNIVERSITY CHEMISTRY BULLETIN  Vol.
In the study [49], adequate QSAR models of
SARS-CoV inhibitors, in the course of the structural
interpretation of which molecular fragments that
decrease and increase this type of activity were identi-
fied, were developed for 54 peptidomimetics. To con-
struct the models, the authors of [49] also used the
MLR method.

The regression method of the MLR data analysis
applied in [48, 49] can give adequate results only in the
presence of a linear relationship between the structure
and activity [50]. One of the ways to overcome this disad-
vantage can be the use of nonparametric methods, in
particular, various methods of machine learning (ML).

The study [27], in the course of which high-quality
classification-based QSAR models of SARS-CoV
inhibitors were developed, deserves special attention.
The reliability of the constructed QSAR models was
confirmed by subsequent experimental studies, as a
result of which some compounds demonstrated high
activity and were recommended for further study. In
parallel with the QSAR analysis, the authors of [27]
carried out a study using methods of molecular dock-
ing, while the revealed unacceptably low level of pre-
dictive ability did not allow considering the results of
studying SARS-CoV inhibitors by molecular docking
methods. Undoubtedly, the study [27] is very success-
ful, but it lacks the structural interpretation of QSAR
models.

The present study consisted of the following stages:
(1) construction of QSAR models of the main Mpro

protease inhibitors of SARS-CoV;
(2) performing a virtual screening of the most

promising compounds of potential drugs for the treat-
ment of COVID-19;

(3) structural interpretation of QSAR models and
rational molecular design of the main Mpro protease
inhibitors.

EXPERIMENTAL
The well-known CHEMBL database (ID:

CHEMBL3927) [51] served as the source for the sam-
ple formation for QSAR modeling. Inorganic com-
pounds, polymers, mixtures, and compounds in the
salt form were removed from the obtained sample. The
final set of inhibitors of the main Mpro protease of
SARS-CoV contained 65 compounds.

The experimental values of the activity of inhibitors
of the SARS-CoV main Mpro protease, expressed in
terms of the half-maximal inhibitory concentration
(IC50, nM or μM), which were given in the primary
sources, were converted (1) into the negative common
logarithm of the pIC50 value, which is generally
accepted in QSAR studies and is used in cases when a
linear increase in the concentration causes an expo-
nential increase in the effect:

(1)( )= −50 50pIC log IC .
 76  No. 2  2021
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Fig. 1. An example of 2D generation of simplex descriptors for alanine at the 2D level using differentiation of atoms by their partial
charges
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Fig. 2. The principle of structural interpretation used. W(C) is the contribution of the fragment (C); X(A) is the predicted activity
value of the parent structure (A); X (B) is the predicted activity value for a hypothetical structure (B)
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The exported experimental values and structures of
compounds are given in the Appendix A (Table A1).

To describe the molecular structure, 2D simplex
descriptors, which are calculated in the simplex repre-
sentation of the molecular structure (SIRMS), were
used [52]. Within the SIRMS, a molecule is consid-
ered as a system of various simplexes, tetraatomic
molecular fragments of a fixed structure (Fig. 1).

The descriptor in this case is the number of sim-
plices of a certain type. At the 2D level, atoms (vertices
of a simplex) are differentiated not only by the nature
“label” of the atom but also considering different
physicochemical properties (partial charge on the
atom, lipophilicity, refraction, and the ability to act as
a donor or acceptor of hydrogen during the formation
of a hydrogen bond).

Structural interpretation was performed in accor-
dance with the approach [53], in which the contribu-
tion of the studied fragment (C) was calculated by the
difference between the calculated values of the activity
for the parent structure (A) and the hypothetical
structure (B) obtained by removing the studied frag-
ment (C) from the parent structure (A) (Fig. 2).

When simulating using simplex descriptors, we
used the Scikit-learn package [54] for the Python pro-
gramming language, which implements the methods
MOSCOW UNIVERS
of partial least squares (PLS), random forest (RF),
support vector machine (SVM), and gradient boosting
method (GBM).

Due to the small number of studied compounds
and their structural diversity, a five-fold internal
cross-validation (CV) was performed. For this, all
compounds of the training sample are randomly
divided into five parts. Then, a QSAR model is built
(trained) on four pieces of data combined into a train-
ing sample, and the rest of the data is used as an exter-
nal test sample; i.e., the predictive ability of the model
is checked on the compounds of this group. This pro-
cedure is repeated 5 times; as a result, each of the five
portions of the data is sequentially used for testing.
Note that the studied compounds are never simulta-
neously used as a part of both the training and the
external test set.

During QSAR modeling, the inclusion of the com-
pounds in the applicability domain (AD) [55] was
considerered for test samples, while if the value of at
least one descriptor went beyond its minimum or max-
imum value for the training sample, then the com-
pound of the test sample containing this descriptor
was not included in the bounding box. This approach
for QSAR modeling using simplex descriptors is
implemented in the form of the SPCI software, which
ITY CHEMISTRY BULLETIN  Vol. 76  No. 2  2021



VIRTUAL SCREENING AND MOLECULAR DESIGN OF POTENTIAL 99

Table 1. Statistical characteristics of QSAR models developed using the OCHEM internet resource

Method Descriptor RMSEcv

ASNN

ISIDA Fragments 0.67 0.50

ALogPS, OEstate 0.68 0.49

Dragon 0.66 0.50

CDK 0.60 0.53

alvaDesc 0.65 0.51

RF
StructuralAlerts 0.63 0.52

ISIDA Fragments 0.67 0.49

Consensus model (https://ochem,eu/model/43078789) 0.70 0.47

2
cvR
is freely available at http://qsar4u.com/pages/sirms_
qsar.php.

In addition, we used the OCHEM Internet plat-
form ((https://ochem.eu) for QSAR analysis. The
best modeling results were achieved using a number of
descriptors (ALogPS, OEstate, Dragon, CDK, ISIDA
Fragments, StructuralAlerts, alvaDesc) and the RF
and associative neural networks (ASNN) methods.
The consensus model was constructed by averaging
the predictions of the best individual models. In this
case, the applicability domain was assessed using the
concept of the distance to the model (in particular, the
CLASS-LAG approach). A brief description of the
used methods and descriptors, as well as links to the
original works are given in the OCHEM user manual
[56].

The OCHEM internet resource implements the
method of molecular pairs [57], which also allows us
to interpret models constructed on any descriptors.

The assessment of the accuracy and predictive abil-
ity of the models proposed in this study and their com-
parison with other QSAR models was performed
based on the following criteria.

1. The coefficient of determination (R2):

(2)

where  is the calculated value of the property for the
ith molecule, yi is the observed (experimental) value of
the property for the ith molecule, m is the number of
molecules in the sample, and yi mean is the mean value
of the observed property.

2. Root mean square error (RMSE):
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Considering the fact that the QSAR modeling
mentioned above requires the use of a large number
(hundreds and thousands) of descriptors, for compar-
ison, regression models containing a small number of
HYBOT variables [59] with the addition of a number
of topological and fractal characteristics [60] were
constructed using the RF method [58]. In this case,
AD was assessed using the interval method.

For the virtual screening, we used the DrugBank
database [30], represented by FDA-approved drugs.
Inorganic compounds, polymers, mixtures, and com-
pounds in the salt form were removed from the
exported DrugBank database. The final sample for the
virtual screening contained 2087 FDA-approved
drugs.

RESULTS AND DISCUSSION
The results of the QSAR modeling are shown in

Tables 1–3. The consensus model is freely available at
the link given in Table 1. All the constructed models
have satisfactory statistical characteristics and possess
comparable predictive power.

For the consensus QSAR models obtained (Tables
1, 2), a structural interpretation was performed. When
interpreting the consensus model built using simplex
descriptors (Table 2), the contributions of molecular
fragments to the activity of inhibitors of the SARS-
CoV main Mpro protease were determined (Fig. 3).

This set of molecular fragments is formed from the
standard functional groups (51 fragments) and six
molecular fragments obtained during the automatic
fragmentation of compounds of the training set using
the SPCI program using the SMART template
[#6+0;!$(*=,#[!#6])]!@!=!#[*], which encodes
breakable bonds [53]. Only those molecular fragments
that were found in three or more compounds were
subjected to interpretation, which, from our point of
view, allowed us to focus on the fragments that stably
affect the inhibitory activity and to avoid, to some
extent, the influence of random factors, for example
errors in the experimental data or predicted values of
 76  No. 2  2021
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Table 2. Statistical characteristics of QSAR models devel-
oped using 2D simplex descriptors

Method Descriptor RMSEcv

GBM

SIRMS

0.57 0.57

RF 0.65 0.51

SVM 0.52 0.60

PLS 0.64 0.52

Consensus model 0.64 0.51

2
cvR

Table 3. Statistical characteristics of QSAR model devel-
oped using HYBOT, topological, and fractal descriptors

MaxEa is the maximum H-acceptor enthalpy descriptor; MaxCa
is the maximum H-acceptor free energy descriptor; Nv2 is the
number of vertices with the degree 2; IC0 is the mean informa-
tional content of the 0-th order;  is the fractal density of
unbound atoms. The used descriptors are considered in works
[59, 60].

Method Descriptor RMSEcv

RF MaxEa; MaxCa; Nv2; IC0; 0.62 0.53

2
cvR

unb*D

unb*D
the activity and contributions of fragments. The com-
plete list of identified molecular fragments in the form
of SMARTS with the calculated average contributions
to the activity is given (Appendix A, Table A2).

The interpretation allowed us to quantitatively
describe and rank the effect of molecular fragments on
the change in the activity of SARS-CoV Mpro inhibi-
tors and detail the molecular environment of the
known functional groups, highlighting derivative frag-
ments that increase and decrease contributions to the
indicated type of the activity. For example, when
detailing pyrimidine, the 2-sulfanylpyrimidin-4-ol
molecular fragment (f9 in Fig. 3), which significantly
reduces the activity of SARS-CoV Mpro inhibitors, was
isolated. In this case, carboxyl derivatives of furan and
pyridine (fragments f1 and f2 in Fig. 3), on the con-
trary, increase the activity of SARS-CoV Mpro inhibi-
tors.

The interpretation was also performed for the con-
sensus model (Table 1), built using the OCHEM
internet resource. Table 4 shows the results of the
interpretation, according to which the inhibitory
activity increases under the substitution of hydrogen
atoms with chlorine or methyl group. An increase in
the activity of SARS-CoV Mpro inhibitors is also
observed when phenyl and n-propyl radicals are
replaced by naphthyl radicals. The results of the inter-
pretations for the consensus models described above
consistently indicate an increase in the activity of
SARS-CoV Mpro inhibitors under the substitution of
MOSCOW UNIVERS
fragments containing iodine (f5) by the carbamoyl
group (f4).

Considering the trends in the effects of the struc-
ture of compounds on the change in the activity
revealed during the interpretation, we carried out a
rational molecular design and proposed a number of
promising agents against COVID-19. In this case,
molecular fragments that reduce the activity were
replaced by the fragments which increase the activity
of Mpro inhibitors according to the interpretation
results. As a result, hypothetical compounds (Table 5,
substances 2, 4, 6), which possess a significant calcu-
lated inhibitory activity and fall into the applicability
domain of the consensus QSAR model, developed
using OCHEM, were proposed. For example, when
the residue of 6-methyl-2-sulfanylpyridine-4-ol
(compound 1, Table 5) is substituted with carboxyl
derivative of pyridine (compound 2, Table 5), a signif-
icant increase in the activity of the SARS-CoV main
Mpro protease inhibitors is noted. Also an increase in
the activity is characteristic for the substitution of a
fragment, containing nitrile (compound 3), with tri-
fluoromethyl (compound 4) or of the 4-(1,3-thiazol-
4-yl)pyrimidine-2-thiol residue (compound 5, Table
5) with the above-mentioned carboxyl pyridine deriv-
ative (compound 6). It should be noted that during
molecular design in these examples the results of the
interpretation of the QSAR model built using simplex
descriptors were considered, while the prediction of
the inhibitor activity was performed using the QSAR
model built by the OCHEM internet resource.

When determining the strategies of synthesis and
testing, it is important to evaluate various types of tox-
icity and lipophilicity in addition to the target property
(activity), which are important factors when deciding
whether to recommend the use of a compound as an
active substance of the drug. For this purpose, the
acute toxicity (LD50) after oral administration to rats
and the probability of mutagenicity (the Ames test)
was assessed for compounds 1–9 using the T.E.S.T.
v.4.2. program, developed by experts from the Envi-
ronmental Protection Agency of the United States
[61]. Also, using the swissADME Internet platform of
the Swiss Bioinformatics Institute (http://www.swis-
sadme.ch/) [62], the lipophilicity (log Po/w), compli-
ance with Lipinski’s rules [63], the presence of PAINS
fragments [64], the synthetic availability on a ten-
point scale (0 is the maximum degree of synthetic
availability, 10 is the minimum degree of synthetic
availability) [65] were assessed for these compounds,
which is extremely important for the proposed, but not
yet synthesized, compounds. The prediction results
are shown in Table 6, from which it can be seen that
compounds 2, 4, 6, 8, and 9 proposed in the course of
molecular design have comparable synthetic availabil-
ity in comparison with the synthesized substances 1, 3,
5, and 7. All substances satisfy Lipinski’s rules of five,
except for compound 4, and do not contain PAINS
ITY CHEMISTRY BULLETIN  Vol. 76  No. 2  2021



VIRTUAL SCREENING AND MOLECULAR DESIGN OF POTENTIAL 101

Fig. 3. Contributions of molecular fragments to the ability of compounds to inhibit the SARS-CoV main Mpro protease. A, the
place of the fragment’s attachment to the other part of the molecule; f, the order number of the fragment; M, the number of com-
pounds containing the given fragment; N, the number of detections of the corresponding fragment in the sample.
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fragments. The studied compounds are characterized
by a wide range of lipophilicity values, which should
be considered when studying pharmacokinetics and
choosing dosage forms. According to the calculations
performed, compound 7 has a nonzero probability of
mutagenicity, which can reduce its attractiveness as a
lead compound, even though it has the maximum
experimentally measured inhibitory activity (Table 5)
among the compounds of the exported sample from
the CHEMBL database (ID: CHEMBL3927). When
MOSCOW UNIVERSITY CHEMISTRY BULLETIN  Vol.
modifying compound 7, a hypothetical compound 9,
which does not have the probability of mutagenicity
according to the calculated data, while the indicators
of LD50 and the inhibitory activity are comparable
with the initial compound 7, was proposed. In addi-
tion, the modification of compound 1 into compound
2 allowed us not only to increase the inhibitory activity
by almost two orders, reaching comparable values with
the most active substances in the exported sample but also
to reduce the toxicity (LD50) by a factor of almost 2.7.
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Table 5. The results of molecular design

Sample compounds
Experimental values, 

—log(IC50) Hypothetical compounds
Predicted values

–log(IC50)

4.00 5.93

4.22 4.34

5.52 6.19
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7.3

6.90

6.94

Sample compounds
Experimental values, 

—log(IC50) Hypothetical compounds
Predicted values

–log(IC50)

N
Br

O O

O

7

N

O O

O

8
FF

F

Br

N

O O

O

9

Br

S

Table 5.  (Contd.)
Table 6. The assessment of some physicochemical properties, types of toxicity and synthetic availability of compounds
studied within molecular design (the structures of compounds are presented in Table 5)

* Hypothetical compounds proposed as a result of molecular design; ** 0, negative; 1, positive; – compound is out of the applicability
domain of the QSAR model.

Compound logPo/w Number of inconsistencies 
with Lipinski’s rules

Number 
of PAINS 
fragments

Synthetic 
availability

Rat LD50 after oral 
administration, 

mg/kg

Probability 
of mutagenicity**

1 3.75 0 0 2.86 1382.28 0
2* 3.71 0 0 2.94 3788.68 0
3 3.35 0 0 3.76 956.51 0
4* 4.45 1 (Molecular weight over 500) 0 3.89 – 0
5 4.98 0 0 3.33 663.22 0
6* 4.33 0 0 2.78 772.67 0
7 2.18 0 0 2.5 581.59 1
8* 3.28 0 0 2.81 193.04 0
9* 4.58 0 0 3.26 561.22 0
Thus, compound 2 can be recommended for synthesis
and further testing.

Since the synthesis of new compounds and their
clinical trials take a long time, the most important
means of combating a new, rapidly spreading pan-
MOSCOW UNIVERSITY CHEMISTRY BULLETIN  Vol.
demic is the repositioning of approved drugs that have
passed all the necessary clinical studies. In order to
identify promising inhibitors of the SARS-CoV-2
main Mpro protease, 2087 FDA-approved drugs were
screened. The consensus model built by the OCHEM
 76  No. 2  2021



106 TINKOV et al.
Table 7. The most promising FDA-approved drugs for inhibiting SARS-CoV-2 replication according to the results of vir-
tual screening

–log(IC50) Name Chemical structure Description

6.09 Pexidartinib Antitumor agent, tyrosine 
kinase inhibitor

5.66 Tilbroquinol

Antiprotozoal agent effective 
against amebiasis; the drug 
was also used against Vibrio 
cholerae

5.61 Chloroxine

Drugs with bacteriostatic, 
fungistatic, and antiprotozoal 
properties

5.6 Chlorquinaldol

5.6 Bifonazole Antifungal drug

5.59 Telmisartan
Antihypertensive agent, 
angiotensin II receptor 
antagonist

F
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F N
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5.57 Butenafine Synthetic antifungal benzyl-
amine

5.54 Boscalid Has fungicidal properties

5.53 Etoricoxib
Anti-inflammatory, analge-
sic agent; selective cyclooxy-
genase-2 inhibitor

5.51 Roflumilast
Anti-inflammatory agent 
representing phosphodiester-
ase-4 (PDE4) inhibitor

–log(IC50) Name Chemical structure Description
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Table 7. (Contd.)
expert system was used for screening, since it has better
statistical characteristics and can be used by all inter-
ested persons for the virtual screening of their own sets
of compounds. The QSAR model obtained using sim-
plex descriptors was not used due to the peculiarities of
the method described above for determining the appli-
cability domain, which severely limits the structural
space of the model.

In the course of the virtual screening, ten com-
pounds that are within the applicability domain of the
consensus QSAR model developed using OCHEM
and have the highest calculated inhibitory activity
were proposed (Table 7). Antitumor, antiprotozoal,
antifungal, antibacterial, antihypertensive, and anti-
inflammatory drugs are among these compounds. Til-
broquinol, Chloroxine, and Chlorquinaldol, which are
MOSCOW UNIVERSITY CHEMISTRY BULLETIN  Vol.
halogenated quinoline derivatives as are the well-known
chloroquine and hydroxychloroquine used in the treat-
ment of COVID-19, are of particular interest [66].

According to the data of the virtual screening, the
highest inhibitory activity among the FDA-approved
drugs is possessed by Pexidartinib, which is an anti-
cancer agent, a tyrosine kinase inhibitor. In the study
[12], conducted using molecular docking and molec-
ular dynamics, the antitumor agent Neratinib, which
blocks the functioning of receptor tyrosine kinases,
was also proposed as a promising inhibitor of the
SARS-CoV-2 main Mpro protease. The conclusions of
the authors [12] are based on the assumption of a sim-
ilar binding of this antitumor agent to the cysteine res-
idue in the active centers of the kinase domains of
receptor tyrosine kinases and the SARS-CoV-2 main
 76  No. 2  2021
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Mpro protease. Another antitumor agent, carmofur,
was also isolated as a promising inhibitor of the SARS-
CoV-2 main Mpro protease according to the results of
high-throughput screening in the above-mentioned
study [23]. Recent additional studies using X-ray dif-
fraction analysis [67] describe the mechanism of the
inhibition of the SARS-CoV-2 main Mpro protease by
carmofur through covalent binding to the cysteine res-
idue Cys145 in the active center. Based on the forego-
ing, the proposal to repurpose pexidartinib, identified
during the virtual screening, for the treatment of
COVID-19 seems logical. It should be noted that the
confirmation of the effectiveness of the drugs pro-
posed for repurposing in the fight against COVID-19
requires significant additional experimental research.
Drugs should be taken only according to the medical
prescription by the physician.

Thus, in the course of computational experiments
using conceptually different descriptors and machine
learning methods, acceptable QSAR models of the
main Mpro protease inhibitors were developed.

The structural interpretation of the QSAR models
allowed us to reveal the common regularities in the
effect of the structure of chemical compounds on their
inhibitory activity by isolating molecular fragments
and transformations that increase and decrease the
activity of SARS-CoV inhibitors. The results of the
MOSCOW UNIVERS
structural interpretation were used to perform rational
molecular design, in the course of which a number of
promising compounds for combating COVID-19 were
proposed.

The virtual screening of FDA-approved drugs identi-
fied ten substances that can be recommended for repur-
posing as drugs against the new coronavirus infection.

The results of this study can help to reduce finan-
cial, time, and labor costs when determining the strat-
egy for the development of new drugs and reposition-
ing existing drugs that are SARS-CoV-2 inhibitors.
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APPENDIX A
Table A1. Structures and activities of studied compounds

Number SMILES Molecule 
ChEMBL ID

IC50, 
nM

pChEMBL
Value

Document 
ChEMBL ID

1 Brc1cncc(OC(=O)c2ccco2)c1 CHEMBL427404 50 7.3 CHEMBL1144475

2 Clc1cncc(OC(=O)c2ccco2)c1 CHEMBL426898 60 7.22 CHEMBL1144475

3 Clc1ccc(cc1)-c1ccc(o1)C(=O)Oc1cncc(Cl)c1 CHEMBL426082 63 7.2 CHEMBL1144475

4 Clc1cncc(OC(=O)c2cc3ccccc3[nH]2)c1 CHEMBL384739 65 7.19 CHEMBL1144475

5 Clc1cncc(OC(=O)c2cc3ccccc3s2)c1 CHEMBL383725 95 7.02 CHEMBL1144475

6 Clc1cncc(OC(=O)c2cc3ccccc3o2)c1 CHEMBL380470 170 6.77 CHEMBL1144475

7 Clc1cncc(OC(=O)c2cscn2)c1 CHEMBL380403 270 6.57 CHEMBL1144475

8 Cc1cc(c(Cl)cc1Cl)S(=O)(=O)c1c(cc(cc1[N+]([O–])=O)C(F)
(F)F)[N+]([O–])=O

CHEMBL379727 300 6.52 CHEMBL1145342

9 COc1cccc(c1)C(=O)Oc1cncc(Cl)c1 CHEMBL379642 340 6.47 CHEMBL1144475

10 NC(=O)c1ccc2N(Cc3ccc4ccccc4c3)C(=O)C(=O)c2c1 CHEMBL378700 370 6.43 CHEMBL1148529

11 ClC(Cl)=C(Cl)C(=O)Oc1ccc(cc1)S(=O)(=O)c1ccc(OC(=O)
C(Cl)=C(Cl)Cl)cc1

CHEMBL378674 900 6.05 CHEMBL1145342

12 Ic1ccc2N(Cc3cc4ccccc4s3)C(=O)C(=O)c2c1 CHEMBL378342 950 6.02 CHEMBL1139624

13 Brc1cccc2C(=O)C(=O)N(Cc3cc4ccccc4s3)c12 CHEMBL377253 980 6.01 CHEMBL1139624
ITY CHEMISTRY BULLETIN  Vol. 76  No. 2  2021
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14 Ic1ccc2N(Cc3ccc4ccccc4c3)C(=O)C(=O)c2c1 CHEMBL377150 1100 5.96 CHEMBL1148529

15 [O–][N+](=O)c1cccc2C(=O)C(=O)N(Cc3cc4ccccc4s3)c12 CHEMBL375130 2000 5.7 CHEMBL1139624

16 FC(F)(F)c1nnc(SC(=O)c2ccc(o2)C#Cc2ccccc2)[nH]1 CHEMBL370923 3000 5.52 CHEMBL1145342

17 Clc1cc(Cl)cc(NC(=O)CSc2nccc(n2)-c2csc(n2)-c2ccccc2)c1 CHEMBL365469 3000 5.52 CHEMBL1148632

18 Fc1ccc2N(Cc3cc4ccccc4s3)C(=O)C(=O)c2c1 CHEMBL365134 4820 5.32 CHEMBL1139624

19 Cc1noc(NC(=O)c2ccc(s2)-c2cc(nn2C)C(F)(F)F)c1[N+]([O–])=O CHEMBL358279 5000 5.3 CHEMBL1145342

20 Nc1ncc(c(N)n1)S(=O)(=O)c1ccc(Cl)cc1 CHEMBL348660 6000 5.22 CHEMBL1145342

21 Cc1noc(C)c1CN1C(=O)C(=O)c2cc(ccc12)C#N CHEMBL225515 7200 5.14 CHEMBL1139624

22 Fc1ccc(CN2C(=O)C(=O)c3cc(I)ccc23)c(Cl)c1 CHEMBL222893 9400 5.03 CHEMBL1139624

23 Cn1nc(cc1C(F)(F)F)-c1ccc(s1)-c1ccnc(SCC(=O)Nc2ccc(Cl)cc2)n1 CHEMBL222840 10000 5 CHEMBL1148632

24 Cc1oc(cc1-c1cc(N S(=O)(=O)c2cccs2)[nH]n1)C(C)(C)C CHEMBL222769 10000 5 CHEMBL1145342

25 CSc1sc(c(C)c1-c1ccnc(SCC(=O)Nc2ccc(Cl)cc2)n1)-c1nc(C)cs1 CHEMBL222735 11000 4.96 CHEMBL1148632

26 Clc1cccc2N (Cc3cc4ccccc4s3)C(=O)C(=O)c12 CHEMBL222628 11200 4.95 CHEMBL1139624

27 [O–][N+](=O)c1cc(ccc1S(=O)(=O)c1ccc(Cl)cc1)C(F)(F)F CHEMBL222234 12000 4.92 CHEMBL1145342

28 CSc1sc(c(C)c1-c1ccnc(SCC(=O)Nc2ccccc2Cl)n1)-c1nc(C)cs1 CHEMBL215732 12000 4.92 CHEMBL1148632

29 NC(=O)c1ccc2N(Cc3ccccc3)C(=O)C(=O)c2c1 CHEMBL215397 12500 4.9 CHEMBL1148529

30 Clc1ccc(NC(=O)c2ccc(CN3C(=O)C(=O)c4cc(I)ccc34)s2)cc1 CHEMBL214372 12570 4.9 CHEMBL1139624

31 Cc1nc(c(C#N)c(C)c1[N+]([O–])=O)S(=O)(=O)c1ccccc1 CHEMBL213581 13000 4.89 CHEMBL1145342

32 Cc1ccc(cc1)S(=O)(=O)c1nc(C)c(c(C)c1C#N)[N+]([O–])=O CHEMBL212504 13000 4.89 CHEMBL1145342

33 O=C1N(Cc2cc3ccccc3s2)c2ccccc2C1=O CHEMBL212454 13110 4.88 CHEMBL1139624

34 Ic1ccc2N(CC3COc4ccccc4O3)C(=O)C(=O)c2c1 CHEMBL212399 13500 4.87 CHEMBL1139624

35 Cc1nc(cs1)-c1nc(cs1)-c1ccnc(SCC(=O)Nc2ccc(Cl)cc2)n1 CHEMBL212240 14000 4.85 CHEMBL1148632

36 [O–][N+](=O)c1ccc([n+]([O-])c1)S(=O)(=O)c1ccc(Cl)cc1 CHEMBL212218 15000 4.82 CHEMBL1145342

37 CSc1[nH]nc(NC(=O)c2cccs2)c1S(=O)(=O)c1ccccc1 CHEMBL212190 15000 4.82 CHEMBL1145342

38 FC(F)(F)c1ccc(NC(=O)CSc2nccc(n2)-c2cc(no2)-c2ccc(Cl)
cc2Cl)cc1

CHEMBL212019 15000 4.82 CHEMBL1148632

39 Clc1ccc(NC(=O)CSc2nccc(n2)-c2cc(no2)-c2ccccc2Cl)cc1 CHEMBL211969 15000 4.82 CHEMBL1148632

40 Clc1ccc(NC(=O)CSc2nccc(n2)-c2cc(no2)-c2ccccc2)cc1 CHEMBL210632 15000 4.82 CHEMBL1148632

41 CC(=O)c1ccccc1S(=O)(=O)c1ccccc1C(O)=O CHEMBL210612 16000 4.8 CHEMBL1145342

42 CCO\C(O)=C(\C=N\c1ccc(cc1)S(=O)(=O)c1ccc(N\C=C(/
C#N)C(=O)OCC)cc1)/C#N

CHEMBL210525 16000 4.8 CHEMBL1145342

43 OC(=O)c1ccc(cc1)S(=O)(=O)c1cc(Br)c(O)c(Br)c1 CHEMBL210497 16000 4.8 CHEMBL1145342

Number SMILES Molecule 
ChEMBL ID

IC50, 
nM

pChEMBL
Value

Document 
ChEMBL ID

Table A1.  (Contd.)
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44 CC1(C)Cc2c(sc(NCc3ccco3)c2C(=O)C1)C#N CHEMBL210487 16000 4.8 CHEMBL1145342

45 Ic1ccc2N(Cc3ccc(s3)C(=O)N3CCCCC3)C(=O)C(=O)c2c1 CHEMBL210097 17500 4.76 CHEMBL1139624

46 CSc1nn(c(-c2cccs2)c1C#N)-c1c(c(C)nn1C)[N+]([O–])=O CHEMBL210092 18000 4.75 CHEMBL1145342

47 CCCCN 1C(=O)C(=O)c2cc(ccc12)C(N)=O CHEMBL209667 19000 4.72 CHEMBL1148529

48 Cc1nn(C)c(NCc2ccc(s2)-c2cccs2)c1[N+]([O–])=O CHEMBL209287 20000 4.7 CHEMBL1145342

49 Ic1ccc2N(C\C=C\c3cc4ccccc4s3)C(=O)C(=O)c2c1 CHEMBL209227 23500 4.63 CHEMBL1139624

50 [O–][N+](=O)c1ccc(cc1)S(=O)(=O)c1ccc(cc1)[N+]([O–])=O CHEMBL208763 25000 4.6 CHEMBL1145342

51 CCCN 1C(=O)C(=O)c2cc(ccc12)C(N)=O CHEMBL208732 25000 4.6 CHEMBL1148529

52 CCCc1cc(O)nc(SCC(=O)Nc2ccc(Cl)cc2)n1 CHEMBL208584 30000 4.52 CHEMBL1148632

53 CCO\C(O)=C(\C=N\c1ccc(cc1)S(=O)(=O)
c1ccc(NC=C(C(=O)OCC)C(=O)OCC)cc1)/C(=O)OCC

CHEMBL207207 32000 4.5 CHEMBL1145342

54 O=C(Cc1nccs1)c1nccs1 CHEMBL196635 40000 4.4 CHEMBL1145342

55 CC(C)c1ccc(NC(=O)CSc2nccc(n2)-c2cccs2)cc1 CHEMBL194398 40000 4.4 CHEMBL1148632

56 COc1cccc(c1)-c1nc(SCC(=O)Nc2ccc(cc2)S(N)(=O)=O)nc(O)
c1C#N

CHEMBL191575 40000 4.4 CHEMBL1148632

57 COc1ccc(NC(=O)CSc2nc(O)cc(n2)-c2ccccc2)cc1OC CHEMBL190743 45000 4.35 CHEMBL1148632

58
CCOC(=O)\C=C\[C@H](C[C@@H]1CCNC1=O)NC(=O)
[C@@H](CC(=O)[C@@H](NC(=O)c1cc(C)on1)C(C)C)
Cc1ccccc1

CHEMBL188983
45000 4.35

CHEMBL1141032

59 Ic1ccc2N(Cc3ccccc3)C(=O)C(=O)c2c1 CHEMBL188487 50000 4.3 CHEMBL1148529

60 COc1cccc(c1)-c1nc(SCC(=O)Nc2ccc(cc2)C(C)=O)nc(O)
c1C#N

CHEMBL187717 60000 4.22 CHEMBL1148632

61 CCC(Sc1nc(O)c(C#N)c(n1)-c1cccc(OC)c1)C(=O)
Nc1ccc(cc1)C(C)=O

CHEMBL187598 60000 4.22 CHEMBL1148632

62 CCCCN 1C(=O)C(=O)c2cc(I)ccc12 CHEMBL187579 66000 4.18 CHEMBL1148529

63
CCOC(=O)\C=C\[C@H](C[C@@H]1CCNC1=O)NC(=O)
[C@H](CC=C(C)C)CC(=O)[C@@H](NC(=O)c1cc(C)on1)
C(C)C

CHEMBL185698
70000 4.16

CHEMBL1141032

64 CN1C(=O)C(=O)c2cc(ccc12)C(N)=O CHEMBL148483 71000 4.15 CHEMBL1148529

65 Cc1cc(O)nc(SCC(=O)Nc2cc(Cl)ccc2Oc2ccccc2)n1 CHEMBL118596 100000 4 CHEMBL1148632

Number SMILES Molecule 
ChEMBL ID

IC50, 
nM

pChEMBL
Value

Document 
ChEMBL ID
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Table A2. Complete list of the identified molecular fragments, written in the form of SMARTS

Designations: M is the number of compounds containing the given fragment; N is the number of detections of the corresponding frag-
ment in the sample.

SMARTS M N Average contribution of fragment

O=C(O[*])c1cc([*])c([*])o1 3 3 2.08424025

O=C(Oc1cc([*])cnc1[*])[*] 8 8 2.0206205

Clc1c([*])ncc([*])c1[*] 7 7 1.8665205

O=C(O[*])[*] 9 9 1.59494225

O=C1C(=O)N(C([*])[*])c2c1cccc2[*] 3 3 0.6641145

c1c([*])cc2cc([*])sc2c1[*] 8 8 0.652451375

Clc1cc(Cl)c([*])c([*])c1[*] 3 3 0.30955275

FC(F)(F)[*] 6 6 0.146696125

NC(=O)[*] 5 5 0.13180325

O=S(=O)(c1cc([*])c(Cl)cc1[*])[*] 4 4 0.1251

c1cc(C[*])c([*])cc1[*] 4 4 0.12120975

c1c([*])sc(C[*])c1[*] 3 3 0.09563475

Cl[*] 25 30 0.04179175

Cn1nc([*])c([*])c1[*] 4 4 0.030965625

F[*] 8 8 0.027254125

N#C[*] 7 7 0.0052065

O=C1C(=O)N([*])c2c([*])cc(I)c([*])c21 9 9 0.00389875

c1cc(-c2cc([*])on2)c([*])cc1[*] 3 3 0.002501

SMARTS M N Average contribution of fragment

c1nc([*])nc([*])c1[*] 10 10 0.001548625

O=[N+]([O–])[*] 10 10 0

I[*] 9 9 –0.000999

n1c([*])sc([*])c1[*] 6 8 –0.025514375

O=C(Nc1ccc([*])cc1[*])[*] 12 12 –0.0292055

O=C(N[*])[*] 17 17 –0.1267215

O=C(CS[*])N[*] 14 14 –0.17362825

NC(=O)c1c([*])cc2c(c1[*])C(=O)C(=O)N2[*] 4 4 –0.178003875

O=c1[nH]c(S[*])nc([*])c1[*] 5 5 –0.3823725
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